Influence of Heat Treatment of Steel AISI316L Produced by the Selective Laser Melting Method on the Properties of Welded Joint
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407
Structural Funds of the European Union project
PubMed
35268922
PubMed Central
PMC8911074
DOI
10.3390/ma15051690
PII: ma15051690
Knihovny.cz E-zdroje
- Klíčová slova
- AISI 316L, heat treatment, mechanical properties, microstructural analysis, selective laser melting, tungsten inert gas welding,
- Publikační typ
- časopisecké články MeSH
This work is focused on the influence of heat treatment of a part produced by the SLM (selective laser melting) method of stainless steel, 316L. Two heat treatment regimens were tested and compared with the state without heat treatment. Subsequently, TIG (tungsten inert gas) welds were created on the base materials processed in this way. All welds were subjected to mechanical tests and microstructural analysis. The tensile test was performed both for the welded joint and for the base material in the transverse and longitudinal directions. The tensile strength values of the samples with the welded joint were compared with the values required for the base material, 316L forged steel (1.4404). Microstructural analysis revealed significant differences between samples with and without heat treatment. The results of these tests are supported by SEM analysis. EDAX (energy dispersive analysis of X-rays) semiquantitative analysis confirmed the presence of ultra-fine pores in the structure. The results of mechanical tests show that the solution annealing at 1040 °C for 0.5 h gives better results than the same heat treatment with a duration of 2 h.
5 NASS A S Halasova 2938 1a 703 00 Ostrava Czech Republic
Institute of Languages Technical University of Ostrava 708 00 Ostrava Czech Republic
Zobrazit více v PubMed
Gogolewski D., Bartkowiak T., Kozior T., Zmarzły P. Multiscale Analysis of Surface Texture Quality of Models Manufactured by Laser Powder-Bed Fusion Technology and Machining from 316L Steel. Materials. 2021;14:2794. doi: 10.3390/ma14112794. PubMed DOI PMC
Siebold M. Additive Manufacturing for Serial Production of High-Performance Metal Parts. Mech. Eng. 2019;141:49–50. doi: 10.1115/1.2019-MAY5. DOI
Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L. Review of Selective Laser Melting: Materials and Applications. Appl. Phys. Rev. 2015;2:041101. doi: 10.1063/1.4935926. DOI
Chen K., Wang C., Hong Q., Wen S., Zhou Y., Yan C., Shi Y. Selective Laser Melting 316L/CuSn10 Multi-Materials: Processing Optimization, Interfacial Characterization and Mechanical Property. J. Mater. Process. Technol. 2020;283:116701. doi: 10.1016/j.jmatprotec.2020.116701. DOI
Murphy J. Selective Laser Melting (SLM)—3D Printing Simply Explained|All3DP. All3DP|World’s #1 3D Printing Magazine [Online] [(accessed on 6 September 2021)]. Available online: https://all3dp.com/2/selective-laser-melting-slm-3d-printing-simply-explained/
Castells R. DMLS vs. SLM 3D Printing for Metal Manufacturing|Element. Materials and Product Testing, Inspection & Certification|Element [Online] [(accessed on 6 September 2021)]. Available online: https://www.element.com/nucleus/2016/06/29/dmls-vs-slm-3d-printing-for-metal-manufacturing.
Pagac M., Hajnys J., Halama R., Aldabash T., Mesicek J., Jancar L., Jansa J. Prediction of Model Distortion by FEM in 3D Printing via the Selective Laser Melting of Stainless Steel AISI 316L. Appl. Sci. 2021;11:1656. doi: 10.3390/app11041656. DOI
Kozior T. The Influence of Selected Selective Laser Sintering Technology Process Parameters on Stress Relaxation, Mass of Models, and Their Surface Texture Quality. 3D Print. Addit. Manuf. 2020;7:126–138. doi: 10.1089/3dp.2019.0036. PubMed DOI PMC
Tolosa I., Garciandía F., Zubiri F., Zapirain F., Esnaola A. Study of Mechanical Properties of AISI 316 Stainless Steel Processed by “Selective Laser Melting”, Following Different Manufacturing Strategies. Int. J. Adv. Manuf. Technol. 2010;51:639–647. doi: 10.1007/s00170-010-2631-5. DOI
Kurzynowski T., Gruber K., Stopyra W., Kuźnicka B., Chlebus E. Correlation between Process Parameters, Microstructure and Properties of 316L Stainless Steel Processed by Selective Laser Melting. Mater. Sci. Eng. A Struct. Mater. 2018;718:64–73. doi: 10.1016/j.msea.2018.01.103. DOI
Mesicek J., Jancar L., Ma Q.-P., Hajnys J., Tanski T., Krpec P., Pagac M. Comprehensive View of Topological Optimization Scooter Frame Design and Manufacturing. Symmetry. 2021;13:1201. doi: 10.3390/sym13071201. DOI
Měsíček J., Pagáč M., Petrů J., Novák P., Hajnyš J., Kutiova K. Topological Optimization of Formula Student Bell Crank. MM Sci. J. 2019;2019:2964–2968. doi: 10.17973/MMSJ.2019_10_201893. DOI
Järvinen J.P. Master’s Thesis. LUT University; Lappeenranta, Finland: 2014. Welding of Additively Manufactured Stainless Steel Parts: Comparative Study between Sheet Metal and Selective Laser Melted Parts.
Feng Y., Luo Z., Liu Z., Li Y., Luo Y., Huang Y. Keyhole Gas Tungsten Arc Welding of AISI 316L Stainless Steel. Mater. Des. 2015;85:24–31. doi: 10.1016/j.matdes.2015.07.011. DOI
Rahman Chukkan J., Vasudevan M., Muthukumaran S., Ravi Kumar R., Chandrasekhar N. Simulation of Laser Butt Welding of AISI 316L Stainless Steel Sheet Using Various Heat Sources and Experimental Validation. J. Mater. Process. Technol. 2015;219:48–59. doi: 10.1016/j.jmatprotec.2014.12.008. DOI
Ragavendran M., Vasudevan M. Laser and Hybrid Laser Welding of Type 316L(N) Austenitic Stainless Steel Plates. Mater. Manuf. Process. 2020;35:922–934. doi: 10.1080/10426914.2020.1745231. DOI
Matilainen V.-P., Pekkarinen J., Salminen A. Weldability of Additive Manufactured Stainless Steel. Phys. Procedia. 2016;83:808–817. doi: 10.1016/j.phpro.2016.08.083. DOI
Mohyla P., Hajnys J., Sternadelová K., Krejčí L., Pagáč M., Konečná K., Krpec P. Analysis of Welded Joint Properties on an AISI316L Stainless Steel Tube Manufactured by SLM Technology. Materials. 2020;13:4362. doi: 10.3390/ma13194362. PubMed DOI PMC
Yu H., Li F., Yang J., Shao J., Wang Z., Zeng X. Investigation on laser welding of selective laser melted Ti-6Al-4V parts: Weldability, microstructure and mechanical properties. Mater. Sci. Eng. A. 2018;712:20–27. doi: 10.1016/j.msea.2017.11.086. DOI
Voropaev A., Stramko M., Sorokin A., Logachev I., Kuznetsov M., Gook S. Laser welding of Inconel 718 nickel-based alloy layer-by-layer products. Mater. Today Proc. 2020;30:473–477. doi: 10.1016/j.matpr.2019.12.399. DOI
Quinn P., O’Halloran S., Lawlor J., Raghavendra R. The Effect of Metal EOS 316L Stainless Steel Additive Manufacturing Powder Recycling on Part Characteristics and Powder Reusability. Adv. Mater. Process. Technol. 2019;5:348–359. doi: 10.1080/2374068X.2019.1594602. DOI
Sartin B., Pond T.J., Griffith B.F., Everhart W.A., Elder L., Wenski E.G., Cook C., Wieliczka D.M., King W., Rubenchik A.M., et al. 316L powder reuse for metal additive manufacturing; Proceedings of the 2017 International Solid Freeform Fabrication Symposium; Austin, TX, USA. 7–9 August 2017.
Vontorová J., Váňová P. Determination of Carburized Layer Thickness by GDOES Method. AIMS Mater. Sci. 2018;5:34–43. doi: 10.3934/matersci.2018.1.34. DOI
Vontorová J., Mohyla P. Use of GDOES Method for Evaluation of the Quality and Thickness of Hot Dip Galvanised Coating. Trans. Inst. Met. Finish. 2018;96:313–318. doi: 10.1080/00202967.2018.1520531. DOI
Hlinka J., Kraus M., Hajnys J., Pagac M., Petrů J., Brytan Z., Tański T. Complex Corrosion Properties of AISI 316L Steel Prepared by 3D Printing Technology for Possible Implant Applications. Materials. 2020;13:1527. doi: 10.3390/ma13071527. PubMed DOI PMC
Ronneberg T., Davies C.M., Hooper P.A. Revealing Relationships between Porosity, Microstructure and Mechanical Properties of Laser Powder Bed Fusion 316L Stainless Steel through Heat Treatment. Mater. Des. 2020;189:108481. doi: 10.1016/j.matdes.2020.108481. DOI
Flat Products Made of Steels for Pressure Purposes—Part 7: Stainless Steels. CEN; Geneva, Switzerland: 2016.