Complex Corrosion Properties of AISI 316L Steel Prepared by 3D Printing Technology for Possible Implant Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32225011
PubMed Central
PMC7177779
DOI
10.3390/ma13071527
PII: ma13071527
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing, biocompatibility, corrosion, heat treatment, implants, polarization, wettability,
- Publikační typ
- časopisecké články MeSH
This paper deals with the investigation of complex corrosion properties of 3D printed AISI 316L steel and the influence of additional heat treatment on the resulting corrosion and mechanical parameters. There was an isotonic solution used for the simulation of the human body and a diluted sulfuric acid solution for the study of intergranular corrosion damage of the tested samples. There were significant microstructural changes found for each type of heat treatment at 650 and 1050 °C, which resulted in different corrosion properties of the tested samples. There were changes of corrosion potential, corrosion rate and polarization resistance found by the potentiodynamic polarization method. With regard to these results, the most appropriate heat treatment can be applied to applications with intended use in medicine.
Zobrazit více v PubMed
Frazier W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014;23:1917–1928. doi: 10.1007/s11665-014-0958-z. DOI
Gao W., Zhang Y., Ramanujan D., Ramani K., Chen Y., Williams C.B., Wang C.C.L., Shin Y.C., Zhang S., Zavattieri P.D. The status, challenges, and future of additive manufacturing in engineering. Comput. Aided Des. 2015;69:65–89. doi: 10.1016/j.cad.2015.04.001. DOI
Haleem A., Javaid M. 3D printed medical parts with different materials using additive manufacturing. Clin. Epidemiol. Glob. Health. 2019 doi: 10.1016/j.cegh.2019.08.002. DOI
Kong D., Ni X., Dong C., Zhang L., Man C., Yao J., Xiao K., Li X. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim. Acta. 2018;276:293–303. doi: 10.1016/j.electacta.2018.04.188. DOI
Mercelis P., Kruth J.P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006;12:254–265. doi: 10.1108/13552540610707013. DOI
ASTM Standard F746 Standard Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials. ASTM B Stand. 2014 doi: 10.1520/F0746-04. DOI
Pardo A., Merino M.C., Coy A.E., Viejo F., Arrabal R., Matykina E. Pitting corrosion behaviour of austenitic stainless steels—Combining effects of Mn and Mo additions. Corros. Sci. 2008;50:1796–1806. doi: 10.1016/j.corsci.2008.04.005. DOI
Blinn B., Klein M., Gläßner C., Smaga M., Aurich J.C., Beck T. An investigation of the microstructure and fatigue behavior of additively manufactured AISI 316L stainless steel with regard to the influence of heat treatment. Metals. 2018;8:220. doi: 10.3390/met8040220. DOI
Hlinka J., Lasek S. Key Engineering Materials. Trans Tech Publications Ltd.; Beach, Switzerland: 2019. Influence of Passivation on Wettability of AISI 304 Steel and its Corrosion Properties in Solution of Sodium Hypochlorite.
Shahryari A., Omanovic S., Szpunar J.A. Electrochemical formation of highly pitting resistant passive films on a biomedical grade 316LVM stainless steel surface. Mater. Sci. Eng. C. 2008;28:94–106. doi: 10.1016/j.msec.2007.09.002. DOI
Fathi M.H., Doostmohammadi A. Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. J. Mater. Process. Technol. 2009;209:1385–1391. doi: 10.1016/j.jmatprotec.2008.03.051. DOI
Aghababaie E., Javadinejad H.R., Saboktakin Rizi M., Ebrahimian M. Advanced Engineering Forum. Volume 23. Trans Tech Publications Ltd.; Beach, Switzerland: 2017. Effect of Chlorine Ion on the Corrosion of 316L Austenitic Stainless Steel; pp. 1–12.
Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials—Review. Corros. Sci. 2015;90:5–22. doi: 10.1016/j.corsci.2014.10.006. DOI
Strondl A., Lyckfeldt O., Brodin H., Ackelid U. Characterization and Control of Powder Properties for Additive Manufacturing. JOM. 2015;67:549–554. doi: 10.1007/s11837-015-1304-0. DOI
Eo D.R., Park S.H., Cho J.W. Inclusion evolution in additive manufactured 316L stainless steel by laser metal deposition process. Mater. Des. 2018;155:212–219. doi: 10.1016/j.matdes.2018.06.001. DOI
Koutsoukis T., Redjaïmia A., Fourlaris G. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels. Mater. Sci. Eng. A. 2013;561:477–485. doi: 10.1016/j.msea.2012.10.066. DOI
Kong D., Dong C., Ni X., Zhang L., Yao J., Man C., Cheng X., Xiao K., Li X. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol. 2019;35:1499–1507. doi: 10.1016/j.jmst.2019.03.003. DOI
Montero-Sistiaga M.L., Nardone S., Hautfenne C., Van Humbeeck J. Effect of Heat Treatment Of 316L Stainless Steel Produced by Selective Laser Melting (SLM); Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; Austin, TX, USA. 8–10 August 2016.
Sun Z., Tan X., Tor S.B., Chua C.K. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 2018;10:127–136. doi: 10.1038/s41427-018-0018-5. DOI
Yadollahi A., Shamsaei N., Thompson S.M., Seely D.W. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater. Sci. Eng. A. 2015;644:171–183. doi: 10.1016/j.msea.2015.07.056. DOI
Guitar M.A., Scheid A., Britz D., Mücklich F. Evaluation of the etching process for analysis of secondary carbides in HCCI by optical and confocal laser microscopy. Pract. Metallogr. 2019;56:246–261. doi: 10.3139/147.110570. DOI
Topoglidis E., Cass A.E.G., O’Regan B., Durrant J.R. Immobilization and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J. Electroanal. Chem. 2001;517:20–27. doi: 10.1016/S0022-0728(01)00673-8. DOI
Brabec C.J., Cravino A., Meissner D., Serdar Sariciftci N., Fromherz T., Rispens M.T., Sanchez L., Hummelen J.C. Origin of the open circuit voltage of plastic solar cells. Adv. Funct. Mater. 2001;11:374–380. doi: 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W. DOI
Enos D.G., Scribner L.L. The Potentiodynamic Polarization Scan. Solartron Instruments; Hampshire, UK: 1997. Technical Report.
Kam D.H., Bhattacharya S., Mazumder J. Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification. J. Micromech. Microeng. 2012;22:105019. doi: 10.1088/0960-1317/22/10/105019. DOI
Calvimontes A. The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry. Microgravity Sci. Technol. 2018;30:277–293. doi: 10.1007/s12217-018-9596-7. DOI
Cai X., Malcolm A.A., Wong B.S., Fan Z. Measurement and characterization of porosity in aluminium selective laser melting parts using X-ray CT. Virtual Phys. Prototyp. 2015;10:195–206. doi: 10.1080/17452759.2015.1112412. DOI
Mancisidor A.M., Garciandia F., Sebastian M.S., Álvarez P., Díaz J., Unanue I. Reduction of the residual porosity in parts manufactured by selective laser melting using skywriting and high focus offset strategies. Phys. Procedia. 2016;83:864–873. doi: 10.1016/j.phpro.2016.08.090. DOI
Tammas-Williams S., Withers P.J., Todd I., Prangnell P.B. The Influence of Porosity on Fatigue Crack Initiation in Additively Manufactured Titanium Components. Sci. Rep. 2017;7:7308. doi: 10.1038/s41598-017-06504-5. PubMed DOI PMC
Sola A., Nouri A. Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion. J. Adv. Manuf. Process. 2019;1:e10021. doi: 10.1002/amp2.10021. DOI
Andreau O., Koutiri I., Peyre P., Penot J.D., Saintier N., Pessard E., De Terris T., Dupuy C., Baudin T. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. J. Mater. Process. Technol. 2019;264:21–31. doi: 10.1016/j.jmatprotec.2018.08.049. DOI
Li Y., Wang Z., Wang L. Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time. Appl. Surf. Sci. 2014;298:243–250. doi: 10.1016/j.apsusc.2014.01.177. DOI
Licausi M.P., Igual Muñoz A., Amigó Borrás V. Influence of the fabrication process and fluoride content on the tribocorrosion behaviour of Ti6Al4V biomedical alloy in artificial saliva. J. Mech. Behav. Biomed. Mater. 2013;20:137–148. doi: 10.1016/j.jmbbm.2013.01.019. PubMed DOI
Hlinka J., Lasek S. Structure and Corrosion Properties of Electrochemically Treated Surface of 1.4301 (aisi 304) Steel for Medical Applications; Proceedings of the METAL 2016 25th Anniversary International Conference on Metallurgy and Materials; Brno, Czech Republic. 25–27 May 2016.
Eliaz N. Corrosion of metallic biomaterials: A review. Materials. 2019;12:407. doi: 10.3390/ma12030407. PubMed DOI PMC
Kayali Y., Büyüksaǧiş A., Güneş I., Yalçin Y. Investigation of corrosion behaviors at different solutions of boronized AISI 316L stainless steel. Prot. Met. Phys. Chem. Surf. 2013;49:348–358. doi: 10.1134/S2070205113030192. DOI
Kutz M. Handbook of Environmental Degradation of Materials. 2nd ed. William Andrew; Norwich, NY, USA: 2012.
El-Tahawy M., Huang Y., Um T., Choe H., Lábár J.L., Langdon T.G., Gubicza J. Stored energy in ultrafine-grained 316L stainless steel processed by high-pressure torsion. J. Mater. Res. Technol. 2017;6:339–347. doi: 10.1016/j.jmrt.2017.05.001. DOI
Angst U., Büchler M. On the applicability of the Stern-Geary relationship to determine instantaneous corrosion rates in macro-cell corrosion. Mater. Corros. 2015;66:1017–1028. doi: 10.1002/maco.201407997. DOI
Wang Z., Di-Franco F., Seyeux A., Zanna S., Maurice V., Marcus P. Passivation-induced physicochemical alterations of the native surface oxide film on 316L austenitic stainless steel. J. Electrochem. Soc. 2019;166:C3376–C3388. doi: 10.1149/2.0321911jes. DOI
Cabrini M., Lorenzi S., Testa C., Brevi F., Biamino S., Fino P., Manfredi D., Marchese G., Calignano F., Pastore T. Microstructure and selective corrosion of alloy 625 obtained by means of laser powder bed fusion. Materials. 2019;12:1742. doi: 10.3390/ma12111742. PubMed DOI PMC
Rahimi S., Engelberg D.L., Marrow T.J., Centre M.P., Road O. Characterization of the Sensitization Behaviour of Thermo-Mechanically Processed Type 304 Stainless Steel Using DL-EPR Testing and Image Analysis Methods; Proceedings of the 2nd International Conference Corrosion and Material Protection; Prague, Czech Republic. 19–22 April 2010.
Amadou T., Braham C., Sidhom H. Double loop electrochemical potentiokinetic reactivation test optimization in checking of duplex stainless steel intergranular corrosion susceptibility. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004;35:3499–3513. doi: 10.1007/s11661-004-0187-4. DOI
Kubiak K.J., Wilson M.C.T., Mathia T.G., Carval P. Wettability versus roughness of engineering surfaces. Wear. 2011;271:523–528. doi: 10.1016/j.wear.2010.03.029. DOI
Rabbani H.S., Zhao B., Juanes R., Shokri N. Pore geometry control of apparent wetting in porous media. Sci. Rep. 2018;8:15729. doi: 10.1038/s41598-018-34146-8. PubMed DOI PMC
Ali H., Ghadbeigi H., Mumtaz K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Mater. Sci. Eng. A. 2018;712:175–187. doi: 10.1016/j.msea.2017.11.103. PubMed DOI PMC
Jaskari M., Mäkikangas J., Järvenpää A., Mäntyjärvi K., Karjalainen P. Effect of high porosity on bending fatigue properties of 3D printed AISI 316L steel. Procedia Manuf. 2019;36:33–41. doi: 10.1016/j.promfg.2019.08.006. DOI
Fergani O., Brotan V., Bambach M., Pérez-Prado M.T. Texture evolution in stainless steel processed by selective laser melting and annealing. Mater. Sci. Technol. 2018;34:2223–2230. doi: 10.1080/02670836.2018.1523518. DOI
Papula S., Song M., Pateras A., Chen X.B., Brandt M., Easton M., Yagodzinskyy Y., Virkkunen I., Hänninen H. Selective laser melting of duplex stainless Steel 2205: Effect of post-processing heat treatment on microstructure, mechanical properties, and corrosion resistance. Materials. 2019;12:2468. doi: 10.3390/ma12152468. PubMed DOI PMC
Tillmann W., Henning T., Wojarski L. IOP Conference Series: Materials Science and Engineering. IOP Publishing; Bristol, UK: 2018. Vacuum Brazing of 316L Stainless Steel Based on Additively Manufactured and Conventional Material Grades.
Cooper A.J., Cooper N.I., Bell A., Dhers J., Sherry A.H. A Microstructural Study on the Observed Differences in Charpy Impact Behavior between Hot Isostatically Pressed and Forged 304L and 316L Austenitic Stainless Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015;46:5126–5138. doi: 10.1007/s11661-015-3140-9. DOI
Essa K., Jamshidi P., Zou J., Attallah M.M., Hassanin H. Porosity control in 316L stainless steel using cold and hot isostatic pressing. Mater. Des. 2018;138:21–29. doi: 10.1016/j.matdes.2017.10.025. DOI
Northcutt L.A., Orski S.V., Migler K.B., Kotula A.P. Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer. 2018;154:182–187. doi: 10.1016/j.polymer.2018.09.018. PubMed DOI PMC
Wu A.S., Brown D.W., Kumar M., Gallegos G.F., King W.E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2014;45:6260–6270. doi: 10.1007/s11661-014-2549-x. DOI
Sing S.L., An J., Yeong W.Y., Wiria F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J. Orthop. Res. 2016;34:369–385. doi: 10.1002/jor.23075. PubMed DOI
Wang Y.M., Voisin T., McKeown J.T., Ye J., Calta N.P., Li Z., Zeng Z., Zhang Y., Chen W., Roehling T.T., et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018;17:63–71. doi: 10.1038/nmat5021. PubMed DOI
Verlee B., Dormal T., Lecomte-Beckers J. Density and porosity control of sintered 316l stainless steel parts produced by additive manufacturing. Powder Metall. 2012;55:260–267. doi: 10.1179/0032589912Z.00000000082. DOI
Saboori A., Toushekhah M., Aversa A., Lai M., Lombardi M., Biamino S., Fino P. Critical Features in the Microstructural Analysis of AISI 316L Produced By Metal Additive Manufacturing. Metallogr. Microstruct. Anal. 2020;9:92–96. doi: 10.1007/s13632-019-00604-6. DOI
Cherry J.A., Davies H.M., Mehmood S., Lavery N.P., Brown S.G.R., Sienz J. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2014;76:869–879. doi: 10.1007/s00170-014-6297-2. DOI
Lavery N.P., Cherry J., Mehmood S., Davies H., Girling B., Sackett E., Brown S.G.R., Sienz J. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion. Mater. Sci. Eng. A. 2017;693:186–213. doi: 10.1016/j.msea.2017.03.100. DOI
Espinosa C.E., Veleva L., López J.L. Power spectral density analysis of the corrosion potential fluctuation of stainless steel 316L in early stages of exposure to caribbean sea water. ECS Trans. 2015;66:3–11. doi: 10.1149/06617.0003ecst. DOI
Abosrra L., Ashour A.F., Mitchell S.C., Youseffi M. Corrosion of mild steel and 316L austenitic stainless steel with different surface roughness in sodium chloride saline solutions. WIT Trans. Eng. Sci. 2009;65:161–172.
Mameng S.H., Pettersson R., Jonson J.Y. Limiting conditions for pitting corrosion of stainless steel EN 1.4404 (316L) in terms of temperature, potential and chloride concentration. Mater. Corros. 2017;68:272–283. doi: 10.1002/maco.201609061. DOI
Manivasagam G., Dhinasekaran D., Rajamanickam A. Biomedical Implants: Corrosion and its Prevention—A Review. Recent Patents Corros. Sci. 2010;2:40–54. doi: 10.2174/1877610801002010040. DOI
Cabrini M., Lorenzi S., Pastore T., Pellegrini S., Burattini M., Miglio R. Study of the corrosion resistance of austenitic stainless steels during conversion of waste to biofuel. Materials. 2017;10:325. doi: 10.3390/ma10030325. PubMed DOI PMC
Hadzima B. Influence of the surface finishing on the corrosion behaviour of AISI 316L stainless steel. Mater. Eng. 2015;22:48–53.
Hiromoto S. Metals for Biomedical Devices. Woodhead Publishing; Sawston, UK: 2010. Corrosion of Metallic Biomaterials; pp. 131–152.
Baboian R., Haynes G.S. Electrochemical Corrosion Testing. ASTM International; West Conshohocken, PE, USA: 1981. Cyclic Polarization Measurements—Experimental Procedure and Evaluation of Test Data; pp. 274–282.
Yang K., Ren Y. Nickel-free austenitic stainless steels for medical applications. Sci. Technol. Adv. Mater. 2010;11:014105. doi: 10.1088/1468-6996/11/1/014105. PubMed DOI PMC
Valente E.H., Christiansen T.L., Somers M.A.J. High-Temperature Solution Nitriding and Low-Temperature Surface Nitriding of 3D Printed Stainless Steel; Proceedings of the 2018 European Conference on Heat Treatment (ECHT); Friedrichshafen, Germany. 12–13 April 2018.
Li Y.J., Wang Y.G., An B., Xu H., Liu Y., Zhang L.C., Ma H.Y., Wang W.M. A practical anodic and cathodic curve intersection model to understand multiple corrosion potentials of Fe-based glassy alloys in OH-contained solutions. PLoS ONE. 2016;11:e0146421. doi: 10.1371/journal.pone.0146421. PubMed DOI PMC
Hlinka J., Lasek S., Siostrzonek R., Faisal N. Characterization of Hydroxyapatite Layer on AISI 316L Stainless Steel; Proceedings of the 26th International Conference on Metallurgy and Materials (METAL); Brno, Czech Republic. 24–26 May 2017.
Bajaj P., Hariharan A., Kini A., Kürnsteiner P., Raabe D., Jägle E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A. 2020;772:138633. doi: 10.1016/j.msea.2019.138633. DOI
Matula M., Hyspecka L., Svoboda M., Vodarek V., Dagbert C., Galland J., Stonawska Z., Tuma L. Intergranular corrosion of AISI 316L steel. Mater. Charact. 2001;46:203–210. doi: 10.1016/S1044-5803(01)00125-5. DOI
Stonawská Z., Svoboda M., Sozańska M., Křístková M., Sojka J., Dagbert C., Hyspecká L. Structural analysis and intergranular corrosion tests of AISI 316L steel. J. Microsc. 2006;224:62–64. doi: 10.1111/j.1365-2818.2006.01664.x. PubMed DOI
Terada M., Escriba D.M., Costa I., Materna-Morris E., Padilha A.F. Investigation on the intergranular corrosion resistance of the AISI 316L(N) stainless steel after long time creep testing at 600 °C. Mater. Charact. 2008;59:663–668. doi: 10.1016/j.matchar.2007.05.017. DOI
Gellings P.J., de Jongh M.A. Grain boundary oxidation and the chromium-depletion theory of intercrystalline corrosion of austenitic stainless steels. Corros. Sci. 1967;7:413–421. doi: 10.1016/S0010-938X(67)80054-4. DOI
Wei J., Igarashi T., Okumori N., Igarashi T., Maetani T., Liu B., Yoshinari M. Influence of surface wettability on com petitive protein adsorption and initial attachment of osteoblasts. Biomed. Mater. 2009;4:045002. doi: 10.1088/1748-6041/4/4/045002. PubMed DOI
Sahoo N.K., Anand S.C., Bhardwaj J.R., Sachdeva V.P., Sapru B.L. Bone Response to Stainless Steel And Titanium Bone Plates: An Experimental Study On Animals. Med. J. Armed Forces India. 1994;50:10–14. doi: 10.1016/S0377-1237(17)31029-8. PubMed DOI PMC
Anil S., Anand P.S., Alghamdi H., Janse J.A. Implant Dentistry—A Rapidly Evolving Practice. Intech Open Ltd.; London, UK: 2011. Dental Implant Surface Enhancement and Osseointegration.
Restoration and Possible Upgrade of a Historical Motorcycle Part Using Powder Bed Fusion
Hot Deformation Treatment of Grain-Modified Mg-Li Alloy