Myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase fusion genes: A workshop report with focus on novel entities and a literature review including paediatric cases
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37551450
DOI
10.1111/his.15021
Knihovny.cz E-zdroje
- Klíčová slova
- European Bone Marrow Working Group (EBMWG), bone marrow biopsy, myeloid/lymphoid neoplasms with eosinophilia, paediatric, tyrosine kinase gene fusion,
- MeSH
- dítě MeSH
- eozinofilie * genetika patologie MeSH
- fúzní onkogenní proteiny genetika MeSH
- hematologické nádory * patologie MeSH
- kostní dřeň patologie MeSH
- lidé MeSH
- lymfom * patologie MeSH
- myeloproliferativní poruchy * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fúzní onkogenní proteiny MeSH
Myeloid/lymphoid neoplasms with eosinophilia (M/LN-eo) and tyrosine kinase (TK) gene fusions are a rare group of haematopoietic neoplasms with a broad range of clinical and morphological presentations. Paediatric cases have increasingly been recognised. Importantly, not all appear as a chronic myeloid neoplasm and eosinophilia is not always present. In addition, standard cytogenetic and molecular methods may not be sufficient to diagnose M/LN-eo due to cytogenetically cryptic aberrations. Therefore, additional evaluation with fluorescence in-situ hybridisation and other molecular genetic techniques (array-based comparative genomic hybridisation, RNA sequencing) are recommended for the identification of specific TK gene fusions. M/LN-eo with JAK2 and FLT3-rearrangements and ETV6::ABL1 fusion were recently added as a formal member to this category in the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In addition, other less common defined genetic alterations involving TK genes have been described. This study is an update on M/LN-eo with TK gene fusions with focus on novel entities, as illustrated by cases submitted to the Bone Marrow Workshop, organised by the European Bone Marrow Working Group (EBMWG) within the frame of the 21st European Association for Haematopathology congress (EAHP-SH) in Florence 2022. A literature review was performed including paediatric cases of M/LN-eo with TK gene fusions.
Department of Biotechnology Institute of Pathology University of Siena Siena Italy
Department of Pathology Medical Faculty Hospital Charles University Pilsen Czech Republic
Zobrazit více v PubMed
Swerdlow SH. Who classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer, 2017.
Tzankov A, Reichard KK, Hasserjian RP, Arber DA, Orazi A, Wang SA. Updates on eosinophilic disorders. Virchows Arch. 2023; 482; 85-97.
Shomali W, Gotlib J. World health organization-defined eosinophilic disorders: 2022 update on diagnosis, risk stratification, and management. Am. J. Hematol. 2022; 97; 129-148.
Zhang WW, Habeebu S, Sheehan AM et al. Molecular monitoring of 8p11 myeloproliferative syndrome in an infant. J. Pediatr. Hematol. Oncol. 2009; 31; 879-883.
Spitzer B, Dela Cruz FS, Ibanez Sanchez GD et al. ETV6-FLT3-positive myeloid/lymphoid neoplasm with eosinophilia presenting in an infant: an entity distinct from JMML. Blood Adv. 2021; 5; 1899-1902.
Munthe-Kaas MC, Forthun RB, Brendehaug A et al. Partial response to sorafenib in a child with a myeloid/lymphoid neoplasm, eosinophilia, and a ZMYM2-FLT3 fusion. J. Pediatr. Hematol. Oncol. 2021; 43; e508-e511.
Berking AC, Flaadt T, Behrens YL et al. Rare and potentially fatal - cytogenetically cryptic TNIP1::PDGFRB and PCM1::FGFR1 fusion leading to myeloid/lymphoid neoplasms with eosinophilia in children. Cancer Genet. 2023; 272-273; 29-34.
Wang SC, Yang WY. Myeloid neoplasm with eosinophilia and rearrangement of platelet-derived growth factor receptor beta gene in children: two case reports. World J. Clin. Cases 2021; 9; 204-210.
Abraham S, Salama M, Hancock J, Jacobsen J, Fluchel M. Congenital and childhood myeloproliferative disorders with eosinophilia responsive to imatinib. Pediatr. Blood Cancer 2012; 59; 928-929.
Khoury JD, Solary E, Abla O et al. The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 2022; 36; 1703-1719.
Arber DA, Orazi A, Hasserjian RP et al. International consensus classification of myeloid neoplasms and acute leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140; 1200-1228.
Telford N, Alexander S, McGinn OJ et al. Myeloproliferative neoplasm with eosinophilia and t-lymphoblastic lymphoma with ETV6-LYN gene fusion. Blood Cancer J. 2016; 6; e412.
Carll T, Patel A, Derman B et al. Diagnosis and treatment of mixed phenotype (t-myeloid/lymphoid) acute leukemia with novel ETV6-FGFR2 rearrangement. Blood Adv. 2020; 4; 4924-4928.
Score J, Curtis C, Waghorn K et al. Identification of a novel imatinib responsive KIF5B-PDGFRA fusion gene following screening for PDGFRA overexpression in patients with hypereosinophilia. Leukemia 2006; 20; 827-832.
Walz C, Curtis C, Schnittger S et al. Transient response to imatinib in a chronic eosinophilic leukemia associated with ins(9;4)(q33;q12q25) and a CDK5RAP2-PDGFRA fusion gene. Genes Chromosomes Cancer 2006; 45; 950-956.
Curtis CE, Grand FH, Musto P et al. Two novel imatinib-responsive PDGFRA fusion genes in chronic eosinophilic leukaemia. Br. J. Haematol. 2007; 138; 77-81.
Baer C, Muehlbacher V, Kern W, Haferlach C, Haferlach T. Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2. Haematologica 2018; 103; e348-e350.
Panagopoulos I, Brunetti M, Stoltenberg M et al. Novel GTF2I-PDGFRB and IKZF1-TYW1 fusions in pediatric leukemia with normal karyotype. Exp. Hematol. Oncol. 2019; 8; 12.
Jawhar M, Naumann N, Knut M et al. Cytogenetically cryptic ZMYM2-FLT3 and DIAPH1-PDGFRB gene fusions in myeloid neoplasms with eosinophilia. Leukemia 2017; 31; 2271-2273.
Bain BJ, Fletcher SH. Chronic eosinophilic leukemias and the myeloproliferative variant of the hypereosinophilic syndrome. Immunol. Allergy Clin. North Am. 2007; 27; 377-388.
Schwab C, Ryan SL, Chilton L et al. EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications. Blood 2016; 127; 2214-2218.
Heilmann AM, Schrock AB, He J et al. Novel PDGFRB fusions in childhood B- and T-acute lymphoblastic leukemia. Leukemia 2017; 31; 1989-1992.
Maccaferri M, Pierini V, Di Giacomo D et al. The importance of cytogenetic and molecular analyses in eosinophilia-associated myeloproliferative neoplasms: an unusual case with normal karyotype and TNIP1-PDGFRB rearrangement and overview of PDGFRB partner genes. Leuk. Lymphoma 2017; 58; 489-493.
Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood 2017; 129; 704-714.
Kobayashi K, Mitsui K, Ichikawa H et al. ATF7IP as a novel pdgfrb fusion partner in acute lymphoblastic leukaemia in children. Br. J. Haematol. 2014; 165; 836-841.
Roberts KG, Li Y, Payne-Turner D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med. 2014; 371; 1005-1015.
Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002; 107; 101-107.
Patnaik MM, Gangat N, Knudson RA et al. Chromosome 8p11.2 translocations: prevalence, fish analysis for FGFR1 and MYST3, and clinicopathologic correlates in a consecutive cohort of 13 cases from a single institution. Am. J. Hematol. 2010; 85; 238-242.
Jackson CC, Medeiros LJ, Miranda RN. 8p11 myeloproliferative syndrome: a review. Hum. Pathol. 2010; 41; 461-476.
Kumar KR, Chen W, Koduru PR, Luu HS. Myeloid and lymphoid neoplasm with abnormalities of FGFR1 presenting with trilineage blasts and RUNX1 rearrangement: a case report and review of literature. Am. J. Clin. Pathol. 2015; 143; 738-748.
Trimaldi J, Carballido EM, Bowers JW et al. B-lymphoblastic leukemia/lymphoma associated with t(8;13)(p11;q12)/ZMYM2 (ZNF198)-FGFR1: rare case and review of the literature. Acta Haematol. 2013; 130; 127-134.
Montenegro-Garreaud X, Miranda RN, Reynolds A et al. Myeloproliferative neoplasms with t(8;22)(p11.2;q11.2)/BCR-FGFR1: a meta-analysis of 20 cases shows cytogenetic progression with B-lymphoid blast phase. Hum. Pathol. 2017; 65; 147-156.
Konishi Y, Kondo T, Nakao K et al. Allogeneic hematopoietic stem cell transplantation for 8p11 myeloproliferative syndrome with BCR-FGFR1 gene rearrangement: a case report and literature review. Bone Marrow Transplant. 2019; 54; 326-329.
Strati P, Tang G, Duose DY et al. Myeloid/lymphoid neoplasms with FGFR1 rearrangement. Leuk. Lymphoma 2018; 59; 1672-1676.
Hernández-Boluda JC, Pereira A, Zinger N et al. Allogeneic hematopoietic cell transplantation in patients with myeloid/lymphoid neoplasm with FGFR1-rearrangement: a study of the chronic malignancies working party of ebmt. Bone Marrow Transplant. 2022; 57; 416-422.
Washburn E, Bayerl MG, Ketterling RP, Malysz J. A rare case of atypical chronic myeloid leukemia associated with t(8;22)(p11.2;q11.2)/BCR-FGFR1 rearrangement: a case report and literature review. Cancer Genet. 2021; 258-259; 69-73.
Zhang X, Wang F, Yan F et al. Identification of a novel HOOK3-FGFR1 fusion gene involved in activation of the NF-kappaB pathway. Cancer Cell Int. 2022; 22; 40.
Isaza AP, Quintero SC, González LPQ, Córdoba FEA, Olivar AFA, Ocaña JCB. Myeloid/lymphoid neoplasm with eosinophilia and BCR/FGFR1 rearrangement with transformation to cortical T-lymphoblastic lymphoma and erythroid precursors: a case report. J Med Case Reports 2023; 17; 39.
Pozdnyakova O, Orazi A, Kelemen K et al. Myeloid/lymphoid neoplasms associated with eosinophilia and rearrangements of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2. Am. J. Clin. Pathol. 2021; 155; 160-178.
Kasbekar M, Nardi V, Dal Cin P et al. Targeted fgfr inhibition results in a durable remission in an FGFR1-driven myeloid neoplasm with eosinophilia. Blood Adv. 2020; 4; 3136-3140.
Stewart K, Carstairs KC, Dubé ID, Keating A. Neutrophilic myelofibrosis presenting as Philadelphia chromosome negative bcr non-rearranged chronic myeloid leukemia. Am. J. Hematol. 1990; 34; 59-63.
Reiter A, Walz C, Watmore A et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 2005; 65; 2662-2667.
Poitras JL, Dal Cin P, Aster JC, Deangelo DJ, Morton CC. Novel SSBP2-JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre-B acute lymphocytic leukemia. Genes Chromosomes Cancer 2008; 47; 884-889.
Tirado CA, Chen W, Huang LJ et al. Novel JAK2 rearrangement resulting from a t(9;22)(p24;q11.2) in B-acute lymphoblastic leukemia. Leuk. Res. 2010; 34; 1674-1676.
Luedke C, Rein L. Transformation to erythroblastic sarcoma from myeloid neoplasm with PCM1-JAK2. Blood 2020; 136; 1113.
Snider JS, Znoyko I, Lindsey KG et al. Integrated genomic analysis using chromosomal microarray, fluorescence in situ hybridization and mate pair analyses: characterization of a cryptic t(9;22)(p24.1;q11.2)/BCR-JAK2 in myeloid/lymphoid neoplasm with eosinophilia. Cancer Genet. 2020; 246-247; 44-47.
Chen JA, Hou Y, Roskin KM et al. Lymphoid blast transformation in an mpn with BCR-JAK2 treated with ruxolitinib: putative mechanisms of resistance. Blood Adv. 2021; 5; 3492-3496.
Bain BJ, Ahmad S. Should myeloid and lymphoid neoplasms with PCM1-JAK2 and other rearrangements of JAK2 be recognized as specific entities? Br. J. Haematol. 2014; 166; 809-817.
Tang G, Sydney Sir Philip JK, Weinberg O et al. Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study. Mod. Pathol. 2019; 32; 490-498.
Schwaab J, Naumann N, Luebke J et al. Response to tyrosine kinase inhibitors in myeloid neoplasms associated with PCM1-JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes. Am. J. Hematol. 2020; 95; 824-833.
Peeters P, Raynaud SD, Cools J et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997; 90; 2535-2540.
Schwaab J, Knut M, Haferlach C et al. Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Ann. Hematol. 2015; 94; 233-238.
Rumi E, Milosevic JD, Casetti I et al. Efficacy of ruxolitinib in chronic eosinophilic leukemia associated with a PCM1-JAK2 fusion gene. J. Clin. Oncol. 2013; 31; e269-e271.
Tang G, Tam W, Short NJ et al. Myeloid/lymphoid neoplasms with FLT3 rearrangement. Mod. Pathol. 2021; 34; 1673-1685.
Venable ER, Gagnon MF, Pitel BA et al. A TRIP11:: FLT3 gene fusion in a patient with myeloid/lymphoid neoplasm with eosinophilia and tyrosine kinase gene fusions: a case report and review of the literature. Cold Spring Harb Mol Case Stud 2023; 9; a006243.
Troadec E, Dobbelstein S, Bertrand P et al. A novel t(3;13)(q13;q12) translocation fusing FLT3 with GOLGB1: toward myeloid/lymphoid neoplasms with eosinophilia and rearrangement of FLT3? Leukemia 2017; 31; 514-517.
Chung A, Hou Y, Ohgami RS et al. A novel TRIP11-FLT3 fusion in a patient with a myeloid/lymphoid neoplasm with eosinophilia. Cancer Genet. 2017; 216-217; 10-15.
Chao AK, Meyer JA, Lee AG et al. Fusion driven JMML: a novel CCDC88C-FLT3 fusion responsive to sorafenib identified by rna sequencing. Leukemia 2020; 34; 662-666.
Shao H, Wang W, Song J et al. Myeloid/lymphoid neoplasms with eosinophilia and FLT3 rearrangement. Leuk. Res. 2020; 99; 106460.
Yao J, Xu L, Aypar U et al. Myeloid/lymphoid neoplasms with eosinophilia/basophilia and ETV6-ABL1 fusion: cell-of-origin and response to tyrosine kinase inhibition. Haematologica 2021; 106; 614-618.
Xie W, Wang SA, Hu S, Xu J, Medeiros LJ, Tang G. Myeloproliferative neoplasm with ABL1/ETV6 rearrangement mimics chronic myeloid leukemia and responds to tyrosine kinase inhibitors. Cancer Genet. 2018; 228-229; 41-46.
Yamamoto K, Yakushijin K, Nakamachi Y et al. Extramedullary T-lymphoid blast crisis of an ETV6/ABL1-positive myeloproliferative neoplasm with t(9;12)(q34;p13) and t(7;14)(p13;q11.2). Ann. Hematol. 2014; 93; 1435-1438.
Gancheva K, Virchis A, Howard-Reeves J et al. Myeloproliferative neoplasm with ETV6-ABL1 fusion: a case report and literature review. Mol. Cytogenet. 2013; 6; 39.
Cessna MH, Paulraj P, Hilton B et al. Chronic myelomonocytic leukemia with ETV6-ABL1 rearrangement and SMC1A mutation. Cancer Genet. 2019; 238; 31-36.
Zaliova M, Moorman AV, Cazzaniga G et al. Characterization of leukemias with ETV6-ABL1 fusion. Haematologica 2016; 101; 1082-1093.
Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene 2002; 21; 8652-8667.
Tanaka H, Takeuchi M, Takeda Y et al. Identification of a novel TEL-Lyn fusion gene in primary myelofibrosis. Leukemia 2010; 24; 197-200.
Kralik JM, Kranewitter W, Boesmueller H et al. Characterization of a newly identified etv6-ntrk3 fusion transcript in acute myeloid leukemia. Diagn. Pathol. 2011; 6; 19.
Maesako Y, Izumi K, Okamori S et al. inv(2)(p23q13)/RAN-binding protein 2 (RANBP2)-ALK fusion gene in myeloid leukemia that developed in an elderly woman. Int. J. Hematol. 2014; 99; 202-207.
Ballerini P, Struski S, Cresson C et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 2012; 26; 2384-2389.
Darbyshire PJ, Shortland D, Swansbury GJ, Sadler J, Lawler SD, Chessells JM. A myeloproliferative disease in two infants associated with eosinophilia and chromosome t(1;5) translocation. Br. J. Haematol. 1987; 66; 483-486.
Wilkinson K, Velloso ER, Lopes LF et al. Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: involvement of PDGFRB and response to imatinib. Blood 2003; 102; 4187-4190.
Nakayama H, Inamitsu T, Ohga S et al. Chronic myelomonocytic leukaemia with t(8;9)(p11;q34) in childhood: an example of the 8p11 myeloproliferative disorder? Br. J. Haematol. 1996; 92; 692-695.
Li Z, Yang R, Zhao J et al. Molecular diagnosis and targeted therapy of a pediatric chronic eosinophilic leukemia patient carrying TPM3-PDGFRB fusion. Pediatr. Blood Cancer 2011; 56; 463-466.
Macdonald D, Aguiar RC, Mason PJ, Goldman JM, Cross NC. A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia 1995; 9; 1628-1630.
Wong WS, Cheng KC, Lau KM et al. Clonal evolution of 8p11 stem cell syndrome in a 14-year-old chinese boy: a review of literature of t(8;13) associated myeloproliferative diseases. Leuk. Res. 2007; 31; 235-238.
Chen X, Zhang Y, Li Y, Lei P, Zhai Y, Liu L. Biphenotypic hematologic malignancy: a case report of the 8p11 myeloproliferative syndrome in a child. J. Pediatr. Hematol. Oncol. 2010; 32; 501-503.
van den Berg H, Kroes W, van der Schoot CE et al. A young child with acquired t(8;9)(p11;q34): additional proof that 8p11 is involved in mixed myeloid/T lymphoid malignancies. Leukemia 1996; 10; 1252-1253.