Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2010009
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO67985939
Ministerstvo Školství, Mládeže a Tělovýchovy
CRCH1011-1513911
Fonds De La Recherche Scientifique - FNRS
FRFC2457009
Fonds De La Recherche Scientifique - FNRS
PubMed
29796758
DOI
10.1007/s00248-018-1203-3
PII: 10.1007/s00248-018-1203-3
Knihovny.cz E-zdroje
- Klíčová slova
- Cyanobacteria, Glacier forefield, High Arctic, High-throughput sequencing, Primary succession, Proglacial soil,
- MeSH
- biodiverzita MeSH
- DNA bakterií MeSH
- fylogeneze * MeSH
- genotyp MeSH
- ledový příkrov mikrobiologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- sinice klasifikace genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Arktida MeSH
- Svalbard MeSH
- Názvy látek
- DNA bakterií MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
Cyanobacteria are important colonizers of recently deglaciated proglacial soil but an in-depth investigation of cyanobacterial succession following glacier retreat has not yet been carried out. Here, we report on the successional trajectories of cyanobacterial communities in biological soil crusts (BSCs) along a 100-year deglaciation gradient in three glacier forefields in central Svalbard, High Arctic. Distance from the glacier terminus was used as a proxy for soil age (years since deglaciation), and cyanobacterial abundance and community composition were evaluated by epifluorescence microscopy and pyrosequencing of partial 16S rRNA gene sequences, respectively. Succession was characterized by a decrease in phylotype richness and a marked shift in community structure, resulting in a clear separation between early (10-20 years since deglaciation), mid (30-50 years), and late (80-100 years) communities. Changes in cyanobacterial community structure were mainly connected with soil age and associated shifts in soil chemical composition (mainly moisture, SOC, SMN, K, and Na concentrations). Phylotypes associated with early communities were related either to potentially novel lineages (< 97.5% similar to sequences currently available in GenBank) or lineages predominantly restricted to polar and alpine biotopes, suggesting that the initial colonization of proglacial soil is accomplished by cyanobacteria transported from nearby glacial environments. Late communities, on the other hand, included more widely distributed genotypes, which appear to establish only after the microenvironment has been modified by the pioneering taxa.
Zobrazit více v PubMed
Microb Ecol. 2002 Nov;44(4):306-16 PubMed
Appl Environ Microbiol. 2003 Sep;69(9):5157-69 PubMed
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 PubMed
Microb Ecol. 2004 Oct;48(3):316-23 PubMed
Microb Ecol. 2005 Oct;50(3):396-407 PubMed
Appl Environ Microbiol. 2005 Dec;71(12):8228-35 PubMed
Ecology. 2006 Oct;87(10):2614-25 PubMed
Microb Ecol. 2007 Jan;53(1):110-22 PubMed
ISME J. 2007 Aug;1(4):283-90 PubMed
FEMS Microbiol Ecol. 2008 Nov;66(2):261-70 PubMed
Proc Biol Sci. 2008 Dec 22;275(1653):2793-802 PubMed
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10939-43 PubMed
New Phytol. 2010 Apr;186(2):451-60 PubMed
Nat Methods. 2010 May;7(5):335-6 PubMed
Res Microbiol. 2010 Oct;161(8):635-42 PubMed
ISME J. 2011 Jan;5(1):150-60 PubMed
Trends Ecol Evol. 2012 Apr;27(4):219-25 PubMed
Mar Environ Res. 2012 Feb;73:7-16 PubMed
ISME J. 2012 Mar;6(3):610-8 PubMed
Microb Ecol. 2012 Apr;63(3):552-64 PubMed
Nat Rev Microbiol. 2012 May 14;10(7):497-506 PubMed
Nucleic Acids Res. 2013 Jan 7;41(1):e1 PubMed
PLoS One. 2012;7(11):e49334 PubMed
FEMS Microbiol Ecol. 2013 Jul;85(1):128-42 PubMed
Nat Methods. 2013 Oct;10(10):996-8 PubMed
PLoS One. 2013 Oct 23;8(10):e76376 PubMed
Proc Biol Sci. 2014 Nov 22;281(1795):null PubMed
Mol Ecol. 2015 Mar;24(5):1091-108 PubMed
Environ Microbiol. 2015 Sep;17(9):3208-18 PubMed
FEMS Microbiol Ecol. 2015 Dec;91(12):null PubMed
ISME J. 2016 Jul;10(7):1625-41 PubMed
Mol Biol Evol. 2016 Jul;33(7):1870-4 PubMed
J Phycol. 2016 Jun;52(3):356-68 PubMed
BMC Genomics. 2016 Aug 02;17:533 PubMed
J Appl Microbiol. 2017 Jan;122(1):294-304 PubMed
Genome Announc. 2017 Feb 16;5(7): PubMed
Syst Appl Microbiol. 2018 Jul;41(4):363-373 PubMed
FEMS Microbiol Ecol. 2018 May 1;94(5):null PubMed
Appl Environ Microbiol. 1997 Aug;63(8):3327-32 PubMed