Cyanobacterial community composition in Arctic soil crusts at different stages of development

. 2015 Dec ; 91 (12) : . [epub] 20151111

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26564957

Cyanobacterial diversity in soil crusts has been extensively studied in arid lands of temperate regions, particularly semi-arid steppes and warm deserts. Nevertheless, Arctic soil crusts have received far less attention than their temperate counterparts. Here, we describe the cyanobacterial communities from various types of soil crusts from Svalbard, High Arctic. Four soil crusts at different development stages (ranging from poorly-developed to well-developed soil crusts) were analysed using 454 pyrosequencing of the V3-V4 variable region of the cyanobacterial 16S rRNA gene. Analyses of 95 660 cyanobacterial sequences revealed a dominance of OTUs belonging to the orders Synechococcales, Oscillatoriales and Nostocales. The most dominant OTUs in the four studied sites were related to the filamentous cyanobacteria Leptolyngbya sp. Phylotype richness estimates increased from poorly- to mid-developed soil crusts and decreased in the well-developed lichenized soil crust. Moreover, pH, ammonium and organic carbon concentrations appeared significantly correlated with the cyanobacterial community structure.

Zobrazit více v PubMed

Anagnostidis K, Komárek J. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol. 1988;80:327–472.

Bastida F, Jehmlich N, Ondono S, et al. Characterization of the microbial community in biological soil crusts dominated by Fulgensia desertorum (Tomin) Poelt and Squamarina cartilaginea (With.) P. James and in the underlying soil. Soil Biol and Biochem. 2014;76:70–9.

Belnap J. Biological crusts. In: Lal R, editor. Encyclopedia of Soil Science. New York: Taylor and Francis Group; 2008. pp. 1–4.

Belnap J, Lange OL. Biological Soil Crust: Structure, Function and Management. Berlin, Germany: Springer-Verlag; 2001.

Boutte C, Grubisic S, Balthasart P, et al. Testing of primers for the study of cyanobacterial molecular diversity by DGGE. J Microbiol Meth. 2006;65:542–50. PubMed

Burja AM, Abu-Mansour E, Banaigs B, et al. Culture of marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides. J Microbiol Meth. 2002;48:207–19. PubMed

Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6. PubMed PMC

Chu H, Fierer N, Lauber CL, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol. 2010;12:2998–3006. PubMed

Cole JR, Wang Q, Fish JA, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;41:633–42. PubMed PMC

Colesie C, Gommeaux M, Green ATG, et al. Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci. 2014;26:115–23.

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. PubMed PMC

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8. PubMed

Eldridge DJ, Freudenberger D, Koen TB. Diversity and abundance of biological soil crust taxa in relation to fine and coarse-scale disturbances in a grassy eucalypt woodland in eastern Australia. Plant Soil. 2006;281:255–68.

Eldridge DJ, Semple WS, Koen TB. Dynamics of cryptogamic soil crusts in a derived grassland in south-eastern Australia. Austral Ecol. 2000;25:232–40.

Elster J. Ecological classification of terrestrial algal communities of polar environment. In: Beyer L, Boelter M, editors. GeoEcol of Terrestrial Oases Ecological Studies. Berlin, Heidelberg: Springer-Verlag; 2002. pp. 303–19.

Elster J, Lukešová A, Svoboda J, et al. Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellesmere Island. Polar Rec. 1999;35:231–54.

Fischer T, Subbotina M. Climatic and soil texture threshold values for cryptogamic cover development: a meta analysis. Biologia. 2014;69:1520–30.

Flechtner VR, Johansen JR, Belnap J. The Biological Soil Crusts of the San Nicolas Island: Enigmatic Algae from a Geographically Isolated Ecosystem. West N Am Naturalist. 2008;68:405–36.

Ganzert L, Bajerski F, Wagner D. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland. FEMS Microbiol Ecol. 2014;89:426–41. PubMed

Hammer O, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:4.

Housman DC, Powers HH, Collins AD, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ. 2006;66:620–34.

Hu C, Gao K, Whitton BA. Semi-arid regions and deserts. In: Whitton BA, editor. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Netherlands: Springer Science; 2012. pp. 345–69.

Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN, editor. Mammalian Protein Metabolism. Vol. 3. New York: Academic Press; 1969. pp. 21–132.

Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 2010;4:191–202. PubMed

Kaštovská K, Elster J, Stibal M, et al. Microbial Assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic) Microbial Ecol. 2005;50:396–407. PubMed

Kaštovská K, Stibal M, Sabacka M, et al. Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol. 2007;30:277–87.

Knelman JE, Legg TM, O'Neill SP, et al. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem. 2012;46:172–80.

Komárek J. Phenotype diversity of the cyanobacterial genus Leptolyngbya in maritime Antarctica. Pol Polar Res. 2007;28:211–31.

Komárek J, Kaštovský J, Mareš J, et al. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014 using a polyphasic approach. Preslia. 2014;86:295–35.

Lamprinou V, Hernández-Mariné M, Canals T, et al. Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. Int J Syst Evol Micr. 2011;61:2907–15. PubMed

Lanzén A, Jørgensen SL, Huson DH, et al. CREST – classification resources for environ sequence tags. PLoS One. 2012;7::e49334. PubMed PMC

Láska K, Witoszová D, Prošek P. Weather patterns of the coastal zone of Petuniabukta, central Spitsbergen in the period 2008–2010. Pol Polar Res. 2012;33:297–318.

Li X-R, He M-Z, Zerbe S, et al. Micro‐geomorphology determines community structure of biological soil crusts at small scales. Earth Surf Proc Land. 2010;35:932–40.

Lionard M, Péquin B, Lovejoy C, et al. Benthic Cyanobacterial Mats in the High Arctic: Multi-Layer Structure and Fluorescence Responses to Osmotic Stress. Front Microbiol. 2012;3:140. PubMed PMC

McDonald D, Price MN, Goodrich J, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8. PubMed PMC

Moquin SA, Garcia JR, Brantley SL, et al. Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites. J Arid Environ. 2012;87:110–7.

Nayak S, Prasanna R. Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res. 2007;5:103–13.

Newsham KK, Pearce DA, Bridge PD. Minimal influence of water and nutrient content on the bacterial community composition of a maritime Antarctic soil. Microbiol Res. 2010;165:523–30. PubMed

Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microb. 1997;63:3327–32. PubMed PMC

Oksanen J, Blanchet FG, Kindt R, et al. Vegan: Community Ecology Package. R package version 2.0-7. 2013. http://CRAN.R-project.org/package=vegan (24 November 2015, date last accessed)

Osorio-Santos K, Pietrasiak N, Bohunicka M, et al. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur J Phycol. 2014;49:450–70.

Patova EN, Beljakova RN. Terrestrial cyanoprokaryota of Bolshevik island (Severnaya Zemlya Archipelago) Novitates Systematicae Plantarum Non Vascularium. 2006;40:83–91. (in Russian)

Pietrasiak N, Regus JU, Johansen JR, et al. Biological soil crust community types differ in key ecological functions. Soil Biol Biochem. 2013;65:168–71.

Pushkareva E, Elster J. Biodiversity and ecological typification of cryptogamic soil crust in the vicinity of Petunia Bay, Svalbard. Czech Polar Rep. 2013;3:7–18.

Rachlewicz G, Szczucinsky W, Ewertowski M. Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen, Svalbard. Pol Polar Res. 2007;28:159–86.

Redfield E, Barns SM, Belnap J, et al. Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. FEMS Microbiol Ecol. 2002;40:55–63. PubMed

Řeháková K, Chlumska Z, Dolezal J. Soil cyanobacterial and microalgal diversity in dry Mmountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb Ecol. 2011;62:337–46. PubMed

Rippka R, Waterbury J, Cohen-Bazire G. A cyanobacterium which lacks thylakoids. Arch Microbiol. 1974;100:419–36.

Rossi F, Potrafka RM, Pichel FG, et al. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol Biochem. 2012;46:33–40.

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25. PubMed

Santos F, Pena A, Nogales B, et al. Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. Syst Appl Microbiol. 2010;33:209–21. PubMed

Saw JH, Schatz M, Brown MV, et al. Cultivation and complete genome sequencing of Gloeobacter kilaueensis sp. nov., from a Lava Cave in Kilauea Caldera, Hawai'i. PloS One. 2013;8:e76376. PubMed PMC

Schütte UME, Abdo Z, Foster J, et al. Bacterial diversity in a glacier foreland of the high Arctic. Mol Ecol. 2010;19:54–66. PubMed

Singh SS, Kunui K, Minj RA, et al. Diversity and distribution pattern analysis of cyanobacteria isolated from paddy fields of Chhattisgarh, India. J Asia-Pacific Biodivers. 2014a;7:462–70.

Singh Y, Khattar J, Singh DP, et al. Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India. J Biosci. 2014b;39:643–57. PubMed

Steven B, Lionard M, Kuske CR, et al. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high Arctic Polar Desert. PLoS One. 2013;8::e71489. PubMed PMC

Stewart KJ, Grogan P, Coxson DS, et al. Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biol Biochem. 2014;70:96–112.

Strunecký O, Elster J, Komárek J. Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biol 2010. 33 1419–28.

Strunecký O, Elster J, Komárek J. Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microbiol Ecol. 2012;82:482–90. PubMed

Taton A, Grubisic S, Brambilla E, et al. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (Mc Murdo Dry Valleys, Antarctica): A morphological and molecular approach. Appl Environ Microb. 2003;69:5157–69. PubMed PMC

Taton A, Grubisic S, Ertz D, et al. Polyphasic study of Antarctic cyanobacterial strains. J Phycol. 2006;42:1257–70.

Thompson WA, Eldridge DJ, Bonser SP. Structure of biological soil crust communities in Callitris glaucophylla woodlands of New South Wales, Australia. J Veg Sci. 2006;17:271–80.

Van de Peer Y, De Wachter R. Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci. 1997;13:227–30. PubMed

Williams W, Eldridge DJ. Deposition of sand over a cyanobacterial soil crust increases nitrogen bioavailability in a semi-arid woodland. Appl Soil Ecol. 2011;49:26–31.

Yeager CM, Kornosky JL, Housman DC, et al. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Eviron Microb. 2004;70:973–83. PubMed PMC

Yoshitake S, Uchida M, Koizumi H, et al. Production of biological soil crusts in the early stage of primary succession on a high Arctic glacier foreland. New Phytol. 2010;86:451–60. PubMed

Zielke M, Solheim B, Spjelkavik S, et al. Nitrogen fixation in the high Arctic: role of vegetation and environmental conditions. Arct Antarct Alp Res. 2005;37:372–8.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Marked Succession of Cyanobacterial Communities Following Glacier Retreat in the High Arctic

. 2019 Jan ; 77 (1) : 136-147. [epub] 20180523

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...