The Population Diversity of Candidate Genes for Resistance/Susceptibility to Coronavirus Infection in Domestic Cats: An Inter-Breed Comparison
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Ceitec VFU/Hořín/ITA 2019.
University of Veterinary Sciences Brno Czech Republic
PubMed
34205589
PubMed Central
PMC8234589
DOI
10.3390/pathogens10060778
PII: pathogens10060778
Knihovny.cz E-zdroje
- Klíčová slova
- SNP, candidate genes, feline coronavirus (FCoV), interbreed differences, principal coordinate analysis (PCoA),
- Publikační typ
- časopisecké články MeSH
Feline coronavirus (FCoV) is a complex pathogen causing feline infectious peritonitis (FIP). Host genetics represents a factor contributing to the pathogenesis of the disease. Differential susceptibility of various breeds to FIP was reported with controversial results. The objective of this study was to compare the genetic diversity of different breeds on a panel of candidate genes potentially affecting FCoV infection. One hundred thirteen cats of six breeds were genotyped on a panel of sixteen candidate genes. SNP allelic/haplotype frequencies were calculated; pairwise FST and molecular variance analyses were performed. Principal coordinate (PCoA) and STRUCTURE analyses were used to infer population structure. Interbreed differences in allele frequencies were observed. PCoA analysis performed for all genes of the panel indicated no population substructure. In contrast to the full marker set, PCoA of SNP markers associated with FCoV shedding (NCR1 and SLX4IP) showed three clusters containing only alleles associated with susceptibility to FCoV shedding, homozygotes and heterozygotes for the susceptibility alleles, and all three genotypes, respectively. Each cluster contained cats of multiple breeds. Three clusters of haplotypes were identified by PCoA, two clusters by STRUCTURE. Haplotypes of a single gene (SNX5) differed significantly between the PCoA clusters.
CEITEC UVS RG Animal Immunogenomics University of Veterinary Sciences Brno 61242 Brno Czech Republic
Department of Clinical Sciences Colorado State University Fort Collins CO 80523 1678 USA
Zobrazit více v PubMed
Kennedy M.A. Feline Infectious Peritonitis. Veter. Clin. N. Am. Small Anim. Pract. 2020;50:1001–1011. doi: 10.1016/j.cvsm.2020.05.002. PubMed DOI
Addie D.D., Toth S., Murray G.D., Jarrett O. Risk of feline infectious peritonitis in cats naturally infected with feline coro-navirus. Am. J. Vet. Res. 1995;56:429–434. PubMed
Kipar A., Meli M.L. Feline Infectious Peritonitis. Veter. Pathol. 2014;51:505–526. doi: 10.1177/0300985814522077. PubMed DOI
Porter E., Tasker S., Day M.J., Harley R., Kipar A., Siddell S.G., Helps C.R. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis. Veter. Res. 2014;45:49. doi: 10.1186/1297-9716-45-49. PubMed DOI PMC
Jaimes J.A., Millet J.K., Stout A.E., André N.M., Whittaker G.R. A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses. 2020;12:83. doi: 10.3390/v12010083. PubMed DOI PMC
Malbon A.J., Russo G., Burgener C., Barker E.N., Meli M.L., Tasker S., Kipar A. The Effect of Natural Feline Coronavirus Infection on the Host Immune Response: A Whole-Transcriptome Analysis of the Mesenteric Lymph Nodes in Cats with and without Feline Infectious Peritonitis. Pathogens. 2020;9:524. doi: 10.3390/pathogens9070524. PubMed DOI PMC
Pedersen N.C., Allen C.E., Lyons L.A. Pathogenesis of feline enteric coronavirus infection. J. Feline Med. Surg. 2008;10:529–541. doi: 10.1016/j.jfms.2008.02.006. PubMed DOI PMC
Addie D.D., Jarrett O. A study of naturally occurring feline coronavirus infections in kittens. Veter. Rec. 1992;130:133–137. doi: 10.1136/vr.130.7.133. PubMed DOI
LoPresti M., Beck D.B., Duggal P., Cummings D.A., Solomon B.D. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. Am. J. Hum. Genet. 2020;107:381–402. doi: 10.1016/j.ajhg.2020.08.007. PubMed DOI PMC
Golovko L., Lyons L.A., Liu H., Sørensen A., Wehnert S., Pedersen N.C. Genetic susceptibility to feline infectious peritonitis in Birman cats. Virus Res. 2013;175:58–63. doi: 10.1016/j.virusres.2013.04.006. PubMed DOI PMC
Pedersen N.C., Liu H., Durden M., Lyons L.A. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection. Veter. Immunol. Immunopathol. 2016;171:17–20. doi: 10.1016/j.vetimm.2016.01.002. PubMed DOI PMC
Kiss I., Kecskeméti S., Tanyi J., Klingeborn B., Belák S. Prevalence and Genetic Pattern of Feline Coronaviruses in Urban Cat Populations. Veter. J. 2000;159:64–70. doi: 10.1053/tvjl.1999.0402. PubMed DOI PMC
Norris J.M., Bosward K.L., White J.D., Baral R.M., Catt M.J., Malik R. Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990–2002) Aust. Veter. J. 2005;83:666–673. doi: 10.1111/j.1751-0813.2005.tb13044.x. PubMed DOI PMC
Barker E.N., Lait P., Ressel L., Blackwell E.-J., Tasker S., Kedward-Dixon H., Kipar A., Helps C.R. Evaluation of Interferon-Gamma Polymorphisms as a Risk Factor in Feline Infectious Peritonitis Development in Non-Pedigree Cats—A Large Cohort Study. Pathogens. 2020;9:535. doi: 10.3390/pathogens9070535. PubMed DOI PMC
Kedward-Dixon H., Barker E.N., Tasker S., Kipar A., Helps C.R. Evaluation of polymorphisms in inflammatory mediator and cellular adhesion genes as risk factors for feline infectious peritonitis. J. Feline Med. Surg. 2019;22:564–570. doi: 10.1177/1098612X19865637. PubMed DOI PMC
Wang Y.-T., Hsieh L.-E., Dai Y.-R., Chueh L.-L. Polymorphisms in the feline TNFA and CD209 genes are associated with the outcome of feline coronavirus infection. Veter. Res. 2014;45:1–7. doi: 10.1186/s13567-014-0123-6. PubMed DOI PMC
Pedersen N.C., Liu H., Gandolfi B., Lyons L.A. The influence of age and genetics on natural resistance to experimentally induced feline infectious peritonitis. Veter. Immunol. Immunopathol. 2014;162:33–40. doi: 10.1016/j.vetimm.2014.09.001. PubMed DOI PMC
Addie D.D., Kennedy L.J., Ryvar R., Willoughby K., Gaskell R.M., Ollier W., Nart P., Radford A. Feline leucocyte antigen class II polymorphism and susceptibility to feline infectious peritonitis. J. Feline Med. Surg. 2004;6:59–62. doi: 10.1016/j.jfms.2003.12.010. PubMed DOI PMC
Bubenikova J., Vrabelova J., Stejskalova K., Futas J., Plasil M., Cerna P., Oppelt J., Lobova D., Molinkova D., Horin P. Candidate Gene Markers Associated with Fecal Shedding of the Feline Enteric Coronavirus (FECV) Pathogens. 2020;9:958. doi: 10.3390/pathogens9110958. PubMed DOI PMC
Vermeulen B.L., Devriendt B., Olyslaegers D.A., Dedeurwaerder A., Desmarets L.M., Favoreel H.W., Dewerchin H.L., Nauwynck H.J. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus. Veter. Microbiol. 2013;164:46–59. doi: 10.1016/j.vetmic.2013.01.042. PubMed DOI PMC
Pedersen N.C. A review of feline infectious peritonitis virus infection: 1963–2008. J. Feline Med. Surg. 2009;11:225–258. doi: 10.1016/j.jfms.2008.09.008. PubMed DOI PMC
Addie D., Belák S., Boucraut-Baralon C., Egberink H., Frymus T., Gruffydd-Jones T., Hartmann K., Hosie M.J., Lloret A., Lutz H., et al. Feline infectious peritonitis. ABCD guidelines on prevention and management. J. Feline Med. Surg. 2009;11:594–604. doi: 10.1016/j.jfms.2009.05.008. PubMed DOI PMC
Drechsler Y., Alcaraz A., Bossong F.J., Collisson E.W., Diniz P.P.V. Feline Coronavirus in Multicat Environments. Veter. Clin. N. Am. Small Anim. Pract. 2011;41:1133–1169. doi: 10.1016/j.cvsm.2011.08.004. PubMed DOI PMC
Nezi M., Mastorakos G., Mouslech Z. Corticotropin Releasing Hormone And The Immune/Inflammatory Response. [Up-dated 2015 Jul 30] In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., de Herder W.W., Dhatariya K., Dungan K., Grossman A., Hershman J.M., Hofland J., et al., editors. Endotext [Internet] MDText.com, Inc.; South Dartmouth, MA, USA: 2000. [(accessed on 12 March 2021)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279017/
Worthing K.A., Wigney D.I., Dhand N.K., Fawcett A., McDonagh P., Malik R., Norris J.M. Risk factors for feline infectious peritonitis in Australian cats. J. Feline Med. Surg. 2012;14:405–412. doi: 10.1177/1098612X12441875. PubMed DOI PMC
Pesteanu-Somogyi L.D., Radzai C., Pressler B.M. Prevalence of feline infectious peritonitis in specific cat breeds. J. Feline Med. Surg. 2006;8:1–5. doi: 10.1016/j.jfms.2005.04.003. PubMed DOI PMC
Soma T., Wada M., Taharaguchi S., Tajima T. Detection of Ascitic Feline Coronavirus RNA from Cats with Clinically Suspected Feline Infectious Peritonitis. J. Veter. Med. Sci. 2013;75:1389–1392. doi: 10.1292/jvms.13-0094. PubMed DOI PMC
Diaz-Salazar C., Sun J.C. Natural killer cell responses to emerging viruses of zoonotic origin. Curr. Opin. Virol. 2020;44:97–111. doi: 10.1016/j.coviro.2020.07.003. PubMed DOI PMC
Watanabe R., Eckstrand C., Liu H., Pedersen N.C. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Veter. Res. 2018;49:1–15. doi: 10.1186/s13567-018-0578-y. PubMed DOI PMC
FastQC [Computer Software] [(accessed on 8 March 2016)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 20131303.3997
Breese M., Liu Y. NGSUtils: A software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics. 2013;29:494–496. doi: 10.1093/bioinformatics/bts731. PubMed DOI PMC
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Picard Tools [Computer Software] [(accessed on 6 February 2016)]; Available online: https://broadinstitute.github.io/picard.
Okonechnikov K., Conesa A., García-Alcalde F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC
Poplin R., Ruano-Rubio V., DePristo M.A., Fennell T.J., Carneiro M.O., Van der Auwera G.A., Kling D.E., Gauthier L.D., Levy-Moonshine A., Roazen D., et al. Scaling accurate genetic variant discovery to tens of thousands of samples. BioRxiv. 2017 doi: 10.1101/201178. DOI
Koboldt D.C., Zhang Q., Larson D.E., Shen D., McLellan M.D., Lin L., Miller C.A., Mardis E.R., Ding L., Wilson R.K. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–576. doi: 10.1101/gr.129684.111. PubMed DOI PMC
Bam-Readcount [Computer Software] [(accessed on 21 October 2016)]; Available online: https://github.com/genome/bam-readcount.
Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
Pritchard J.K., Stephens M., Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Earl D.A., Vonholdt B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2011;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI
Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015;15:1179–1191. doi: 10.1111/1755-0998.12387. PubMed DOI PMC