The Population Diversity of Candidate Genes for Resistance/Susceptibility to Coronavirus Infection in Domestic Cats: An Inter-Breed Comparison

. 2021 Jun 21 ; 10 (6) : . [epub] 20210621

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34205589

Grantová podpora
Ceitec VFU/Hořín/ITA 2019. University of Veterinary Sciences Brno Czech Republic

Feline coronavirus (FCoV) is a complex pathogen causing feline infectious peritonitis (FIP). Host genetics represents a factor contributing to the pathogenesis of the disease. Differential susceptibility of various breeds to FIP was reported with controversial results. The objective of this study was to compare the genetic diversity of different breeds on a panel of candidate genes potentially affecting FCoV infection. One hundred thirteen cats of six breeds were genotyped on a panel of sixteen candidate genes. SNP allelic/haplotype frequencies were calculated; pairwise FST and molecular variance analyses were performed. Principal coordinate (PCoA) and STRUCTURE analyses were used to infer population structure. Interbreed differences in allele frequencies were observed. PCoA analysis performed for all genes of the panel indicated no population substructure. In contrast to the full marker set, PCoA of SNP markers associated with FCoV shedding (NCR1 and SLX4IP) showed three clusters containing only alleles associated with susceptibility to FCoV shedding, homozygotes and heterozygotes for the susceptibility alleles, and all three genotypes, respectively. Each cluster contained cats of multiple breeds. Three clusters of haplotypes were identified by PCoA, two clusters by STRUCTURE. Haplotypes of a single gene (SNX5) differed significantly between the PCoA clusters.

Zobrazit více v PubMed

Kennedy M.A. Feline Infectious Peritonitis. Veter. Clin. N. Am. Small Anim. Pract. 2020;50:1001–1011. doi: 10.1016/j.cvsm.2020.05.002. PubMed DOI

Addie D.D., Toth S., Murray G.D., Jarrett O. Risk of feline infectious peritonitis in cats naturally infected with feline coro-navirus. Am. J. Vet. Res. 1995;56:429–434. PubMed

Kipar A., Meli M.L. Feline Infectious Peritonitis. Veter. Pathol. 2014;51:505–526. doi: 10.1177/0300985814522077. PubMed DOI

Porter E., Tasker S., Day M.J., Harley R., Kipar A., Siddell S.G., Helps C.R. Amino acid changes in the spike protein of feline coronavirus correlate with systemic spread of virus from the intestine and not with feline infectious peritonitis. Veter. Res. 2014;45:49. doi: 10.1186/1297-9716-45-49. PubMed DOI PMC

Jaimes J.A., Millet J.K., Stout A.E., André N.M., Whittaker G.R. A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses. 2020;12:83. doi: 10.3390/v12010083. PubMed DOI PMC

Malbon A.J., Russo G., Burgener C., Barker E.N., Meli M.L., Tasker S., Kipar A. The Effect of Natural Feline Coronavirus Infection on the Host Immune Response: A Whole-Transcriptome Analysis of the Mesenteric Lymph Nodes in Cats with and without Feline Infectious Peritonitis. Pathogens. 2020;9:524. doi: 10.3390/pathogens9070524. PubMed DOI PMC

Pedersen N.C., Allen C.E., Lyons L.A. Pathogenesis of feline enteric coronavirus infection. J. Feline Med. Surg. 2008;10:529–541. doi: 10.1016/j.jfms.2008.02.006. PubMed DOI PMC

Addie D.D., Jarrett O. A study of naturally occurring feline coronavirus infections in kittens. Veter. Rec. 1992;130:133–137. doi: 10.1136/vr.130.7.133. PubMed DOI

LoPresti M., Beck D.B., Duggal P., Cummings D.A., Solomon B.D. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. Am. J. Hum. Genet. 2020;107:381–402. doi: 10.1016/j.ajhg.2020.08.007. PubMed DOI PMC

Golovko L., Lyons L.A., Liu H., Sørensen A., Wehnert S., Pedersen N.C. Genetic susceptibility to feline infectious peritonitis in Birman cats. Virus Res. 2013;175:58–63. doi: 10.1016/j.virusres.2013.04.006. PubMed DOI PMC

Pedersen N.C., Liu H., Durden M., Lyons L.A. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection. Veter. Immunol. Immunopathol. 2016;171:17–20. doi: 10.1016/j.vetimm.2016.01.002. PubMed DOI PMC

Kiss I., Kecskeméti S., Tanyi J., Klingeborn B., Belák S. Prevalence and Genetic Pattern of Feline Coronaviruses in Urban Cat Populations. Veter. J. 2000;159:64–70. doi: 10.1053/tvjl.1999.0402. PubMed DOI PMC

Norris J.M., Bosward K.L., White J.D., Baral R.M., Catt M.J., Malik R. Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990–2002) Aust. Veter. J. 2005;83:666–673. doi: 10.1111/j.1751-0813.2005.tb13044.x. PubMed DOI PMC

Barker E.N., Lait P., Ressel L., Blackwell E.-J., Tasker S., Kedward-Dixon H., Kipar A., Helps C.R. Evaluation of Interferon-Gamma Polymorphisms as a Risk Factor in Feline Infectious Peritonitis Development in Non-Pedigree Cats—A Large Cohort Study. Pathogens. 2020;9:535. doi: 10.3390/pathogens9070535. PubMed DOI PMC

Kedward-Dixon H., Barker E.N., Tasker S., Kipar A., Helps C.R. Evaluation of polymorphisms in inflammatory mediator and cellular adhesion genes as risk factors for feline infectious peritonitis. J. Feline Med. Surg. 2019;22:564–570. doi: 10.1177/1098612X19865637. PubMed DOI PMC

Wang Y.-T., Hsieh L.-E., Dai Y.-R., Chueh L.-L. Polymorphisms in the feline TNFA and CD209 genes are associated with the outcome of feline coronavirus infection. Veter. Res. 2014;45:1–7. doi: 10.1186/s13567-014-0123-6. PubMed DOI PMC

Pedersen N.C., Liu H., Gandolfi B., Lyons L.A. The influence of age and genetics on natural resistance to experimentally induced feline infectious peritonitis. Veter. Immunol. Immunopathol. 2014;162:33–40. doi: 10.1016/j.vetimm.2014.09.001. PubMed DOI PMC

Addie D.D., Kennedy L.J., Ryvar R., Willoughby K., Gaskell R.M., Ollier W., Nart P., Radford A. Feline leucocyte antigen class II polymorphism and susceptibility to feline infectious peritonitis. J. Feline Med. Surg. 2004;6:59–62. doi: 10.1016/j.jfms.2003.12.010. PubMed DOI PMC

Bubenikova J., Vrabelova J., Stejskalova K., Futas J., Plasil M., Cerna P., Oppelt J., Lobova D., Molinkova D., Horin P. Candidate Gene Markers Associated with Fecal Shedding of the Feline Enteric Coronavirus (FECV) Pathogens. 2020;9:958. doi: 10.3390/pathogens9110958. PubMed DOI PMC

Vermeulen B.L., Devriendt B., Olyslaegers D.A., Dedeurwaerder A., Desmarets L.M., Favoreel H.W., Dewerchin H.L., Nauwynck H.J. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus. Veter. Microbiol. 2013;164:46–59. doi: 10.1016/j.vetmic.2013.01.042. PubMed DOI PMC

Pedersen N.C. A review of feline infectious peritonitis virus infection: 1963–2008. J. Feline Med. Surg. 2009;11:225–258. doi: 10.1016/j.jfms.2008.09.008. PubMed DOI PMC

Addie D., Belák S., Boucraut-Baralon C., Egberink H., Frymus T., Gruffydd-Jones T., Hartmann K., Hosie M.J., Lloret A., Lutz H., et al. Feline infectious peritonitis. ABCD guidelines on prevention and management. J. Feline Med. Surg. 2009;11:594–604. doi: 10.1016/j.jfms.2009.05.008. PubMed DOI PMC

Drechsler Y., Alcaraz A., Bossong F.J., Collisson E.W., Diniz P.P.V. Feline Coronavirus in Multicat Environments. Veter. Clin. N. Am. Small Anim. Pract. 2011;41:1133–1169. doi: 10.1016/j.cvsm.2011.08.004. PubMed DOI PMC

Nezi M., Mastorakos G., Mouslech Z. Corticotropin Releasing Hormone And The Immune/Inflammatory Response. [Up-dated 2015 Jul 30] In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., de Herder W.W., Dhatariya K., Dungan K., Grossman A., Hershman J.M., Hofland J., et al., editors. Endotext [Internet] MDText.com, Inc.; South Dartmouth, MA, USA: 2000. [(accessed on 12 March 2021)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279017/

Worthing K.A., Wigney D.I., Dhand N.K., Fawcett A., McDonagh P., Malik R., Norris J.M. Risk factors for feline infectious peritonitis in Australian cats. J. Feline Med. Surg. 2012;14:405–412. doi: 10.1177/1098612X12441875. PubMed DOI PMC

Pesteanu-Somogyi L.D., Radzai C., Pressler B.M. Prevalence of feline infectious peritonitis in specific cat breeds. J. Feline Med. Surg. 2006;8:1–5. doi: 10.1016/j.jfms.2005.04.003. PubMed DOI PMC

Soma T., Wada M., Taharaguchi S., Tajima T. Detection of Ascitic Feline Coronavirus RNA from Cats with Clinically Suspected Feline Infectious Peritonitis. J. Veter. Med. Sci. 2013;75:1389–1392. doi: 10.1292/jvms.13-0094. PubMed DOI PMC

Diaz-Salazar C., Sun J.C. Natural killer cell responses to emerging viruses of zoonotic origin. Curr. Opin. Virol. 2020;44:97–111. doi: 10.1016/j.coviro.2020.07.003. PubMed DOI PMC

Watanabe R., Eckstrand C., Liu H., Pedersen N.C. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Veter. Res. 2018;49:1–15. doi: 10.1186/s13567-018-0578-y. PubMed DOI PMC

FastQC [Computer Software] [(accessed on 8 March 2016)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 20131303.3997

Breese M., Liu Y. NGSUtils: A software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics. 2013;29:494–496. doi: 10.1093/bioinformatics/bts731. PubMed DOI PMC

McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Picard Tools [Computer Software] [(accessed on 6 February 2016)]; Available online: https://broadinstitute.github.io/picard.

Okonechnikov K., Conesa A., García-Alcalde F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC

Poplin R., Ruano-Rubio V., DePristo M.A., Fennell T.J., Carneiro M.O., Van der Auwera G.A., Kling D.E., Gauthier L.D., Levy-Moonshine A., Roazen D., et al. Scaling accurate genetic variant discovery to tens of thousands of samples. BioRxiv. 2017 doi: 10.1101/201178. DOI

Koboldt D.C., Zhang Q., Larson D.E., Shen D., McLellan M.D., Lin L., Miller C.A., Mardis E.R., Ding L., Wilson R.K. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–576. doi: 10.1101/gr.129684.111. PubMed DOI PMC

Bam-Readcount [Computer Software] [(accessed on 21 October 2016)]; Available online: https://github.com/genome/bam-readcount.

Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC

Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC

Pritchard J.K., Stephens M., Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC

Earl D.A., Vonholdt B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2011;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI

Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015;15:1179–1191. doi: 10.1111/1755-0998.12387. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...