Candidate Gene Markers Associated with Fecal Shedding of the Feline Enteric Coronavirus (FECV)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IG191041
Internal Grant Agency of the University of Veterinary and Pharmaceutical University Brno, Czech R.
PubMed
33213082
PubMed Central
PMC7698596
DOI
10.3390/pathogens9110958
PII: pathogens9110958
Knihovny.cz E-zdroje
- Klíčová slova
- association study, fecal shedding patterns, feline enteric coronavirus, genetic susceptibility, immunity-related candidate genes, polymerase-chain reaction,
- Publikační typ
- časopisecké články MeSH
The Feline coronavirus (FCoV) can cause a fatal disease, the Feline Infectious Peritonitis. Persistent shedders represent the most important source of infection. The role of the host in FCoV fecal shedding is unknown. The objective of this study was to develop gene markers and to test their associations with FCoV shedding patterns. Fecal samples were taken from 57 cats of 12 breeds on the day 0 and after 2, 4 and 12 months. Variation from persistent and/or high-intensity shedding to no shedding was observed. Thirteen immunity-related genes were selected as functional and positional/functional candidates. Positional candidates were selected in a candidate region detected by a GWAS analysis. Tens to hundreds of single nucleotide polymorphisms (SNPs) per gene were identified using next generation sequencing. Associations with different phenotypes were assessed by chi-square and Fisher's exact tests. SNPs of one functional and one positional candidate (NCR1 and SLX4IP, respectively) and haplotypes of four genes (SNX5, NCR2, SLX4IP, NCR1) were associated with FCoV shedding at pcorected < 0.01. Highly significant associations were observed for extreme phenotypes (persistent/high-intensity shedders and non-shedders) suggesting that there are two major phenotypes associated with different genotypes, highly susceptible cats permanently shedding high amounts of viral particles and resistant non-shedders.
Zobrazit více v PubMed
Holzworth J. Some important disorders of cats. Cornell Vet. 1963;53:157–160. PubMed
Pedersen N.C. Serologic studies of naturally occurring feline infectious peritonitis. Am. J. Vet. Res. 1976;37:1449–1453. PubMed
Addie D.D., Toth S., Murray G.D., Jarrett O. Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. Am. J. Vet. Res. 1995;56:429–434. PubMed
Addie D.D., Jarrett O. A study of naturally occurring feline coronavirus infections in kittens. Vet. Rec. 1992;130:133–137. doi: 10.1136/vr.130.7.133. PubMed DOI
Kipar A., Meli M.L. Feline infectious Peritonitis: Still an enigma? Vet. Pathol. 2014;51:505–526. doi: 10.1177/0300985814522077. PubMed DOI
Pedersen N.C. An update on feline infectious peritonitis: Virology and immunopathogenesis. Vet. J. 2014;201:123–132. doi: 10.1016/j.tvjl.2014.04.017. PubMed DOI PMC
Foley J.E., Poland A., Carlson J., Pedersen N.C. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J. Am. Vet. Med. Assoc. 1997;210:1313–1318. PubMed
Pedersen N.C., Allen C.E., Lyons L.A. Pathogenesis of feline enteric coronavirus infection. J. Feline Med. Surg. 2008;10:529–541. doi: 10.1016/j.jfms.2008.02.006. PubMed DOI PMC
Harpold L.M., Legendre A.M., Kennedy M.A., Plummer P.J., Millsaps K., Rohrbach B. Fecal shedding of feline coronavirus in adult cats and kittens in an Abyssinian cattery. J. Am. Vet. Med. Assoc. 1999;215:948–951. PubMed
Pedersen N.C., Sato R., Foley J.E., Poland A.M. Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus. J. Feline Med. Surg. 2004;6:83–88. doi: 10.1016/j.jfms.2003.08.008. PubMed DOI PMC
Herrewegh A.A.P.M., Mähler M., Hedrich H.J., Haagmans B.L., Egberink H.F., Horzinek M.C., Rottier P.J.M., de Groot R.J. Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology. 1997;234:349–363. doi: 10.1006/viro.1997.8663. PubMed DOI PMC
Foley J.E., Poland A., Carlson J., Pedersen N.C. Patterns of feline coronavirus infection and fecal shedding from cats in multiple-cat environments. J. Am. Vet. Med. Assoc. 1997;210:1307–1312. PubMed
Kiss I., Kecskeméti S., Tanyi J., Klingeborn B., Belák S. Prevalence and genetic pattern of feline coronaviruses in urban cat populations. Vet. J. 2000;159:64–70. doi: 10.1053/tvjl.1999.0402. PubMed DOI PMC
Sharif S., Arshad S.S., Hair-Bejo M., Omar A.R., Zeenathul N.A., Hafidz M.A. Prevalence of feline coronavirus in two cat populations in Malaysia. J. Feline Med. Surg. 2009;11:1031–1034. doi: 10.1016/j.jfms.2009.08.005. PubMed DOI PMC
Addie D.D., Jarrett O. Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats. Vet. Rec. 2001;148:649–653. doi: 10.1136/vr.148.21.649. PubMed DOI
Addie D.D., Curran S., Bellini F., Crowe B., Sheehan E., Ukrainchuk L., Decaro N. Oral Mutian®X stopped faecal feline coronavirus shedding by naturally infected cats. Res. Vet. Sci. 2020;130:222–229. doi: 10.1016/j.rvsc.2020.02.012. PubMed DOI PMC
Addie D.D., Kennedy L.J., Ryvar R., Willoughby K., Gaskell R.M., Ollier W., Nart P., Radford A.D. Feline leucocyte antigen class II polymorphism and susceptibility to feline infectious peritonitis. J. Feline Med. Surg. 2004;6:59–62. doi: 10.1016/j.jfms.2003.12.010. PubMed DOI PMC
Kennedy M.A. Feline infectious peritonitis: Update on pathogenesis, diagnostics, and treatment. Vet. Clin. N. Am. Small Anim. Pract. 2020;50:1001–1011. doi: 10.1016/j.cvsm.2020.05.002. PubMed DOI
Brest P., Refae S., Mograbi B., Hofman P., Milano G. Host polymorphisms may impact SARS-CoV-2 infectivity. Trends Genet. 2020;36:813–815. doi: 10.1016/j.tig.2020.08.003. PubMed DOI PMC
Wang Y., Hsieh L., Dai Y., Chueh L.-L. Polymorphisms in the feline TNFA and CD209 genes are associated with the outcome of feline coronavirus infection. Vet. Res. 2014;45:123. doi: 10.1186/s13567-014-0123-6. PubMed DOI PMC
Pedersen N.C., Liu H., Gandolfi B., Lyons L.A. The influence of age and genetics on natural resistance to experimentally induced feline infectious peritonitis. Vet. Immunol. Immunopathol. 2014;162:33–40. doi: 10.1016/j.vetimm.2014.09.001. PubMed DOI PMC
Norris J.M., Bosward K.L., White J.D., Baral R.M., Catt M.J., Malik R. Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990–2002) Aust. Vet. J. 2005;83:666–673. doi: 10.1111/j.1751-0813.2005.tb13044.x. PubMed DOI PMC
Holst B.S., Englund L., Palacios S., Renström L., Berndtsson L.T. Prevalence of antibodies against feline coronavirus and Chlamydophila felis in Swedish cats. J. Feline Med. Surg. 2006;8:207–211. doi: 10.1016/j.jfms.2005.12.004. PubMed DOI PMC
Mi Z., Liu H., Zhang F. Advances in the immunology and genetics of leprosy. Front. Immunol. 2020;11:567. doi: 10.3389/fimmu.2020.00567. PubMed DOI PMC
Shi J., Zhiyuan W., Zhong G., Yang H., Wang C.H., Liu R., He X., Shuai L., Sun Z., Zhao Y., et al. Susceptibility of ferrets, cats, dogs, and different domestic animals to SARS-Coronavirus-2. Science. 2020;368:1016–1020. doi: 10.1126/science.abb7015. PubMed DOI PMC
Zhang Q., Zhang H., Gao J., Huang K., Yang Y., Hui X., He X., Li C., Gong W., Zhang Y., et al. A serological survey of SARS-CoV-2 in cat in Wuhan. Emerg. Microbes Infect. 2020;9:2013–2019. doi: 10.1080/22221751.2020.1817796. PubMed DOI PMC
Muñoz-Fontela C., Dowling W.E., Funnell S.G.P., Gsell P.-S., Balta X.R., Albrecht R.A., Andersen H., Baric R.S., Carroll M.W., Cavaleri M., et al. Animal models for COVID-19. Nature. 2020;586:509–515. doi: 10.1038/s41586-020-2787-6. PubMed DOI PMC
Banat G.R., Tkalcic S., Dzielawa J.A., Jackwood M.W., Saggese M.D., Yates L., Kopulos R., Briles W.E., Collisson E.W. Association of the chicken MHC B haplotypes with resistance to avian coronavirus. Dev. Comp. Immunol. 2013;39:430–437. doi: 10.1016/j.dci.2012.10.006. PubMed DOI PMC
De Sousa E., Ligeiro D., Lérias J.R., Zhang C., Agrati C., Osman M., El-Kafrawy S.A., Azhar E.I., Ippolito G., Wang F.-S., et al. Mortality in COVID-19 disease patients: Correlating the association of major histocompatibility complex (MHC) with severe acute respiratory syndrome 2 (SARS-CoV-2) variants. Int. J. Infect. Dis. 2020;98:454–459. doi: 10.1016/j.ijid.2020.07.016. PubMed DOI PMC
Pazina T., Shemesh A., Brusilovsky M., Porgador A., Campbell K.S. Regulation of the functions of natural cytotoxicity receptors by interactions with diverse ligands and alterations in splice variant expression. Front. Immunol. 2017;8:369. doi: 10.3389/fimmu.2017.00369. PubMed DOI PMC
Koch J., Steinle A., Watzl C., Mandelboim O. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013;34:182–191. doi: 10.1016/j.it.2013.01.003. PubMed DOI
Diaz-Salazar C., Sun J.C. Natural killer cell responses to emerging viruses of zoonotic origin. Curr. Opin. Virol. 2020;44:97–111. doi: 10.1016/j.coviro.2020.07.003. PubMed DOI PMC
Vermeulen B.L., Devriendt B., Olyslaegers D.A., Dedeurwaerder A., Desmarets L.M., Favoreel H.W., Dewerchin H.L., Nauwynck H.J. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus. Vet. Microbiol. 2013;164:46–59. doi: 10.1016/j.vetmic.2013.01.042. PubMed DOI PMC
Watanabe R., Eckstrand C., Liu H., Pedersen N.C. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Vet. Res. 2018;49:81. doi: 10.1186/s13567-018-0578-y. PubMed DOI PMC
Zhang W., Schoenebeck J.J. The ninth life of the cat reference genome, Felis_catus. PLoS Genet. 2020;16:e1009045. doi: 10.1371/journal.pgen.1009045. PubMed DOI PMC
Laguette N., Brégnard C., Hue P., Basbous J., Yatim A., Larroque M., Kirchhoff F., Constantinou A., Sobhian B., Benkirane M. Premature activation of the SLX4 complex by Vpr promotes G2/M arrest and escape from innate immune sensing. Cell. 2014;156:134–145. doi: 10.1016/j.cell.2013.12.011. PubMed DOI
Lim J.P., Teasdale R.D., Gleeson P.A. SNX5 is essential for efficient macropinocytosis and antigen processing in primary macrophages. Biol. Open. 2012;1:904–914. doi: 10.1242/bio.20122204. PubMed DOI PMC
Millet J.K., Whittaker G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120–134. doi: 10.1016/j.virusres.2014.11.021. PubMed DOI PMC
Herrewegh A.A., de Groot R.J., Cepica A., Egberink H.F., Horzinek M.C., Rottier P.J. Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J. Clin. Microbiol. 1995;33:684–689. doi: 10.1128/JCM.33.3.684-689.1995. PubMed DOI PMC
FastQC. [(accessed on 8 March 2016)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 201313033997
Breese M.R., Liu Y. NGSUtils: A software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics. 2013;29:494–496. doi: 10.1093/bioinformatics/bts731. PubMed DOI PMC
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S.B., Daly M.J., et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC
Picard Tools. [(accessed on 6 February 2016)]; Available online: https://broadinstitute.github.io/picard.
Okonechnikov K., Conesa A., García-Alcalde F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2015;32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC
Poplin R., Ruano-Rubio V., DePristo M.A., Fennell T.J., Carneiro M.O., Van Der Auwera G.A., Kling D.E., Gauthier L.D., Levy-Moonshine A., Roazen D., et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2017:201178. doi: 10.1101/201178. DOI
Koboldt D.C., Zhang Q., Larson D.E., Shen D., McLellan M.D., Lin L., Miller C.A., Mardis E.R., Ding L., Wilson R.K. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–576. doi: 10.1101/gr.129684.111. PubMed DOI PMC
Bam-Readcount. [(accessed on 21 October 2016)]; Available online: https://github.com/genome/bam-readcount.
Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., Depristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Stejskalova K., Cvanova M., Oppelt J., Janova E., Horecky C., Horecka E., Knoll A., Leblond A., Horin P. Genetic susceptibility to West Nile virus infection in Camargue horses. Res. Vet. Sci. 2019;124:284–292. doi: 10.1016/j.rvsc.2019.04.004. PubMed DOI
Hardy-Weinberg Calculator. [(accessed on 1 October 2020)]; Available online: http://www.dr-petrek.eu/documents/HWE.xls.
Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids