Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids

. 2022 ; 13 () : 829891. [epub] 20220302

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35309138

This review summarizes the current knowledge on the major histocompatibility complex (MHC) of the family Felidae. This family comprises an important domestic species, the cat, as well as a variety of free-living felids, including several endangered species. As such, the Felidae have the potential to be an informative model for studying different aspects of the biological functions of MHC genes, such as their role in disease mechanisms and adaptation to different environments, as well as the importance of genetic diversity for conservation issues in free-ranging or captive populations. Despite this potential, the current knowledge on the MHC in the family as a whole is fragmentary and based mostly on studies of the domestic cat and selected species of big cats. The overall structure of the domestic cat MHC is similar to other mammalian MHCs following the general scheme "centromere-MHC class I-MHC class III-MHC class II" with some differences in the gene contents. An unambiguously defined orthologue of the non-classical class I HLA-E gene has not been identified so far and the class II DQ and DP genes are missing or pseudogenized, respectively. A comparison with available genomes of other felids showed a generally high level of structural and sequence conservation of the MHC region. Very little and fragmentary information on in vitro and/or in vivo biological functions of felid MHC genes is available. So far, no association studies have indicated effects of MHC genetic diversity on a particular disease. No information is available on the role of MHC class I molecules in interactions with Natural Killer (NK) cell receptors or on the putative evolutionary interactions (co-evolution) of the underlying genes. A comparison of complex genomic regions encoding NK cell receptors (the Leukocyte Receptor Complex, LRC and the Natural Killer Cell Complex, NKC) in the available felid genomes showed a higher variability in the NKC compared to the LRC and the MHC regions. Studies of the genetic diversity of domestic cat populations and/or specific breeds have focused mainly on DRB genes. Not surprisingly, higher levels of MHC diversity were observed in stray cats compared to pure breeds, as evaluated by DRB sequencing as well as by MHC-linked microsatellite typing. Immunogenetic analysis in wild felids has only been performed on MHC class I and II loci in tigers, Namibian leopards and cheetahs. This information is important as part of current conservation tasks to assess the adaptive potential of endangered wild species at the human-wildlife interface, which will be essential for preserving biodiversity in a functional ecosystem.

Zobrazit více v PubMed

Allan A. J., Sanderson N. D., Gubbins S., Ellis S. A., Hammond J. A. (2015). Cattle NK Cell Heterogeneity and the Influence of MHC Class I. J.I. 195, 2199–2206. 10.4049/jimmunol.1500227 PubMed DOI PMC

Averdam A., Petersen B., Rosner C., Neff J., Roos C., Eberle M., et al. (2009). A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates. PLOS Genet. 5, e1000688. 10.1371/journal.pgen.1000688 PubMed DOI PMC

Beck T. W., Menninger J., Voigt G., Newmann K., Nishigaki Y., Nash W. G., et al. (2001). Comparative Feline Genomics: A BAC/PAC Contig Map of the Major Histocompatibility Complex Class II Region. Genomics 71, 282–295. 10.1006/geno.2000.6416 PubMed DOI

Bubenikova J., Vrabelova J., Stejskalova K., Futas J., Plasil M., Cerna P., et al. (2020). Candidate Gene Markers Associated with Fecal Shedding of the Feline Enteric Coronavirus (FECV). Pathogens 9, 958. 10.3390/pathogens9110958 PubMed DOI PMC

Caligiuri M. A. (2008). Human Natural Killer Cells. Blood 112, 461–469. 10.1182/blood-2007-09-077438 PubMed DOI PMC

Carrillo-Bustamante P., Keşmir C., de Boer R. J. (2016). The Evolution of Natural Killer Cell Receptors. Immunogenetics 68, 3–18. 10.1007/s00251-015-0869-7 PubMed DOI PMC

Castro-Prieto A., Wachter B., Melzheimer J., Thalwitzer S., Sommer S. (2011a). Diversity and Evolutionary Patterns of Immune Genes in Free-Ranging Namibian Leopards (Panthera pardus Pardus). J. Hered. 102, 653–665. 10.1093/jhered/esr097 PubMed DOI

Castro-Prieto A., Wachter B., Sommer S. (2011b). Cheetah Paradigm Revisited: MHC Diversity in the World's Largest Free-Ranging Population. Mol. Biol. Evol. 28, 1455–1468. 10.1093/molbev/msq330 PubMed DOI PMC

Chalkowski K., Wilson A. E., Lepczyk C. A., Zohdy S. (2019). Who Let the Cats Out? A Global Meta-Analysis on Risk of Parasitic Infection in Indoor versus Outdoor Domestic Cats ( Felis catus ). Biol. Lett. 15, 20180840. 10.1098/rsbl.2018.0840 PubMed DOI PMC

Charruau P., Fernandes C., Orozco-terWENGEL P., Peters J., Hunter L., Ziaie H., et al. (2011). Phylogeography, Genetic Structure and Population Divergence Time of Cheetahs in Africa and Asia: Evidence for Long-Term Geographic Isolates. Mol. Ecol. 20, 706–724. 10.1111/j.1365-294X.2010.04986.x PubMed DOI PMC

Coste M., Prata D., Castiglioni V., Minoli L., Etienne-Raffestin C.-L., Boulouha L., et al. (2019). Feline Progressive Histiocytosis: a Retrospective Investigation of 26 Cases and Preliminary Study of Ki67 as a Prognostic Marker. J. VET. Diagn. Invest. 31, 801–808. 10.1177/1040638719884950 PubMed DOI PMC

Debenham S. L., Hart E. A., Ashurst J. L., Howe K. L., Quail M. A., Ollier W. E. R., et al. (2005). Genomic Sequence of the Class II Region of the Canine MHC: Comparison with the MHC of Other Mammalian Species☆. Genomics 85, 48–59. 10.1016/j.ygeno.2004.09.009 PubMed DOI

Dobrynin P., Liu S., Tamazian G., Xiong Z., Yurchenko A. A., Krasheninnikova K., et al. (2015). Genomic Legacy of the African Cheetah, Acinonyx jubatus . Genome Biol. 16, 1–20. 10.1186/s13059-015-0837-4 PubMed DOI PMC

Drake G. J. C., Kennedy L. J., Auty H. K., Ryvar R., Ollier W. E. R., Kitchener A. C., et al. (2004). The Use of Reference Strand-Mediated Conformational Analysis for the Study of Cheetah (Acinonyx jubatus) Feline Leucocyte Antigen Class II DRB Polymorphisms. Mol. Ecol. 13, 221–229. 10.1046/j.1365-294X.2003.02027.x PubMed DOI

Freud A. G., Mundy-Bosse B. L., Yu J., Caligiuri M. A. (2017). The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity 47, 820–833. 10.1016/j.immuni.2017.10.008 PubMed DOI PMC

Frontera-Acevedo K., Sakamoto K. (2015). Local Pulmonary Immune Responses in Domestic Cats Naturally Infected with Cytauxzoon felis. Vet. Immunol. Immunopathology 163, 1–7. 10.1016/j.vetimm.2014.10.012 PubMed DOI

Futas J., Horin P. (2013). Natural Killer Cell Receptor Genes in the Family Equidae: Not Only Ly49. PLOS ONE 8, e64736. 10.1371/journal.pone.0064736 PubMed DOI PMC

Futas J., Oppelt J., Jelinek A., Elbers J. P., Wijacki J., Knoll A., et al. (2019). Natural Killer Cell Receptor Genes in Camels: Another Mammalian Model. Front. Genet. 10, 620. 10.3389/fgene.2019.00620 PubMed DOI PMC

Gandolfi B., Gruffydd-Jones T. J., Malik R., Cortes A., Jones B. R., Helps C. R., et al. (2012). First WNK4-Hypokalemia Animal Model Identified by Genome-wide Association in Burmese Cats. PLOS ONE 7, e53173. 10.1371/journal.pone.0053173 PubMed DOI PMC

Grant E. J., Nguyen A. T., Lobos C. A., Szeto C., Chatzileontiadou D. S. M., Gras S. (2020). The Unconventional Role of HLA-E: The Road Less Traveled. Mol. Immunol. 120, 101–112. 10.1016/j.molimm.2020.02.011 PubMed DOI

Guethlein L. A., Norman P. J., Hilton H. G., Parham P. (2015). Co-evolution of MHC Class I and Variable NK Cell Receptors in Placental Mammals. Immunol. Rev. 267, 259–282. 10.1111/imr.12326 PubMed DOI PMC

Hassanin A., Veron G., Ropiquet A., Jansen van Vuuren B., Lécu A., Lécu S. M., et al. (2021). Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred from Mitochondrial Genomes. PLoS ONE 16, e0240770. 10.1371/journal.pone.0240770 PubMed DOI PMC

He K., Minias P., Dunn P. O. (2021). Long-Read Genome Assemblies Reveal Extraordinary Variation in the Number and Structure of MHC Loci in Birds. Genome Biol. Evol. 13, evaa270. 10.1093/gbe/evaa270 PubMed DOI PMC

Heeney J. L., Evermann J. F., McKeirnan A. J., Marker-Kraus L., Roelke M. E., Bush M., et al. (1990). Prevalence and Implications of Feline Coronavirus Infections of Captive and Free-Ranging Cheetahs (Acinonyx jubatus). J. Virol. 64, 1964–1972. 10.1128/jvi.64.5.1964-1972.1990 PubMed DOI PMC

Heinrich S. K. (2018). Immunity of Cheetahs (Acinonyx jubatus): An Evolutionary, Comparative and Life History Perspective (Berlin: Freie Universitat Berlin; ). dissertation thesis. 10.17169/refubium-14546 DOI

Heinrich S. K., Hofer H., Courtiol A., Melzheimer J., Dehnhard M., CzirjákÁ G. Á., et al. (2017). Cheetahs Have a Stronger Constitutive Innate Immunity Than Leopards. Sci. Rep. 7, 44837. 10.1038/srep44837 PubMed DOI PMC

Heinrich S. K., Wachter B., Aschenborn O. H. K., Thalwitzer S., Melzheimer J., Hofer H., et al. (2016). Feliform Carnivores Have a Distinguished Constitutive Innate Immune Response. Biol. Open 5, 550–555. 10.1242/bio.014902 PubMed DOI PMC

Hendrickson S. L., Mayer G. C., Wallen E. P., Quigley K. (2000). Genetic Variability and Geographic Structure of Three Subspecies of Tigers (Panthera tigris) Based on MHC Class I Variation. Anim. Conservation 3, 135–143. 10.1111/j.1469-1795.2000.tb00238.x DOI

Holmes J. C., Holmer S. G., Ross P., Buntzman A. S., Frelinger J. A., Hess P. R. (2013). Polymorphisms and Tissue Expression of the Feline Leukocyte Antigen Class I Loci FLAI-E, FLAI-H, and FLAI-K. Immunogenetics 65, 675–689. 10.1007/s00251-013-0711-z PubMed DOI PMC

Holmes J. C., Scholl E. H., Dickey A. N., Hess P. R. (2021). High-resolution Characterization of the Structural Features and Genetic Variation of Six Feline Leukocyte Antigen Class I Loci via Single Molecule, Real-Time (SMRT) Sequencing. Immunogenetics 73, 381–393. 10.1007/s00251-021-01221-w PubMed DOI

Huhn O., Zhao X., Esposito L., Moffett A., Colucci F., Sharkey A. M. (2021). How Do Uterine Natural Killer and Innate Lymphoid Cells Contribute to Successful Pregnancy? Front. Immunol. 12, 1964. 10.3389/fimmu.2021.607669 PubMed DOI PMC

Janecka J. E., Zhang Y., Li D., Munkhtsog B., Bayaraa M., Galsandorj N., et al. (2017). Range-Wide Snow Leopard Phylogeography Supports Three Subspecies. J. Hered. 108, 597–607. 10.1093/jhered/esx044 PubMed DOI

Kelley J., Walter L., Trowsdale J. (2005a). Comparative Genomics of Major Histocompatibility Complexes. Immunogenetics 56, 683–695. 10.1007/s00251-004-0717-7 PubMed DOI

Kelley J., Walter L., Trowsdale J. (2005b). Comparative Genomics of Natural Killer Cell Receptor Gene Clusters. PLOS Genet. 1, e27. 10.1371/journal.pgen.0010027 PubMed DOI PMC

Kennedy L., Ryvar R., Gaskell R., Addie D., Willoughby K., Carter S., et al. (2002). Sequence Analysis of MHC DRB Alleles in Domestic Cats from the United Kingdom. Immunogenetics 54, 348–352. 10.1007/s00251-002-0465-5 PubMed DOI

Khakoo S. I., Carrington M. (2006). KIR and Disease: a Model System or System of Models? Immunol. Rev. 214, 186–201. 10.1111/j.1600-065X.2006.00459.x PubMed DOI

Kitchener A. C., Breitenmoser-Würsten C., Eizirik E., Gentry A., Werdelin L., Wilting A., et al. (2017). A Revised Taxonomy of the Felidae : The Final Report of the Cat Classification Task Force of the IUCN Cat Specialist Group. Available at: http://repository.si.edu/xmlui/handle/10088/32616 (Accessed December 5, 2021).

Koch K., Algar D., Schwenk K. (2016). Feral Cat Globetrotters: Genetic Traces of Historical Human‐mediated Dispersal. Ecol. Evol. 6, 5321–5332. 10.1002/ece3.2261 PubMed DOI PMC

Krausman P. R., Morales S. M. (2005). Acinonyx jubatus . Mamm. Sp 771, 1–6. 10.1644/1545-1410(2005)771[0001:aj]2.0.co;2 DOI

Kulski J. K., Shiina T., Anzai T., Kohara S., Inoko H. (2002). Comparative Genomic Analysis of the MHC: the Evolution of Class I Duplication Blocks, Diversity and Complexity from Shark to Man. Immunol. Rev. 190, 95–122. 10.1034/j.1600-065X.2002.19008.x PubMed DOI

Kumánovics A., Takada T., Lindahl K. F. (2003). Genomic Organization of the Mammalian MHC. Annu. Rev. Immunol. 21, 629–657. 10.1146/annurev.immunol.21.090501.080116 PubMed DOI

Kurushima J. D., Lipinski M. J., Gandolfi B., Froenicke L., Grahn J. C., Grahn R. A., et al. (2013). Variation of Cats under Domestication: Genetic Assignment of Domestic Cats to Breeds and Worldwide Random-Bred Populations. Anim. Genet. 44, 311–324. 10.1111/age.12008 PubMed DOI PMC

Lanier L. L. (2005). Nk Cell Recognition. Annu. Rev. Immunol. 23, 225–274. 10.1146/annurev.immunol.23.021704.115526 PubMed DOI

Liang R., Sun Y., Liu Y., Wang J., Wu Y., Li Z., et al. (2018). Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-specific Characteristics in Presenting Viral Antigen Peptides. J. Virol. 92, e01631–17. 10.1128/JVI.01631-17 PubMed DOI PMC

Marmesat E., Schmidt K., Saveljev A. P., Seryodkin I. V., Godoy J. A. (2017). Retention of Functional Variation Despite Extreme Genomic Erosion: MHC Allelic Repertoires in the Lynx Genus. BMC Evol. Biol. 17, 1–16. 10.1186/s12862-017-1006-z PubMed DOI PMC

Matern B. M., Olieslagers T. I., Voorter C. E. M., Groeneweg M., Tilanus M. G. J. (2020). Insights into the Polymorphism in HLA‐DRA and its Evolutionary Relationship with HLA Haplotypes. HLA 95, 117–127. 10.1111/tan.13730 PubMed DOI

Mattern M. Y., McLennan D. A. (2000). Phylogeny and Speciation of Felids. Cladistics 16, 232–253. 10.1006/clad.2000.013210.1111/j.1096-0031.2000.tb00354.x PubMed DOI

McCarthy T. M., Chapron G. (2003). Snow Leopard Survival Strategy. Seattle, USA: ISLT and SLN Available at. https://snowleopard.org/.

Morris K. M., Kirby K., Beatty J. A., Barrs V. R., Cattley S., David V., et al. (2014). Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions. J. Hered. 105, 493–505. 10.1093/jhered/esu017 PubMed DOI PMC

Munson L., Marker L., Dubovi E., Spencer J. A., Evermann J. F., O'Brien S. J. (2004). Serosurvey of Viral Infections in Free-Ranging Namibian Cheetahs (Acinonyx Jubatus). J. Wildl. Dis. 40, 23–31. 10.7589/0090-3558-40.1.23 PubMed DOI

Murphy K., Weaver C. (2016). Janeway’s Immunobiology. New York: Garland Science.

O'Brien S. J., Yuhki N. (1999). Comparative Genome Organization of the Major Histocompatibility Complex: Lessons from the Felidae. Immunol. Rev. 167, 133–144. 10.1111/j.1600-065X.1999.tb01387.x PubMed DOI PMC

O’Brien S. J., Troyer J. L., Brown M. A., Johnson W. E., Antunes A., Roelke M. E., et al. (2012). Emerging Viruses in the Felidae: Shifting Paradigms. Viruses 4, 236–257. 10.3390/v4020236 PubMed DOI PMC

Okano M., Miyamae J., Suzuki S., Nishiya K., Katakura F., Kulski J. K., et al. (2020). Identification of Novel Alleles and Structural Haplotypes of Major Histocompatibility Complex Class I and DRB Genes in Domestic Cat (Felis catus) by a Newly Developed NGS-Based Genotyping Method. Front. Genet. 11, 750. 10.3389/fgene.2020.00750 PubMed DOI PMC

Parham P., Abi-Rached L., Matevosyan L., Moesta A. K., Norman P. J., Older Aguilar A. M., et al. (2010). Primate-specific Regulation of Natural Killer Cells. J. Med. Primatol 39, 194–212. 10.1111/j.1600-0684.2010.00432.x PubMed DOI PMC

Parham P., Norman P. J., Abi-Rached L., Guethlein L. A. (2012). Human-specific Evolution of Killer Cell Immunoglobulin-like Receptor Recognition of Major Histocompatibility Complex Class I Molecules. Phil. Trans. R. Soc. B 367, 800–811. 10.1098/rstb.2011.0266 PubMed DOI PMC

Parmar D. R., Mitra S., Bhadouriya S., Rao T., Kunteepuram V., Gaur A. (2017). Characterization of Major Histocompatibility Complex Class I, and Class II DRB Loci of Captive and Wild Indian Leopards (Panthera pardus Fusca). Genetica 145, 541–558. 10.1007/s10709-017-9979-5 PubMed DOI

Pietra G., Romagnani C., Mazzarino P., Falco M., Millo E., Moretta A., et al. (2003). HLA-E-restricted Recognition of Cytomegalovirus-Derived Peptides by Human CD8+ Cytolytic T Lymphocytes. Proc. Natl. Acad. Sci. 100, 10896–10901. 10.1073/pnas.1834449100 PubMed DOI PMC

Pokorny I., Sharma R., Goyal S. P., Mishra S., Tiedemann R. (2010). MHC Class I and MHC Class II DRB Gene Variability in Wild and Captive Bengal Tigers (Panthera tigris Tigris). Immunogenetics 62, 667–679. 10.1007/s00251-010-0475-7 PubMed DOI

Prost S., Machado A. P., Zumbroich J., Preier L., Mahtani-Williams S., Meissner R., et al. (2020). Conservation Genomic Analyses of African and Asiatic Cheetahs (Acinonyx jubatus) across Their Current and Historical Species Range. BioRxiv. 10.1101/2020.02.14.949081 PubMed DOI PMC

Quatrini L., Della Chiesa M., Sivori S., Mingari M. C., Pende D., Moretta L. (2021). Human NK Cells, Their Receptors and Function. Eur. J. Immunol. 51, 1566–1579. 10.1002/eji.202049028 PubMed DOI PMC

Rahim M. M. A., Makrigiannis A. P. (2015). Ly49 Receptors: Evolution, Genetic Diversity, and Impact on Immunity. Immunol. Rev. 267, 137–147. 10.1111/imr.12318 PubMed DOI

Saka T., Nishita Y., Masuda R. (2018). Low Genetic Variation in the MHC Class II DRB Gene and MHC-Linked Microsatellites in Endangered Island Populations of the Leopard Cat (Prionailurus Bengalensis) in Japan. Immunogenetics 70, 115–124. 10.1007/s00251-017-1020-8 PubMed DOI

Samaha G., Wade C. M., Beatty J., Lyons L. A., Fleeman L. M., Haase B. (2020). Mapping the Genetic Basis of Diabetes Mellitus in the Australian Burmese Cat (Felis catus). Sci. Rep. 10, 19194. 10.1038/s41598-020-76166-3 PubMed DOI PMC

Schwartz J. C., Gibson M. S., Heimeier D., Koren S., Phillippy A. M., Bickhart D. M., et al. (2017). The Evolution of the Natural Killer Complex; a Comparison between Mammals Using New High-Quality Genome Assemblies and Targeted Annotation. Immunogenetics 69, 255–269. 10.1007/s00251-017-0973-y PubMed DOI PMC

Schwartz J. C., Hammond J. A. (2018). The Unique Evolution of the Pig LRC, a Single KIR but Expansion of LILR and a Novel Ig Receptor Family. Immunogenetics 70, 661–669. 10.1007/s00251-018-1067-1 PubMed DOI PMC

Schwensow N., Castro-Prieto A., Wachter B., Sommer S. (2019). Immunological MHC Supertypes and Allelic Expression: How Low Is the Functional MHC Diversity in Free-Ranging Namibian Cheetahs? Conserv Genet. 20, 65–80. 10.1007/s10592-019-01143-x DOI

Single R. M., Martin M. P., Gao X., Meyer D., Yeager M., Kidd J. R., et al. (2007). Global Diversity and Evidence for Coevolution of KIR and HLA. Nat. Genet. 39, 1114–1119. 10.1038/ng2077 PubMed DOI

Sironi M., Cagliani R., Forni D., Clerici M. (2015). Evolutionary Insights into Host-Pathogen Interactions from Mammalian Sequence Data. Nat. Rev. Genet. 16, 224–236. 10.1038/nrg3905 PubMed DOI PMC

Smith K. F., Acevedo-Whitehouse K., Pedersen A. B. (2009). The Role of Infectious Diseases in Biological Conservation. Anim. Conserv 12, 1–12. 10.1111/j.1469-1795.2008.00228.x DOI

Sommer S. (2005). The Importance of Immune Gene Variability (MHC) in Evolutionary Ecology and Conservation. Front. Zool 2, 16. 10.1186/1742-9994-2-16 PubMed DOI PMC

Song W., Collisson E. W., Li J., Wolf A. M., Elder J. H., Grant C. K., et al. (1995). Feline Immunodeficiency Virus (FIV)-Specific Cytotoxic T Lymphocytes from Chronically Infected Cats Are Induced In Vitro by Retroviral Vector-Transduced Feline T Cells Expressing the FIV Capsid Protein. Virology 209, 390–399. 10.1006/viro.1995.1271 PubMed DOI

Souza U. A., Webster A., Dall’Agnol B., Peters F. B., Favarini M. O., Schott D., et al. (2021). Ticks, Mites, Fleas, and Vector-Borne Pathogens in Free-Ranging Neotropical Wild Felids from Southern Brazil. Ticks Tick-borne Dis. 12, 101706. 10.1016/j.ttbdis.2021.101706 PubMed DOI

Thalwitzer S., Wachter B., Robert N., Wibbelt G., Müller T., Lonzer J., et al. (2010). Seroprevalences to Viral Pathogens in Free-Ranging and Captive Cheetahs ( Acinonyx jubatus ) on Namibian Farmland. Clin. Vaccin. Immunol 17, 232–238. 10.1128/CVI.00345-09 PubMed DOI PMC

Vermeulen B. L., Devriendt B., Olyslaegers D. A., Dedeurwaerder A., Desmarets L. M., Grauwet K. L., et al. (2012). Natural Killer Cells: Frequency, Phenotype and Function in Healthy Cats. Vet. Immunol. Immunopathology 150, 69–78. 10.1016/j.vetimm.2012.08.010 PubMed DOI

Vivier E., Tomasello E., Baratin M., Walzer T., Ugolini S. (2008). Functions of Natural Killer Cells. Nat. Immunol. 9, 503–510. 10.1038/ni1582 PubMed DOI

Wang Q., Wu X., Yan P., Zheng S. (2008). Sequence Variability Analysis on Major Histocompatibility Complex Class II DRB Alleles in Three Felines. Front. Biol. China 3, 55–62. 10.1007/s11515-008-0004-3 DOI

Watanabe R., Eckstrand C., Liu H., Pedersen N. C. (2018). Characterization of Peritoneal Cells from Cats with Experimentally-Induced Feline Infectious Peritonitis (FIP) Using RNA-Seq. Vet. Res. 49, 81. 10.1186/s13567-018-0578-y PubMed DOI PMC

Wei K., Zhang Z., Wang X., Zhang W., Xu X., Shen F., et al. (2010). Lineage Pattern, Trans-species Polymorphism, and Selection Pressure Among the Major Lineages of Feline Mhc-DRB Peptide-Binding Region. Immunogenetics 62, 307–317. 10.1007/s00251-010-0440-5 PubMed DOI

Wilhelm B. T., Gagnier L., Mager D. L. (2002). Sequence Analysis of the Ly49 Cluster in C57BL/6 Mice: A Rapidly Evolving Multigene Family in the Immune System. Genomics 80, 646–661. 10.1006/geno.2002.7004 PubMed DOI

Wilhelm B. T., Mager D. L. (2004). Rapid Expansion of the Ly49 Gene Cluster in Rat. Genomics 84, 218–221. 10.1016/j.ygeno.2004.01.010 PubMed DOI

Yuhki N., O'Brien S. J. (1997). Nature and Origin of Polymorphism in Feline MHC Class II DRA and DRB Genes. J. Immunol. 158, 2822–2833. PubMed

Yuhki N., Beck T., Stephens R. M., Nishigaki Y., Newmann K., O'Brien S. J. (2003). Comparative Genome Organization of Human, Murine, and Feline MHC Class II Region. Genome Res. 13, 1169–1179. 10.1101/gr.976103 PubMed DOI PMC

Yuhki N., Beck T., Stephens R., Neelam B., O'Brien S. J. (2007). Comparative Genomic Structure of Human, Dog, and Cat MHC: HLA, DLA, and FLA. J. Hered. 98, 390–399. 10.1093/jhered/esm056 PubMed DOI

Yuhki N., Mullikin J. C., Beck T., Stephens R., O'Brien S. J. (2008). Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat. PLOS ONE 3, e2674. 10.1371/journal.pone.0002674 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Comparative genomics of the Leukocyte Receptor Complex in carnivores

. 2023 ; 14 () : 1197687. [epub] 20230510

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...