felidae Dotaz Zobrazit nápovědu
Natural killer (NK) cells belong to the innate immune system. The germline-encoded natural killer cell receptors represent activating and inhibitory receptors regulating multiple NK cell activities. The natural cytotoxicity receptors (NCRs) are activating natural cytotoxicity triggering receptors 1, 2, and 3 (NKp46, NKp44, and NKp30), encoded by the genes NCR1, NCR2, and NCR3, respectively. NCRs may be expressed in different cell types engaged in mechanisms of innate and adaptive immunity. The family Felidae, comprising the domestic cat and a wide variety of free-ranging species represents a well-suited model for biomedical and evolutionary studies. We characterized the NCR1, NCR2, and NCR3 genes in a panel of felid species. We confirmed the presence of potentially functional genes NCR1, NCR2, and NCR3 in all species. All three genes are conserved within the family and are similar to other phylogenetically related mammalian families. The NCR1 and NCR2 phylogenetic trees based on both nucleotide and protein sequences corresponded to the current zoological taxonomy, with some exceptions suggesting effects of different selection pressures in some species. Highly conserved NCR3 sequences did not allow a robust phylogenetic analysis. Most interspecific differences both at the nucleotide and protein level were found in NCR2. Within species, the most polymorphic CDS was detected in NCR1. Selection analyses indicated the effects of purifying selection on individual amino acid sites in all three genes. In stray cats, a rather high intraspecific diversity was observed.
- MeSH
- alely MeSH
- buňky NK MeSH
- Felidae * genetika metabolismus MeSH
- fylogeneze MeSH
- kočky MeSH
- nukleotidy MeSH
- receptor 1 spouštějící přirozenou cytotoxicitu * genetika MeSH
- receptory spouštějící přirozenou cytotoxicitu genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The mammalian Leukocyte Receptor Complex (LRC) chromosomal region may contain gene families for the killer cell immunoglobulin-like receptor (KIR) and/or leukocyte immunoglobulin-like receptor (LILR) collections as well as various framing genes. This complex region is well described in humans, mice, and some domestic animals. Although single KIR genes are known in some Carnivora, their complements of LILR genes remain largely unknown due to obstacles in the assembly of regions of high homology in short-read based genomes. METHODS: As part of the analysis of felid immunogenomes, this study focuses on the search for LRC genes in reference genomes and the annotation of LILR genes in Felidae. Chromosome-level genomes based on single-molecule long-read sequencing were preferentially sought and compared to representatives of the Carnivora. RESULTS: Seven putatively functional LILR genes were found across the Felidae and in the Californian sea lion, four to five genes in Canidae, and four to nine genes in Mustelidae. They form two lineages, as seen in the Bovidae. The ratio of functional genes for activating LILRs to inhibitory LILRs is slightly in favor of inhibitory genes in the Felidae and the Canidae; the reverse is seen in the Californian sea lion. This ratio is even in all of the Mustelidae except the Eurasian otter, which has a predominance of activating LILRs. Various numbers of LILR pseudogenes were identified. CONCLUSIONS: The structure of the LRC is rather conservative in felids and the other Carnivora studied. The LILR sub-region is conserved within the Felidae and has slight differences in the Canidae, but it has taken various evolutionary paths in the Mustelidae. Overall, the process of pseudogenization of LILR genes seems to be more frequent for activating receptors. Phylogenetic analysis found no direct orthologues across the Carnivora which corroborate the rapid evolution of LILRs seen in mammals.
- MeSH
- Canidae * MeSH
- Carnivora * genetika MeSH
- Felidae * MeSH
- fylogeneze MeSH
- genomika MeSH
- lachtani * MeSH
- leukocyty MeSH
- lidé MeSH
- Mustelidae * MeSH
- myši MeSH
- receptory imunologické genetika MeSH
- receptory KIR genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Visual attractiveness and rarity often results in large carnivores being adopted as flagship species for stimulating conservation awareness. Their hunting behaviour and prey selection can affect the population dynamics of their prey, which in turn affects the population dynamics of these large carnivores. Therefore, our understanding of their trophic ecology and foraging strategies is important for predicting their population dynamics and consequently for developing effective conservation programs. Here we concentrate on an endangered species of carnivores, the snow leopard, in the Himalayas. Most previous studies on snow leopard diet lack information on prey availability and/or did not genetically check, whether the identification of snow leopard scats is correct, as their scats are similar to those of other carnivores. We studied the prey of snow leopard in three Himalayan regions in Nepal (Sagarmatha National Park (SNP), Lower Mustang (LM) and Upper Manang (UM) in the Annapurna Conservation Area, during winter and summer in 2014-2016. We collected 268 scats along 139.3 km linear transects, of which 122 were genetically confirmed to belong to snow leopard. Their diet was identified by comparing hairs in scats with our reference collection of the hairs of potential prey. We determined prey availability using 32-48 camera-traps and 4,567 trap nights. In the SNP, the most frequent prey in snow leopard faeces was the Himalayan tahr in both winter and summer. In LM and UM, its main prey was blue sheep in winter, but yak and goat in summer. In terms of relative biomass consumed, yak was the main prey everywhere in both seasons. Snow leopard preferred large prey and avoided small prey in summer but not in winter, with regional differences. It preferred domestic to wild prey only in winter, and in SNP. Unlike most other studies carried out in the same area, our study uses genetic methods for identifying the source of the scat. Studies solely based on visual identification of samples may be strongly biased. Diet studies based on frequency of occurrence of prey tend to overestimate the importance of small prey, which may be consumed more often, but contribute less energy than large prey. However, even assessments based on prey biomass are unlikely to be accurate as we do not know whether the actual size of the prey consumed corresponds to the average size used to calculate the biomass eaten. For example, large adults may be too difficult to catch and therefore mostly young animals are consumed, whose weight is much lower. We show that snow leopard consumes a diverse range of prey, which varies both regionally and seasonally. We conclude that in order to conserve snow leopards it is also necessary to conserve its main wild species of prey, which will reduce the incidence of losses of livestock.
- MeSH
- Felidae fyziologie MeSH
- masožravci fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Nepál MeSH
Five of the 13 known species of Mammomonogamus have been described in members of the family Felidae, including domestic cats, making felids the most frequent hosts of Mammomonogamus. The occurrence of Mammomonogamus in felids is geographically scattered and information on the life cycle and other aspects of infections is lacking. The paucity of data opens the questions on possible conspecificity of some of the described species of Mammomonogamus and on the existence of possible reservoirs for infections in domestic cats in geographically isolated endemic foci of infection. To test such hypotheses, we compared sequences of mitochondrial and nuclear markers obtained from Mammomonogamus adults or eggs collected from domestic cats in three geographically distant localities. Based on morphology, geographic origin and site of infection, the worms examined can be referred to as Mammomonogamus ierei and Mammomonogamus auris. Phylogenetic analyses of both mitochondrial and ribosomal DNA markers showed monophyly of the genus Mammomonogamus and suggested the existence of at least two species in cats. Review of the literature, the existence of several species and the discontinuous geographic distribution of Mammomonogamus infections in domestic cats suggest an historical spillover of infection from wild reservoirs, presumably wild felids.
- MeSH
- divoká zvířata parazitologie MeSH
- Felidae parazitologie MeSH
- fylogeneze MeSH
- hospodářská zvířata parazitologie MeSH
- infekce hlísticemi řádu Strongylida veterinární MeSH
- kočky parazitologie MeSH
- mitochondriální DNA genetika MeSH
- ribozomální DNA genetika MeSH
- rozšíření zvířat MeSH
- Strongyloidea klasifikace izolace a purifikace MeSH
- zdroje nemoci parazitologie veterinární MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- kočky parazitologie MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
We report an outbreak of SARS-CoV-2 lineage alpha in gorillas and felid species in a zoo in Prague, Czech Republic. The course of illness and clinical signs are described, as are the results of characterization of these particular SARS-CoV-2 variants by next-generation sequencing and phylogenetic analysis. The putative transmission routes are also discussed.
- MeSH
- COVID-19 * MeSH
- Felidae * MeSH
- fylogeneze MeSH
- Hominidae * MeSH
- lidé MeSH
- SARS-CoV-2 genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Parasitic protists of the genus Cytauxzoon are detected in a wide range of wild and domestic felids. Bobcats are a confirmed reservoir of Cytauxzoon felis in North America while domestic cats are susceptible hosts suffering from severe or fatal illness. Cytauxzoon infections are mainly reported from American felids and, recently, several sub-clinical and clinical findings were reported from European, Asian, and African felids. In 2014, the collection of organs of 4 Eurasian lynx and 12 wild cats from 11 Romanian localities was carried out to determine the prevalence and genetic diversity of Cytauxzoon spp. We detected an overall high prevalence of 62.5% in both species of wild felids; 50% in wild cats and 100% in Eurasian lynx. The phylogenetic analysis indicates 2 distinct clades of Cytauxzoon in felids, with all of our sequences clustering with sequences of Cytauxzoon sp./Cytauxzoon manul from Palaearctic felids. Further studies, development of new genetic markers, and experimental transmission studies are required for clarifying the taxonomy and life cycle of feline Cytauxzoon in the Old World.
- MeSH
- arachnida jako vektory parazitologie MeSH
- Bayesova věta MeSH
- divoká zvířata parazitologie MeSH
- Felidae parazitologie MeSH
- Felis parazitologie MeSH
- fylogeneze MeSH
- klíšťata parazitologie MeSH
- Lynx parazitologie MeSH
- Piroplasmida klasifikace patogenita MeSH
- prevalence MeSH
- protozoální infekce zvířat epidemiologie parazitologie přenos MeSH
- zdroje nemoci veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Rumunsko epidemiologie MeSH
Toxoplasma gondii is an obligate intracellular protozoan parasite with domestic or free-living members of family Felidae known as the only definitive hosts of the parasite. The study aimed to evaluate the seroprevalence of toxoplasmosis in selected population groups in Slovakia and to analyse the infection risk factors. Totally 1536 serum samples of voluntary respondents were examined by EIA Toxoplasma IgG (Test-Line Ltd., Clinical Diagnostics, Brno, Czech Republic). IgG antibodies to T. gondii were detected in 322 (21.0%) sera, with the highest seropositivity recorded among farmers (42.5%) and hunters (28.5%). According to age, the highest seropositivity was recorded in 12-18-year-old Roma children (46.2%), what confirms increased risk of infection in this minority that often lives in inadequate hygiene conditions. When only adult participants were taken into account, the highest seroprevalence was observed in the age group of ≥ 70 years. Higher risk of infection (p < 0.05) was connected with cat ownership, living in rural residency and consumption of raw meat and meat processing. The results underline the importance of preventive measures and ongoing need to improve the knowledge on toxoplasmosis in both professionals and public.
- MeSH
- imunoglobulin G krev MeSH
- lidé MeSH
- protilátky protozoální krev MeSH
- průřezové studie MeSH
- rizikové faktory MeSH
- séroepidemiologické studie MeSH
- Toxoplasma imunologie izolace a purifikace MeSH
- toxoplazmóza diagnóza epidemiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Slovenská republika MeSH
The heteroxenous protozoan parasite Toxoplasma gondii is transmitted from the intermediate host (any warm-blooded animal) to the definitive host (members of the felidae) by carnivory. The infected intermediate hosts develop several specific behavioural changes that are usually considered products of manipulative activity of the parasite aimed to increase the probability of its transmission to the definitive host. Among other changes, the infected rodents were shown to have impaired learning capability. All previous studies were done 2-6 weeks after the infection. Therefore, it was difficult to resolve whether the observed impairment of learning processes was a result of acute or latent toxoplasmosis, i.e. whether it was a side-effect of the disease or a product of manipulation activity. Here we studied the learning capability of Toxoplasma-infected mice in the static rod test and 8-arm radial maze test and their spontaneous activity in the wheel running test 10 weeks after the infection. The infected mice achieved worse scores in the learning tests but showed higher spontaneous activity in the wheel running test. However, a detailed study of the obtained results as well as of the data reported by other authors suggested that the differences between infected and control mice were a result of impaired ability to recognize novel stimuli rather than of impaired learning capacity in animals with latent toxoplasmosis.