The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
25852543
PubMed Central
PMC4366680
DOI
10.3389/fnagi.2015.00027
Knihovny.cz E-resources
- Keywords
- SMI-32, aging, auditory system, neurofilaments, number of neurons,
- Publication type
- Journal Article MeSH
In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC), medial geniculate body (MGB), and auditory cortex (AC) in rats (strains Long Evans and Fischer 344) and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive (-ir) neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB, and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neurons in all three analyzed auditory regions in both rat strains. In contrast to this, the absolute number of SMI-32-ir neurons in both Long Evans and Fischer 344 rats significantly decreased with aging in all the examined structures. The western blot technique also revealed a significant age-related decline in the levels of non-phosphorylated neurofilaments in the auditory brain structures, 30-35%. Our results demonstrate that presbycusis in rats is not likely to be primarily associated with changes in the total number of neurons. On the other hand, the pronounced age-related decline in the number of neurons containing non-phosphorylated neurofilaments as well as their protein levels in the central auditory system may contribute to age-related deterioration of hearing function.
See more in PubMed
Andersen B. B., Gundersen H. J. (1999). Pronounced loss of cell nuclei and anisotropic deformation of thick sections. J. Microsc. 196 69–73 10.1046/j.1365-2818.1999.00555.x PubMed DOI
Baizer J. S. (2009). Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem. Brain Res. 1298 46–56 10.1016/j.brainres.2009.08.073 PubMed DOI PMC
Bartos M., Vida I., Jonas P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8 45–56 10.1038/nrn2044 PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254 10.1016/0003-2697(76)90527-3 PubMed DOI
Brody H. (1955). Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J. Comp. Neurol. 102 511–516 10.1002/cne.901020206 PubMed DOI
Buckiova D., Popelar J., Syka J. (2006). Collagen changes in the cochlea of aged Fischer 344 rats. Exp. Gerontol. 41 296–302 10.1016/j.exger.2005.11.010 PubMed DOI
Buckiova D., Popelar J., Syka J. (2007). Aging cochleas in the F344 rat: morphological and functional changes. Exp. Gerontol. 42 629–638 10.1016/j.exger.2007.02.007 PubMed DOI
Burianova J., Ouda L., Profant O., Syka J. (2009). Age-related changes in GAD levels in the central auditory system of the rat. Exp. Gerontol. 44 161–169 10.1016/j.exger.2008.09.012 PubMed DOI
Campbell M. J., Morrison J. H. (1989). Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J. Comp. Neurol. 282 191–205 10.1002/cne.902820204 PubMed DOI
Canlon B., Illing R., Walton J. (2010). “Cell Biology and physiology of the aging central auditory pathway,” in The Aging Auditory System eds Gordon-Salant S., Frisina R. D., Popper A. N., Fay R. R. (New York: Springer) 39–74.
Caspary D. M., Ling L., Turner J. G., Hughes L. F. (2008). Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J. Exp. Biol. 211 1781–1791 10.1242/jeb.013581 PubMed DOI PMC
Chaudhuri A., Zangenehpour S., Matsubara J. A., Cynader M. S. (1996). Differential expression of neurofilament protein in the visual system of the vervet monkey. Brain Res. 709 17–26 10.1016/0006-8993(95)01217-6 PubMed DOI
Cudkowicz M., Kowall N. W. (1990). Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann. Neurol. 27 200–204 10.1002/ana.410270217 PubMed DOI
de Villers-Sidani E., Alzghoul L., Zhou X., Simpson K. L., Lin R. C., Merzenich M. M. (2010). Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc. Natl. Acad. Sci. U.S.A. 107 13900–13905 10.1073/pnas.1007885107 PubMed DOI PMC
Devaney K. O., Johnson H. A. (1980). Neuron loss in the aging visual cortex of man. J. Gerontol. 35 836–841 10.1093/geronj/35.6.836 PubMed DOI
Gabernet L., Meskenaïte V., Hepp-Reymond M. C. (1999). Parcellation of the lateral premotor cortex of the macaque monkey based on staining with the neurofilament antibody SMI-32. Exp. Brain Res. 128 188–193 10.1007/s002210050834 PubMed DOI
Gates G. A., Mills J. H. (2005). Presbycusis. Lancet 366 1111–1120 10.1016/S0140-6736(05)67423-5 PubMed DOI
Goldstein M. E., Sternberger N. H., Sternberger L. A. (1987). Phosphorylation protects neurofilaments against proteolysis. J. Neuroimmunol. 14 149–160 10.1016/0165-5728(87)90049-X PubMed DOI
Gonchar Y., Burkhalter A. (1997). Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7 347–358 10.1093/cercor/7.4.347 PubMed DOI
Gonchar Y., Wang Q., Burkhalter A. (2007). Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanat. 1:3 10.3389/neuro.05.003.2007 PubMed DOI PMC
Helfert R. H., Sommer T. J., Meeks J., Hofstetter P., Hughes L. F. (1999). Age-related synaptic changes in the central nucleus of the inferior colliculus of Fischer-344 rats. J. Comp. Neurol. 406 285–298 10.1002/(SICI)1096-9861(19990412)406:3<285::AID-CNE1>3.0.CO;2-P PubMed DOI
Hof P. R., Morrison J. H. (1990). Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimers disease: II. Primary and secondary visual cortex. J. Comp. Neurol. 301 55–64 10.1002/cne.903010106 PubMed DOI
Idrizbegovic E., Bogdanovic N., Willott J. F., Canlon B. (2004). Age-related increases in calcium-binding protein immunoreactivity in the cochlear nucleus of hearing impaired C57BL/6J mice. Neurobiol. Aging 25 1085–1093 10.1016/j.neurobiolaging.2003.11.004 PubMed DOI
Idrizbegovic E., Canlon B., Bross L. S., Willott J. F., Bogdanovic N. (2001). The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice: a quantitative study. Hear. Res. 158 102–115 10.1016/S0378-5955(01)00295-7 PubMed DOI
Jinno S., Kosaka T. (2006). Cellular architecture of the mouse hippocampus: a quantitative aspect of chemically defined GABAergic neurons with stereology. Neurosci. Res. 56 229–245 10.1016/j.neures.2006.07.007 PubMed DOI
Kawaguchi Y., Kubota Y. (1998). Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85 677–701 10.1016/S0306-4522(97)00685-4 PubMed DOI
Kirkcaldie M. T., Dickson T. C., King C. E., Grasby D., Riederer B. M., Vickers J. C. (2002). Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex. J. Chem. Neuroanat. 24 163–171 10.1016/S0891-0618(02)00043-1 PubMed DOI
Kubota Y., Hattori R., Yui Y. (1994). Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res. 649 159–173 10.1016/0006-8993(94)91060-X PubMed DOI
Kulesza R. J., Viñuela A., Saldaña E., Berrebi A. S. (2002). Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear. Res. 168 12–24 10.1016/S0378-5955(02)00374-X PubMed DOI
Ling L. L., Hughes L. F., Caspary D. M. (2005). Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience 132 1103–1113 10.1016/j.neuroscience.2004.12.043 PubMed DOI
Liu Y., Staal J. A., Canty A. J., Kirkcaldie M. T., King A. E., Bibari O., et al. (2013). Cytoskeletal changes during development and aging in the cortex of neurofilament light protein knockout mice. J. Comp. Neurol. 521 1817–1827 10.1002/cne.23261 PubMed DOI
Martin del Campo H. N., Measor K. R., Razak K. A. (2012). Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis. Hear. Res. 294 31–39 10.1016/j.heares.2012.08.017 PubMed DOI
Mayhew T. M., Gundersen H. J. (1996). If you assume, you can make an ass out of u and me: a decade of the disector for stereological counting of particles in 3D space. J. Anat. 188(Pt 1) 1–15. PubMed PMC
Mellott J. G., Van Der Gucht E., Lee C. C., Carrasco A., Winer J. A., Lomber S. G. (2010). Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32. Hear. Res. 267 119–136 10.1016/j.heares.2010.04.003 PubMed DOI PMC
Mendelson J. R., Ricketts C. (2001). Age-related temporal processing speed deterioration in auditory cortex. Hear. Res. 158 84–94 10.1016/S0378-5955(01)00294-5 PubMed DOI
Merrill D. A., Chiba A. A., Tuszynski M. H. (2001). Conservation of neuronal number and size in the entorhinal cortex of behaviorally characterized aged rats. J. Comp. Neurol. 438 445–456 10.1002/cne.1327 PubMed DOI
Molnár Z., Cheung A. F. (2006). Toward the classification of subpopulations of layer V pyramidal projection neurons. Neurosci. Res. 55 105–115 10.1016/j.neures.2006.02.008 PubMed DOI
Ogita Z. I., Markert C. L. (1979). A miniaturized system for electrophoresis on polyacrylamide gels. Anal. Biochem. 99 233–241 10.1016/S0003-2697(79)80001-9 PubMed DOI
Ouda L., Burianova J., Syka J. (2012a). Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat. Exp. Gerontol. 47 497–506 10.1016/j.exger.2012.04.003 PubMed DOI
Ouda L., Druga R., Syka J. (2012b). Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat. Brain Struct. Funct. 217 19–36 10.1007/s00429-011-0329-6 PubMed DOI
Ouda L., Druga R., Syka J. (2008). Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp. Gerontol. 43 782–789 10.1016/j.exger.2008.04.001 PubMed DOI
Ouellet L., de Villers-Sidani E. (2014). Trajectory of the main GABAergic interneuron populations from early development to old age in the rat primary auditory cortex. Front. Neuroanat. 8:40 10.3389/fnana.2014.00040 PubMed DOI PMC
Pakkenberg B., Gundersen H. J. (1997). Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurol. 384 312–320 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K PubMed DOI
Pant H. C., Veeranna (1995). Neurofilament phosphorylation. Biochem. Cell Biol. 73 575–592 10.1139/o95-063 PubMed DOI
Paxinos G., Watson C. (1998). The Rat Brain in Stereotaxic Coordinates. San Diego: Academic Press Inc.
Peters A. (2009). The effects of normal aging on myelinated nerve fibers in monkey central nervous system. Front. Neuroanat. 3:11 10.3389/neuro.05.011.2009 PubMed DOI PMC
Popelar J., Groh D., Pelánová J., Canlon B., Syka J. (2006). Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiol. Aging 27 490–500 10.1016/j.neurobiolaging.2005.03.001 PubMed DOI
Pronk M., Deeg D. J., Festen J. M., Twisk J. W., Smits C., Comijs H. C., et al. (2013). Decline in older persons ability to recognize speech in noise: the influence of demographic, health-related, environmental, and cognitive factors. Ear Hear. 34 722–732 10.1097/AUD.0b013e3182994eee PubMed DOI
Rapp P. R., Gallagher M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc. Natl. Acad. Sci. U.S.A. 93 9926–9930 10.1073/pnas.93.18.9926 PubMed DOI PMC
Rutten B. P., Schmitz C., Gerlach O. H., Oyen H. M., De Mesquita E. B., Steinbusch H. W., et al. (2007). The aging brain: accumulation of DNA damage or neuron loss? Neurobiol. Aging 28 91–98 10.1016/j.neurobiolaging.2005.10.019 PubMed DOI
Rybalko N., Bureš Z., Burianová J., Popelář J., Poon P. W., Syka J. (2012). Age-related changes in the acoustic startle reflex in Fischer 344 and long evans rats. Exp. Gerontol. 47 966–973 10.1016/j.exger.2012.09.001 PubMed DOI
Schuknecht H. F., Gacek M. R. (1993). Cochlear pathology in presbycusis. Ann. Otol. Rhinol. Laryngol. 102 1–16. PubMed
Shea T. B., Lee S. (2011). Neurofilament phosphorylation regulates axonal transport by an indirect mechanism: a merging of opposing hypotheses. Cytoskeleton (Hoboken) 68 589–595 10.1002/cm.20535 PubMed DOI
Soifer D., Nicoletti V., Cabane K., Mack K., Poulos B. (1991). Expression of the neurofilament protein NF-H in L cells. J. Neurosci. Res. 30 63–71 10.1002/jnr.490300108 PubMed DOI
Sternberger L. A., Sternberger N. H. (1983). Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc. Natl. Acad. Sci. U.S.A. 80 6126–6130 10.1073/pnas.80.19.6126 PubMed DOI PMC
Stranahan A. M., Jiam N. T., Spiegel A. M., Gallagher M. (2012). Aging reduces total neuron number in the dorsal component of the rodent prefrontal cortex. J. Comp. Neurol. 520 1318–1326 10.1002/cne.22790 PubMed DOI PMC
Suta D., Rybalko N., Pelánová J., Popelář J., Syka J. (2011). Age-related changes in auditory temporal processing in the rat. Exp. Gerontol. 46 739–746 10.1016/j.exger.2011.05.004 PubMed DOI
Syka J. (2002). Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol. Rev. 82 601–636. PubMed
Syka J. (2010). The Fischer 344 rat as a model of presbycusis. Hear. Res. 264 70–78 10.1016/j.heares.2009.11.003 PubMed DOI
Towbin H., Staehelin T., Gordon J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 76 4350–4354 10.1073/pnas.76.9.4350 PubMed DOI PMC
Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L. (1998). Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338 278–285 10.1056/NEJM199801293380502 PubMed DOI
Tremblay M., Zettel M. L., Ison J. R., Allen P. D., Majewska A. K. (2012). Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60 541–558 10.1002/glia.22287 PubMed DOI PMC
Trujillo M., Razak K. A. (2013). Altered cortical spectrotemporal processing with age-related hearing loss. J. Neurophysiol. 110 2873–2886 10.1152/jn.00423.2013 PubMed DOI
Tsang Y. M., Chiong F., Kuznetsov D., Kasarskis E., Geula C. (2000). Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS. Brain Res. 861 45–58 10.1016/S0006-8993(00)01954-5 PubMed DOI
Van De Werd H. J., Uylings H. B. (2008). The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study. Brain Struct. Funct. 212 387–401 10.1007/s00429-007-0164-y PubMed DOI
Veeranna Yang D. S., Lee J. H., Vinod K. Y., Stavrides P., Amin N. D.,, et al. (2011). Declining phosphatases underlie aging-related hyperphosphorylation of neurofilaments. Neurobiol. Aging 32 2016–2029 10.1016/j.neurobiolaging.2009.12.001 PubMed DOI PMC
Vickers J. C., Delacourte A., Morrison J. H. (1992). Progressive transformation of the cytoskeleton associated with normal aging and Alzheimers disease. Brain Res. 594 273–278 10.1016/0006-8993(92)91134-Z PubMed DOI
Voelker C. C., Garin N., Taylor J. S., Gähwiler B. H., Hornung J. P., Molnár Z. (2004). Selective neurofilament (SMI-32 FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb. Cortex 14 1276–1286 10.1093/cercor/bhh089 PubMed DOI
Wang J., Tung Y. C., Wang Y., Li X. T., Iqbal K., Grundke-Iqbal I. (2001). Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett. 507 81–87 10.1016/S0014-5793(01)02944-1 PubMed DOI
West M. J., Slomianka L., Gundersen H. J. (1991). Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231 482–497 10.1002/ar.1092310411 PubMed DOI
Willott J. F., Bross L. S., Mcfadden S. L. (1994). Morphology of the inferior colliculus in C57BL/6J and CBA/J mice across the life span. Neurobiol. Aging 15 175–183 10.1016/0197-4580(94)90109-0 PubMed DOI
Yates M. A., Markham J. A., Anderson S. E., Morris J. R., Juraska J. M. (2008). Regional variability in age-related loss of neurons from the primary visual cortex and medial prefrontal cortex of male and female rats. Brain Res. 1218 1–12 10.1016/j.brainres.2008.04.055 PubMed DOI PMC
Zettel M. L., Frisina R. D., Haider S. E., Oneill W. E. (1997). Age-related changes in calbindin D-28k and calretinin immunoreactivity in the inferior colliculus of CBA/CaJ and C57Bl/6 mice. J. Comp. Neurol. 386 92–110 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 PubMed DOI
Zilles K. (1985). The Cortex of the Rat: A Stereotaxic Atlas. Berlin, NY: Springer-Verlag.