Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- lidé MeSH
- neuroplasticita fyziologie MeSH
- obnova funkce fyziologie MeSH
- percepční nedoslýchavost patofyziologie rehabilitace terapie MeSH
- sluchové korové centrum fyziologie MeSH
- učení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Traditionally the auditory system was considered a hard-wired sensory system; this view has been challenged in recent years in light of the plasticity of other sensory systems, particularly the visual and somatosensory systems. Practical experience in clinical audiology together with the use of prosthetic devices, such as cochlear implants, contributed significantly to the present view on the plasticity of the central auditory system, which was originally based on data obtained in animal experiments. The loss of auditory receptors, the hair cells, results in profound changes in the structure and function of the central auditory system, typically demonstrated by a reorganization of the projection maps in the auditory cortex. These plastic changes occur not only as a consequence of mechanical lesions of the cochlea or biochemical lesions of the hair cells by ototoxic drugs, but also as a consequence of the loss of hair cells in connection with aging or noise exposure. In light of the aging world population and the increasing amount of noise in the modern world, understanding the plasticity of the central auditory system has its practical consequences and urgency. In most of these situations, a common denominator of central plastic changes is a deterioration of inhibition in the subcortical auditory nuclei and the auditory cortex. In addition to the processes that are elicited by decreased or lost receptor function, the function of nerve cells in the adult central auditory system may dynamically change in the process of learning. A better understanding of the plastic changes in the central auditory system after sensory deafferentation, sensory stimulation, and learning may contribute significantly to improvement in the rehabilitation of damaged or lost auditory function and consequently to improved speech processing and production.
Citace poskytuje Crossref.org
Functional Age-Related Changes Within the Human Auditory System Studied by Audiometric Examination
Ergodicity and parameter estimates in auditory neural circuits
Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging