Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging

. 2012 ; 6 () : 68. [epub] 20120921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23049499

The inferior colliculus (IC) plays a strategic role in the central auditory system in relaying and processing acoustical information, and therefore its age-related changes may significantly influence the quality of the auditory function. A very complex processing of acoustical stimuli occurs in the IC, as supported also by the fact that the rat IC contains more neurons than all other subcortical auditory structures combined. GABAergic neurons, which predominantly co-express parvalbumin (PV), are present in the central nucleus of the IC in large numbers and to a lesser extent in the dorsal and external/lateral cortices of the IC. On the other hand, calbindin (CB) and calretinin (CR) are prevalent in the dorsal and external cortices of the IC, with only a few positive neurons in the central nucleus. The relationship between CB and CR expression in the IC and any neurotransmitter system has not yet been well established, but the distribution and morphology of the immunoreactive neurons suggest that they are at least partially non-GABAergic cells. The expression of glutamate decarboxylase (GAD) (a key enzyme for GABA synthesis) and calcium binding proteins (CBPs) in the IC of rats undergoes pronounced changes with aging that involve mostly a decline in protein expression and a decline in the number of immunoreactive neurons. Similar age-related changes in GAD, CB, and CR expression are present in the IC of two rat strains with differently preserved inner ear function up to late senescence (Long-Evans and Fischer 344), which suggests that these changes do not depend exclusively on peripheral deafferentation but are, at least partially, of central origin. These changes may be associated with the age-related deterioration in the processing of the temporal parameters of acoustical stimuli, which is not correlated with hearing threshold shifts, and therefore may contribute to central presbycusis.

Zobrazit více v PubMed

Aitkin L. M., Dickhaus H., Schult W., Zimmermann M. (1978). External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J. Neurophysiol. 41, 837–847 PubMed

Arai M., Arai R., Sasamoto K., Kani K., Maeda T., Deura S., Jacobowitz D. M. (1993). Appearance of calretinin-immunoreactive neurons in the upper layers of the rat superior colliculus after eye enucleation. Brain Res. 613, 341–346 10.1016/0006-8993(93)90924-C PubMed DOI

Baimbridge K. G., Celio M. R., Rogers J. H. (1992). Calcium-binding proteins in the nervous system. Trends Neurosci. 15, 303–308 PubMed

Barbaresi P., Quaranta A., Amoroso S., Mensà E., Fabri M. (2012). Immunocytochemical localization of calretinin-containing neurons in the rat periaqueductal gray and colocalization with enzymes producing nitric oxide: a double, double-labeling study. Synapse 66, 291–307 10.1002/syn.21509 PubMed DOI

Bartos M., Vida I., Jonas P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 10.1038/nrn2044 PubMed DOI

Batra R., Fitzpatrick D. C. (2002). Monaural and binaural processing in the ventral nucleus of the lateral lemniscus: a major source of inhibition to the inferior colliculus. Hear. Res. 168, 90–97 10.1016/S0378-5955(02)00368-4 PubMed DOI

Beyerl B. D. (1978). Afferent projections to the central nucleus of the inferior colliculus in the rat. Brain Res. 145, 209–223 10.1016/0006-8993(78)90858-2 PubMed DOI

Bu J., Sathyendra V., Nagykery N., Geula C. (2003). Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp. Neurol. 182, 220–231 10.1016/S0014-4886(03)00094-3 PubMed DOI

Burianova J., Ouda L., Profant O., Syka J. (2009). Age-related changes in GAD levels in the central auditory system of the rat. Exp. Gerontol. 44, 161–169 10.1016/j.exger.2008.09.012 PubMed DOI

Campbell M. J., Morrison J. H. (1989). Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J. Comp. Neurol. 282, 191–205 10.1002/cne.902820204 PubMed DOI

Caspary D. M., Raza A., Lawhorn Armour B. A., Pippin J., Arneric S. P. (1990). Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J. Neurosci. 10, 2363–2372 PubMed PMC

Caspary D. M., Holder T. M., Hughes L. F., Milbrandt J. C., McKernan R. M., Naritoku D. K. (1999). Age-related changes in GABAA receptor subunit composition and function in rat auditory system. Neuroscience 93, 307–312 10.1016/S0306-4522(99)00121-9 PubMed DOI

Caspary D. M., Ling L., Turner J. G., Hughes L. F. (2008). Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J. Exp. Biol. 211, 1781–1791 10.1242/jeb.013581 PubMed DOI PMC

Caspary D. M., Milbrandt J. C., Helfert R. H. (1995). Central auditory aging: GABA changes in the inferior colliculus. Exp. Gerontol. 30, 349–360 PubMed

Casseday J. H., Ehrlich D., Covey E. (2000). Neural measurement of sound duration: control by excitatory-inhibitory interactions in the inferior colliculus. J. Neurophysiol. 84, 1475–1487 PubMed

Casseday J. H., Fremouw T., Covey E. (2002). The inferior colliculus: a hub for the central auditory system, in Integrative Functions in the Mammalian Auditory Pathway, Vol. 15, eds Oertel D., Popper A. N., Fay R. R. (New York, NY: Springer-Verlag; ), 238–318

Celio M. R. (1990). Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375–475 10.1016/0306-4522(90)90091-H PubMed DOI

Chernock M. L., Larue D. T., Winer J. A. (2004). A periodic network of neurochemical modules in the inferior colliculus. Hear. Res. 188, 12–20 10.1016/S0378-5955(03)00340-X PubMed DOI

Clarkson C., Juíz J. M., Merchán M. A. (2010). Long-term regulation in calretinin staining in the rat inferior colliculus after unilateral auditory cortical ablation. J. Comp. Neurol. 518, 4261–4276 10.1002/cne.22453 PubMed DOI

Cruikshank S. J., Killackey H. P., Metherate R. (2001). Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 105, 553–569 10.1016/S0306-4522(01)00226-3 PubMed DOI

Czéh B., Hajnal A., Seress L. (2005). NADPH-diaphorase positive neurons of the rat hippocampal formation: regional distribution, total number and colocalization with calcium binding proteins. Prague Med. Rep. 106, 261–274 PubMed

Davis K. A. (2002). Evidence of a functionally segregated pathway from dorsal cochlear nucleus to inferior colliculus. J. Neurophysiol. 87, 1824–1835 10.1152/jn.00769.2001 PubMed DOI

Davis M., Gendelman D., Tischler M., Gendelman P. (1982). A primary acoustic startle circuit: lesion and stimulation studies. J. Neurosci. 6, 791–805 PubMed PMC

Dawson T. M., Bredt D. S., Fotuhi M., Hwang P. M., Snyder S. H. (1991). Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 88, 7797–7801 PubMed PMC

De Felipe J. (1997). Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J. Chem. Neuroanat. 14, 1–19 10.1016/S0891-0618(97)10013-8 PubMed DOI

De Villers-Sidani E., Alzghoul L., Zhou X., Simpson K. L., Lin R. C., Merzenich M. M. (2010). Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc. Natl. Acad. Sci. U.S.A. 107, 13900–13905 10.1073/pnas.1007885107 PubMed DOI PMC

Demeulemeester H., Vandesande F., Orban G. A., Heizmann C. W., Pochet R. (1989). Calbindin D-28K and parvalbumin immunoreactivity is confined to two separate neuronal subpopulations in the cat visual cortex, whereas partial coexistence is shown in the dorsal lateral geniculate nucleus. Neurosci. Lett. 99, 6–11 10.1016/0304-3940(89)90255-3 PubMed DOI

Diamond J. T., Jones E. G., Powel T. P. S. (1969). The projection of the auditory cortex upon the diencephalon and brainstem of the cat. Brain Res. 15, 305–340 10.1016/0006-8993(69)90160-7 PubMed DOI

Di Loreto D., Jr., Cox C., Grover D. A., Lazar E., del Cerro C., del Cerro M. (1994). The influences of age, retinal topography, and gender on retinal degeneration in the Fischer 344 rat. Brain Res. 647, 181–191 10.1016/0006-8993(94)91316-1 PubMed DOI

Dorph-Petersen K. A., Caric D., Saghafi R., Zhang W., Sampson A. R., Lewis D. A. (2009). Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol. 117, 369–384 10.1007/s00401-008-0410-2 PubMed DOI PMC

Druga R., Syka J. (1984a). Ascending and descending projections to the inferior colliculus in the rat. Physiol. Bohemosl. 33, 31–42 PubMed

Druga R., Syka J. (1984b). Neocortical projections to the inferior colliculus in the rat. Physiol. Bohemosl. 33, 251–253 PubMed

Druga R., Syka J. (1984c). Projections from auditory structures to the superior colliculus in the rat. Neurosci. Lett. 45, 247–252 PubMed

Druga R., Syka J. (1993). NADPH-diaphorase activity in the central auditory structures of the rat. Neuroreport 4, 999–1002 PubMed

Druga R., Syka J. (2001). Effect of auditory cortex lesions on NADPH-diaphorase staining in the inferior colliculus of rat. Neuroreport 12, 1555–1559 PubMed

Druga R., Syka J., Rajkowska G. (1997). Projections of auditory cortex onto the inferior colliculus in the rat. Physiol. Res. 46, 215–222 PubMed

Elston G. N., González-Albo M. C. (2003). Parvalbumin-, calbindin-, and calretinin-immunoreactive neurons in the prefrontal cortex of the owl monkey (Aotus trivirgatus): a standardized quantitative comparison with sensory and motor areas. Brain Behav. Evol. 62, 19–30 PubMed

Erlander M. G., Tillakaratne N. J. K., Feldblum S., Patel N., Tobin A. J. (1991). Two genes encode distinct glutamate decarboxylase. Neuron 7, 91–100 10.1016/0896-6273(91)90077-D PubMed DOI

Erlander M. G., Tobin A. J. (1991). The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem. Res. 16, 215–226 PubMed

Esclapez M., Tillakaratne N. J., Kaufman D. L., Tobin A. J., Houser C. R. (1994). Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J. Neurosci. 14, 1834–1855 PubMed PMC

Faye-Lund H., Osen K. K. (1985). Anatomy of the inferior colliculus in rat. Anat. Embryol. 171, 1–20 PubMed

Feldblum S., Erlander M. G., Tobin A. J. (1993). Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J. Neurosci. Res. 34, 689–706 10.1002/jnr.490340612 PubMed DOI

Felix R. A. 2nd, Portfors C. V. (2007). Excitatory, inhibitory and facilitatory frequency response areas in the inferior colliculus of hearing impaired mice. Hear. Res. 228, 212–229 10.1016/j.heares.2007.02.009 PubMed DOI PMC

Foster T. C. (2007). Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell 6, 319–325 10.1111/j.1474-9726.2007.00283.x PubMed DOI

Förster C. R., Illing R. B. (2000). Plasticity of the auditory brainstem: cochleotomy-induced changes of calbindin-D28k expression in the rat. J. Comp. Neurol. 416, 173–187 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V PubMed DOI

Fredrich M., Reisch A., Illing R. B. (2009). Neuronal subtype identity in the rat auditory brainstem as defined by molecular profile and axonal projection. Exp. Brain Res. 195, 241–260 10.1007/s00221-009-1776-7 PubMed DOI

Freund T. F., Buzsáki G. (1996). Interneurons of the hippocampus. Hippocampus 6, 347–470 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I PubMed DOI

Frisina D. R., Frisina R. D. (1997). Speech recognition in noise and presbycusis: relations to possible neural mechanisms. Hear. Res. 106, 95–104 10.1016/S0378-5955(97)00006-3 PubMed DOI

Frisina R. D. (2001). Subcortical neural coding mechanisms for auditory temporal processing. Hear. Res. 158, 1–27 10.1016/S0378-5955(01)00296-9 PubMed DOI

Frisina R. D. (2009). Age-related hearing loss: ear and brain mechanisms. Ann. N.Y. Acad. Sci. 1170, 708–717 10.1111/j.1749-6632.2009.03931.x PubMed DOI

Frisina R. D. (2010). Aging changes in the central auditory system, in Handbook of Auditory Science: The Auditory Brain, eds Rees A., Palmer A. (Oxford: Oxford University Press; ), 415–436

Frisina R. D., Rajan R. (2005). Inferior colliculus: aging and plasticity, in The Inferior Colliculus, eds Winer J., Schreiner C. (New York, NY: Springer; ), 559–584

Frisina R. D., Walton J. P. (2006). Age-related structural and functional changes in the cochlear nucleus. Hear. Res. 217, 216–233 10.1016/j.heares.2006.02.003 PubMed DOI

Frisina R. D., Walton J. P., Lynch-Armour M. A., Byrd J. D. (1998). Inputs to a physiologically-characterized region of the inferior colliculus of the young adult CBA mouse. Hear. Res. 115, 61–81 10.1016/S0378-5955(97)00176-7 PubMed DOI

Fuentes-Santamaria V., Alvarado J. C., Brunso-Bechtold J. K., Henkel C. K. (2003). Upregulation of calretinin immunostaining in the ferret inferior colliculus after cochlear ablation. J. Comp. Neurol. 460, 585–596 10.1002/cne.10676 PubMed DOI

Gates G. A., Mills J. H. (2005). Presbycusis. Lancet 366, 1111–1120 10.1016/S0140-6736(05)67423-5 PubMed DOI

Gerken G. M. (1996). Central tinnitus and lateral inhibition: an auditory brainstem model. Hear. Res. 97, 75–83 PubMed

Geyer M. A., Braff D. L. (1987). Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr. Bull. 13, 643–668 10.1093/schbul/13.4.643 PubMed DOI

Gonchar Y., Burkhalter A. (1997). Three distinct families of GABAergic neurons in rat visual cortex. Cereb. Cortex 7, 347–358 10.1093/cercor/7.4.347 PubMed DOI

Gonchar Y., Wang Q., Burkhalter A. (2007). Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanat. 1:1–11 10.3389/neuro.05.003.2007 PubMed DOI PMC

González-Hernández T., Mantolan B., González B., Pérez H. (1996). Sources of GABAergic input to the inferior colliculus of the rat. J. Comp. Neurol. 372, 309–326 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E PubMed DOI

Gordon-Salant S., Fitzgibbons P. J., Friedman S. A. (2007). Recognition of time-compressed and natural speech with selective temporal enhancements by young and elderly listeners. J. Speech Lang. Hear. Res. 50, 1181–1193 10.1044/1092-4388(2007/082) PubMed DOI

Gordon-Salant S., Frisina R. D., Popper A., Fay R. R. (2010). The Aging Auditory System. New York, NY: Springer-Verlag

Gutiérrez A., Khan Z. U., Morris S. J., De Blas A. L. (1994). Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J. Neurosci. 14, 7469–7477 PubMed PMC

Harker K. T., Whishaw I. Q. (2002). Place and matching-to-place spatial learning affected by rat inbreeding (Dark-Agouti, Fischer 344) and albinism (Wistar, Sprague-Dawley) but not domestication (wild rat vs. Long-Evans, Fischer-Norway). Behav. Brain Res. 134, 467–477 10.1016/S0166-4328(02)00083-9 PubMed DOI

Helfert R. H., Sommer T. J., Meeks J., Hofstetter P., Hughes L. F. (1999). Age-related synaptic changes in the central nucleus of the inferior colliculus of Fischer-344 rats. J. Comp. Neurol. 406, 285–298 10.1002/(SICI)1096-9861(19990412)406:3<285::AID-CNE1>3.0.CO;2-P PubMed DOI

Hendrickson A. E., Tillakaratne N. J., Mehra R. D., Esclapez M., Erickson A., Vician L., Tobin A. J. (1994). Differential localization of two glutamic acid decarboxylases (GAD65 and GAD67) in adult monkey visual cortex. J. Comp. Neurol. 343, 566–581 10.1002/cne.903430407 PubMed DOI

Herculano-Houzel S., Lent R. (2005). Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 10.1523/JNEUROSCI.4526-04.2005 PubMed DOI PMC

Hope B. T., Michael G. J., Knigge K. M., Vincent S. R. (1991). Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 88, 2811–2814 PubMed PMC

Idrizbegovic E., Bogdanovic N., Willott J. F., Canlon B. (2004). Age-related increases in calcium-binding protein immunoreactivity in the cochlear nucleus of hearing impaired C57BL/6J mice. Neurobiol. Aging 25, 1085–1093 10.1016/j.neurobiolaging.2003.11.004 PubMed DOI

Idrizbegovic E., Canlon B., Bross L. S., Willott J. F., Bogdanovic N. (2001). The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice: a quantitative study. Hear. Res. 158, 102–115 10.1016/S0378-5955(01)00295-7 PubMed DOI

Ito T., Bishop D. C., Oliver D. L. (2009). Two classes of GABAergic neurons in the inferior colliculus. J. Neurosci. 29, 13860–13869 10.1523/JNEUROSCI.3454-09.2009 PubMed DOI PMC

Jinno S., Kosaka T. (2002). Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of hippocampal GABAergic neurons in mice. J. Comp. Neurol. 449, 1–25 10.1002/cne.10251 PubMed DOI

Jones E. G. (2003). Chemically defined parallel pathways in the monkey auditory system. Ann. N.Y. Acad. Sci. 999, 218–233 10.1196/annals.1284.033 PubMed DOI

Kawaguchi Y., Kubota Y. (1998). Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85, 677–701 10.1016/S0306-4522(97)00685-4 PubMed DOI

Kelley P., Frisina R. D., Zettel M. L., Walton J. P. (1992). Differential calbindin immunoreactivity in the brainstem auditory system of the chinchilla. J. Comp. Neurol. 320, 196–212 10.1002/cne.903200205 PubMed DOI

Khachaturian Z. S. (1989). The role of calcium regulation in brain aging: re-examination of a hypothesis. Aging 1, 17–34 PubMed

Kirkcaldie M. T., Dickson T. C., King C. E., Grasby D., Riederer B. M., Vickers J. C. (2002). Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex. J. Chem. Neuroanat. 24, 163–171 10.1016/S0891-0618(02)00043-1 PubMed DOI

Koch M. (1999). The neurobiology of startle. Prog. Neurobiol. 59, 107–128 10.1016/S0301-0082(98)00098-7 PubMed DOI

Krishna B. S., Semple M. N. (2000). Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J. Neurophysiol. 84, 255–273 PubMed

Kubota Y., Hattori R., Yui Y. (1994). Three distinct subpopulations of GABA-ergic neurons in rat frontal agranular cortex. Brain Res. 649, 159–173 10.1016/0006-8993(94)91060-X PubMed DOI

Kudo M., Nakamura Y. (1988). Organization of the lateral lemniscal fibers converging onto the inferior colliculus in the cat: an anatomical review, in Pathway: Structure and Function, eds Syka J., Masterton R. B. (New York, NY: Auditory Plenum Press; ), 171–183

Kulesza R. J., Jr., Berrebi A. S. (2000). Superior paraolivary nucleus of the rat is a GABAergic nucleus. J. Assoc. Res. Otolaryngol. 1, 255–269 PubMed PMC

Kulesza R. J., Viñuela A., Saldaña E., Berrebi A. S. (2002). Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear. Res. 168, 12–24 10.1016/S0378-5955(02)00374-X PubMed DOI

Le Beau F. E., Rees A., Malmierca M. S. (1996). Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. J. Neurophysiol. 75, 902–919 PubMed

Leventhal A. G., Wang Y., Pu M., Zhou Y., Ma Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science 300, 812–815 10.1126/science.1082874 PubMed DOI

Ling L. L., Hughes L. F., Caspary D. M. (2005). Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience 132, 1103–1113 10.1016/j.neuroscience.2004.12.043 PubMed DOI

Litovsky R. Y., Delgutte B. (2002). Neural correlates of the precedence effect in the inferior colliculus: effect of localization cues. J. Neurophysiol. 87, 976–994 PubMed

Loftus W. C., Malmierca M. S., Bishop D. C., Oliver D. L. (2008). The cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neuroscience 154, 196–205 10.1016/j.neuroscience.2008.01.019 PubMed DOI PMC

Lohmann C., Friauf E. (1996). Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J. Comp. Neurol. 367, 90–109 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E PubMed DOI

Malmierca M. S., Blackstad T. W., Osen K. K. (2011). Computer-assisted 3-D reconstructions of Golgi-impregnated neurons in the cortical regions of the inferior colliculus of rat. Hear. Res. 274, 13–26 10.1016/j.heares.2010.06.011 PubMed DOI

Malmierca M. S., Blackstad T. W., Osen K. K., Karagulle T., Molowny R. L. (1993). The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J. Comp. Neurol. 333, 1–27 10.1002/cne.903330102 PubMed DOI

Malmierca M. S., Hernandez O., Falconi A., Lopez-Poveda E. A., Merchan M., Rees A. (2003). The commissure of the inferior colliculus shapes frequency response areas in rat: an in vivo study using reversible blockade with microinjection of kynurenic acid. Exp. Brain Res. 153, 522–529 10.1007/s00221-003-1615-1 PubMed DOI

Malmierca M. S., Leergaard T. B., Bajo V. M., Bjaalie J. G., Merchan M. A. (1998). Anatomic evidence of a three-dimensional mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat. J. Neurosci. 18, 10603–10618 PubMed PMC

Malmierca M. S., Saint Marie R. L., Merchan M. A., Oliver D. L. (2005). Laminar inputs from dorsal cochlear nucleus and ventral cochlear nucleus to the central nucleus of the inferior colliculus: two patterns of convergence. Neuroscience 136, 883–894 10.1016/j.neuroscience.2005.04.040 PubMed DOI

Malmierca M. S., Seip K. L., Osen K. K. (1995a). Morphological classification and identification of neurons in the inferior colliculus a multivariate analysis. Anat. Embryol. 191, 343–350 PubMed

Malmierca M. S., Rees A., Le Beau F. E. N., Bjaalie J. G. (1995b). Laminar organization of frequency-defined local axons within and between the inferior colliculi of the guinea pig. J. Comp. Neurol. 357, 124–144 10.1002/cne.903570112 PubMed DOI

Markram H., Toledo-Rodriguez M., Wang Y., Gupta A., Silberberg G., Wu C. (2004). Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 10.1038/nrn1519 PubMed DOI

Mattson M. P. (2007). Calcium and neurodegeneration. Aging Cell 6, 337–350 10.1111/j.1474-9726.2007.00275.x PubMed DOI

Mazelová J., Popelar J., Syka J. (2003). Auditory function in presbycusis: peripheral vs. central changes. Exp. Gerontol. 38, 87–94 10.1016/S0531-5565(02)00155-9 PubMed DOI

Merchán M., Aguilar L. A., Lopez-Poveda E. A., Malmierca M. S. (2005). The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136, 907–925 10.1016/j.neuroscience.2004.12.030 PubMed DOI

Merrill D. A., Chiba A. A., Tuszynski M. H. (2001). Conservation of neuronal number and size in the entorhinal cortex of behaviorally characterized aged rats. J. Comp. Neurol. 438, 445–456 10.1002/cne.1327 PubMed DOI

Milbrandt J. C., Albin R. L., Caspary D. M. (1994). Age-related decrease in GABAB receptor binding in the Fischer 344 rat inferior colliculus. Neurobiol. Aging 15, 699–703 PubMed

Molnár Z., Cheung A. F. (2006). Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci. Res. 55, 105–115 10.1016/j.neures.2006.02.008 PubMed DOI

Morest D. K., Oliver D. L. (1984). The neuronal architecture of the inferior colliculus of the cat: defining the functional anatomy of the auditory midbrain. J. Comp. Neurol. 222, 209–236 10.1002/cne.902220206 PubMed DOI

Najdzion J., Wasilewska B., Równiak M., Bogus-Nowakowska K., Szteyn S., Robak A. (2011). A morphometric comparative study of the medial geniculate body of the rabbit and the fox. Anat. Histol. Embryol. 40, 326–334 10.1111/j.1439-0264.2011.01076.x PubMed DOI

Nataraj K., Wenstrup J. J. (2005). Roles of inhibition in creating complex auditory responses in the inferior colliculus: facilitated combination-sensitive neurons. J. Neurophysiol. 93, 3294–3312 10.1152/jn.01152.2004 PubMed DOI

Nodal F. R., López D. E. (2003). Direct input from cochlear root neurons to pontine reticulospinal neurons in albino rat. J. Comp. Neurol. 460, 80–93 10.1002/cne.10656 PubMed DOI

Ohlemiller K. K., Frisina R. D. (2008). Clinical characterization of age-related hearing loss and its neural and molecular bases, in Auditory Trauma, Protection and Treatment, eds Schacht J., Popper A., Fay R. (New York, NY: Springer-Verlag; ), 145–194

Oliver D. L. (1984). Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11, 409–424 10.1016/0306-4522(84)90033-2 PubMed DOI

Oliver D. L., Huerta M. F. (1992). Inferior and superior colliculi, in The Mammalian Auditory System: Neuroanatomy, eds Webster D. B., Popper A. N., Fay R. R. (New York, NY: Springer-Verlag; ), 168–221

Oliver D. L., Kuwada S., Yin T. C., Haberly L. B., Henkel C. K. (1991). Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J. Comp. Neurol. 303, 75–100 10.1002/cne.903030108 PubMed DOI

Oliver D. L., Morest D. K. (1984). The central nucleus of the inferior colliculus in the cat. J. Comp. Neurol. 222, 237–264 10.1002/cne.902220207 PubMed DOI

Oliver D. L., Winer J. A., Beckius G. E., Saint Marie R. L. (1994). Morphology of GABAergic neurons in the inferior colliculus of the cat. J. Comp. Neurol. 340, 27–42 10.1002/cne.903400104 PubMed DOI

Ouda L., Druga R., Syka J. (2008). Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat. Exp. Gerontol. 43, 782–789 10.1016/j.exger.2008.04.001 PubMed DOI

Ouda L., Druga R., Syka J. (2012a). Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat. Brain Struct. Funct. 217, 19–36 10.1007/s00429-011-0329-6 PubMed DOI

Ouda L., Burianova J., Syka J. (2012b). Age-related changes in calbindin and calretinin immunoreactivity in the central auditory system of the rat. Exp. Geront. 47, 497–506 10.1016/j.exger.2012.04.003 PubMed DOI

Pakkenberg B., Gundersen H. J. (1997). Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurol. 384, 312–320 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K PubMed DOI

Palombi P. S., Caspary D. M. (1996). Physiology of the aged Fischer 344 rat inferior colliculus: responses to contralateral monaural stimuli. J. Neurophysiol. 76, 3114–3125 PubMed

Paxinos G., Watson C. (1998). The Rat Brain in Stereotaxic Coordinates. New York, NY: Academic Press

Pecka M., Zahn T. P., Saunier-Rebori B., Siveke I., Felmy F., Wiegrebe L., Klug A., Pollak G. D., Grothe B. (2007). Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments. J. Neurosci. 27, 1782–1790 10.1523/JNEUROSCI.5335-06.2007 PubMed DOI PMC

Peruzzi D., Bartlett E., Smith P. H., Oliver D. L. (1997). A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J. Neurosci. 17, 3766–3777 PubMed PMC

Poe B. H., Linville C., Brunso-Bechtold J. (2001). Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector. J. Comp. Neurol. 406, 285–298 10.1002/cne.1335 PubMed DOI

Pollak G. D., Casseday J. H. (1986). The Neural Basis of Echolocation in Bats. New York, NY: Springer-Verlag

Pollak G. D., Xie R., Gittelman J. X., Andoni S., Li N. (2011). The dominance of inhibition in the inferior colliculus. Hear. Res. 274, 27–39 10.1016/j.heares.2010.05.010 PubMed DOI PMC

Popelar J., Groh D., Mazelova J., Syka J. (2003). Cochlear function in young and adult Fischer 344 rats. Hear. Res. 186, 75–84 10.1016/S0378-5955(03)00329-0 PubMed DOI

Popelar J., Groh D., Pelanova J., Canlon B., Syka J. (2006). Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiol. Aging 27, 490–500 10.1016/j.heares.2008.11.010 PubMed DOI

Raza A., Milbrandt J. C., Arneric S. P., Caspary D. M. (1994). Age-related changes in brainstem auditory neurotransmitters: measures of GABA and acetylcholine function. Hear. Res. 77, 221–230 PubMed

Résibois A., Rogers J. H. (1992). Calretinin in rat brain: an immunohistochemical study. Neuroscience 46, 101–134 PubMed

Riascos D., De Leon D., Baker-Nigh A., Nicholas A., Yukhananov R., Bu J., Wu C. K., Geula C. (2011). Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer's disease. Acta Neuropathol. 122, 565–576 10.1007/s00401-011-0865-4 PubMed DOI PMC

Riquelme R., Saldana E., Osen K. K., Ottersen O. P., Merchan M. A. (2001). Colocalization of GABA and glycine in the ventral nucleus of the lateral lemniscus in rat: an in situ hybridization and semiquantitative immunocytochemical study. J. Comp. Neurol. 432, 409–424 PubMed

Rybalko N., Bureš Z., Burianová J., Popelář J., Poon P. W. F., Syka J. (in press). Age-related changes in the acoustic startle reflex in Fischer 344 and Long Evans rats. Exp. Geront. PubMed

Rybalko N., Suta D., Popelár J., Syka J. (2010). Inactivation of the left auditory cortex impairs temporal discrimination in the rat. Behav. Brain Res. 209, 123–130 10.1016/j.bbr.2010.01.028 PubMed DOI

Saint Marie R. L., Baker R. A. (1990). Neurotransmitter-specific uptake and retrograde transport of [3H]glycine from the inferior colliculus by ipsilateral projections of the superior olivary complex and nuclei of the lateral lemniscus. Brain Res. 524, 244–253 10.1016/0006-8993(90)90698-B PubMed DOI

Saint Marie R. L., Ostapoff E. M., Morest D. K., Wenthold R. J. (1989). Glycine-immunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J. Comp. Neurol. 279, 382–396 10.1002/cne.902790305 PubMed DOI

Saldaña E., Aparicio M. A., Fuentes-Santamaría V., Berrebi A. S. (2009). Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience 163, 372–387 10.1016/j.neuroscience.2009.06.030 PubMed DOI PMC

Saldana E., Feliciano M., Mugnaini E. (1996). Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J. Comp. Neurol. 371, 15–40 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O PubMed DOI

Sanchez J. T., Gans D., Wenstrup J. J. (2007). Contribution of NMDA and AMPA receptors to temporal patterning of auditory responses in the inferior colliculus. J. Neurosci. 27, 1954–1963 10.1523/JNEUROSCI.2894-06.2007 PubMed DOI PMC

Schmidt S., Redecker C., Bruehl C., Witte O. W. (2010). Age-related decline of functional inhibition in rat cortex. Neurobiol. Aging 31, 504–511 10.1016/j.neurobiolaging.2008.04.006 PubMed DOI

Schneiderman A., Oliver D. L., Henkel C. K. (1988). Connections of the dorsal nucleus of the lateral lemniscus: an inhibitory parallel pathway in the ascending auditory system? J. Comp. Neurol. 276, 188–208 10.1002/cne.902760204 PubMed DOI

Schofield B. R. (2009). Projections to the inferior colliculus from layer VI cells of auditory cortex. Neuroscience 159, 246–258 10.1016/j.neuroscience.2008.11.013 PubMed DOI PMC

Schwaller B. (2010). Cytosolic Ca2+ buffers. Cold Spring Harb. Perspect. Biol. 2, a004051 10.1101/cshperspect.a004051 PubMed DOI PMC

Schwaller B., Meyer M., Schiffmann S. (2002). ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1, 241–258 10.1080/147342202320883551 PubMed DOI

Semple M. N., Aitkin L. M. (1980). Physiology of pathway from dorsal cochlear nucleus to inferior colliculus revealed by electrical and auditory stimulation. Exp. Brain Res. 41, 19–28 PubMed

Sharma V., Nag T. C., Wadhwa S., Roy T. S. (2009). Stereological investigation and expression of calcium-binding proteins in developing human inferior colliculus. J. Chem. Neuroanat. 37, 78–86 10.1016/j.jchemneu.2008.11.002 PubMed DOI

Sheikh S. N., Martin S. B., Martin D. L. (1999). Regional distribution and relative amounts of glutamate decarboxylase isoforms in rat and mouse brain. Neurochem. Int. 35, 73–80 10.1016/S0197-0186(99)00063-7 PubMed DOI

Shi L., Argenta A. E., Winseck A. K., Brunso-Bechtold J. K. (2004). Stereological quantification of GAD-67-immunoreactive neurons and boutons in the hippocampus of middle-aged and old Fischer 344 x Brown Norway rats. J. Comp. Neurol. 478, 282–291 10.1002/cne.20303 PubMed DOI

Shi L., Pang H., Linville M. C., Bartley A. N., Argenta A. E., Brunso-Bechtold J. K. (2006). Maintenance of inhibitory interneurons and boutons in sensorimotor cortex between middle and old age in Fischer 344 X Brown Norway rats. J. Chem. Neuroanat. 32, 46–53 10.1016/j.jchemneu.2006.04.001 PubMed DOI

Simon H., Frisina R. D., Walton J. P. (2004). Age reduces response latency of mouse inferior colliculus neurons to AM sounds. J. Acoust. Soc. Am. 116, 469–477 10.1121/1.1760796 PubMed DOI

Stanley D. P., Shetty A. K. (2004). Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. J. Neurochem. 89, 204–216 10.1111/j.1471-4159.2004.02318.x PubMed DOI

Sternberger L. A., Sternberger N. H. (1983). Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc. Natl. Acad. Sci. U.S.A. 80, 6126–6130 PubMed PMC

Strouse A., Ashmead D. H., Ohde R. N., Grantham D. W. (1998). Temporal processing in the aging auditory system. J. Acoust. Soc. Am. 104, 2385–2399 10.1121/1.423748 PubMed DOI

Suta D., Kvasnák E., Popelár J., Syka J. (2003). Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. J. Neurophysiol. 90, 3794–3808 10.1152/jn.01175.2002 PubMed DOI

Suta D., Rybalko N., Pelánová J., Popelář J., Syka J. (2011). Age-related changes in auditory temporal processing in the rat. Exp. Gerontol. 46, 739–746 10.1016/j.exger.2011.05.004 PubMed DOI

Swerdlow N. R., Geyer M. A., Braff D. L. (2001). Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156, 194–215 PubMed

Syka J. (2002). Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol. Rev. 82, 601–636 10.1152/physrev.00002.2002 PubMed DOI

Syka J. (2010). The Fischer 344 rat as a model of presbycusis. Hear. Res. 264, 70–78 10.1016/j.heares.2009.11.003 PubMed DOI

Syka J., Radil-Weiss T. (1971). Electrical stimulation of the tectum in freely moving cats. Brain Res. 28, 567–572 10.1016/0006-8993(71)90068-0 PubMed DOI

Syka J., Straschill M. (1970). Activation of superior colliculus neurons and motor responses after electrical stimulation of the inferior colliculus. Exp. Neurol. 28, 384–392 PubMed

Tardif E., Chiry O., Probst A., Magistretti P. J., Clarke S. (2003). Patterns of calcium-binding proteins in human inferior colliculus: identification of subdivisions and evidence for putative parallel systems. Neuroscience 116, 1111–1121 10.1016/S0306-4522(02)00774-1 PubMed DOI

Toescu E. C., Verkhratsky A., Landfield P. W. (2004). Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci. 27, 614–620 10.1016/j.tins.2004.07.010 PubMed DOI

Tokunaga A., Sugita S., Otani K. (1984). Auditory and non-auditory subcortical afferents to the inferior colliculus in the rat. J. Hirnforsch. 25, 461–472 PubMed

Tsang Y. M., Chiong F., Kuznetsov D., Kasarskis E., Geula C. (2000). Motor neurons are rich in non-phosphorylated neurofilaments: crossspecies comparison and alterations in ALS. Brain Res. 861, 45–58 10.1016/S0006-8993(00)01954-5 PubMed DOI

Verkhratsky A., Toescu E. C. (1998). Calcium and neuronal ageing. Trends Neurosci. 21, 2–7 10.1016/S0166-2236(97)01156-9 PubMed DOI

Voelker C. C., Garin N., Taylor J. S., Gähwiler B. H., Hornung J. P., Molnár Z. (2004). Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb. Cortex 14, 1276–1286 10.1093/cercor/bhh089 PubMed DOI

Walton J. P. (2010). Timing is everything: temporal processing deficits in the aged auditory brainstem. Hear. Res. 264, 63–69 10.1016/j.heares.2010.03.002 PubMed DOI PMC

Walton J. P., Barsz K., Wilson W. W. (2008). Sensorineural hearing loss and neural correlates of temporal acuity in the inferior colliculus of the C57Bl/6 mouse. J. Assoc. Res. Otolaryngol. 9, 12–22 10.1007/s10162-007-0101-z PubMed DOI PMC

Walton J. P., Frisina R. D., O'Neill W. E. (1998). Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. J. Neurosci. 18, 2764–2776 PubMed PMC

Walton J. P., Frisina R. D., Ison J. E., O'Neill W. E. (1997). Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. J. Comp. Physiol. A 181, 161–176 10.1007/s003590050103 PubMed DOI

Walton J. P., Simon H., Frisina R. D. (2002). Age-related alterations in the neural coding of envelope periodicities. J. Neurophysiol. 88, 565–578 PubMed

Winer J. A., Larue D. T. (1996). Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proc. Natl. Acad. Sci. U.S.A. 93, 3083–3087 PubMed PMC

Winer J. A., Larue D. T., Pollak G. D. (1995). GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neural organization. J. Comp. Neurol. 352, 1–37 10.1002/cne.903550302 PubMed DOI

Winer J. A., Larue D. T., Diehl J. J., Hefti B. J. (1998). Auditory cortical projections to the cat inferior colliculus. J. Comp. Neurol. 400, 147–174 10.1002/(SICI)1096-9861(19981019)400:2<147::AID-CNE1>3.0.CO;2-9 PubMed DOI

Woo N. H., Lu B. (2006). Regulation of cortical interneurons by neurotrophins: from development to cognitive disorders. Neuroscientist 12, 43–56 10.1177/1073858405284360 PubMed DOI

Wu M. D., Kimura M., Hiromichi I., Helfert R. H. (2008). A classification of NOergic neurons in the inferior colliculus of rat according to co-existence with classical amino acid transmitters. Okajimas Folia Anat. Jpn. 85, 17–27 PubMed

Zettel M. L., Frisina R. D., Haider S. E., O'Neill W. E. (1997). Age-related changes in calbindin D-28k and calretinin immunoreactivity in the inferior colliculus of CBA/CaJ and C57Bl/6 mice. J. Comp. Neurol. 386, 92–110 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 PubMed DOI

Zettel M. L., O'Neill W. E., Trang T. T., Frisina R. D. (2001). Early bilateral deafening prevents calretinin up-regulation in the dorsal cortex of the inferior colliculus of aged CBA/CaJ mice. Hear. Res. 158, 131–138 10.1016/S0378-5955(01)00305-7 PubMed DOI

Zhang D. X., Li L., Kelly J. B., Wu S. H. (1998). GABAergic projections from the lateral lemniscus to the inferior colliculus of the rat. Hear. Res. 117, 1–12 10.1016/S0378-5955(97)00202-5 PubMed DOI

Zhou J., Shore S. (2006). Convergence of spinal trigeminal and cochlear nucleus projections in the inferior colliculus of the guinea pig. J. Comp. Neurol. 495, 100–112 10.1002/cne.20863 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...