parvalbumin
Dotaz
Zobrazit nápovědu
The conventional polymerase chain reaction (PCR) method to detect the major allergenic protein parvalbumin beta 2 of Atlantic herring (Clupea harengus) and Pacific herring (Clupea pallasii) was developed. The specific set of primers for the amplification of the partial genomic sequence of the pvalb 2 gene encoding the main fish allergen of both herrings was designed and applied to the investigation of 24 commercial fish products. The targeted amplicon size was 189 bp of pvalb 2 gene of Atlantic herring and Pacific herring. As the internal amplification control, the DNA of 18S rRNA gene for eukaryotes (141 bp) was successfully used. The specificity of designed primer pair using 26 various fish species was assessed. The intrinsic detection limit was 10 pg µl(-1) of the present specific DNA. Atlantic herring or Pacific herring allergenic parvalbumins were detected in 22 investigated fish products in conformity with the package declaration. Two fish products were negative in spite of the declaration. The proposed PCR method is specific enough and can be used for the detection of Atlantic and Pacific herrings' major allergen parvalbumin beta 2 in fish food products.
- MeSH
- alergeny analýza genetika MeSH
- kontaminace potravin analýza MeSH
- lidé MeSH
- parvalbuminy analýza genetika imunologie MeSH
- polymerázová řetězová reakce metody statistika a číselné údaje MeSH
- potravinová alergie imunologie MeSH
- rybí proteiny analýza genetika imunologie MeSH
- rybí výrobky škodlivé účinky analýza MeSH
- ryby genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Atlantský oceán MeSH
- Tichý oceán MeSH
Parvalbumin (PV) is a calcium-binding protein that is expressed by numerous neuronal subpopulations in the central nervous system. Staining for PV was often used in neuroanatomical studies in the past. Recently, several studies have suggested that PV acts in neurons as a mobile endogenous calcium buffer that affects temporo-spatial characteristics of calcium transients and is involved in modulation of synaptic transmission. In our experiments, expression of PV in the lumbar dorsal horn spinal cord was evaluated using densitometric analysis of immunohistological sections and Western-blot techniques in control and arthritic rats. There was a significant reduction of PV immunoreactivity in the superficial dorsal horn region ipsilateral to the arthritis after induction of the peripheral inflammation. The ipsilateral area and intensity of PV staining in this area were reduced to 38 % and 37 %, respectively, out of the total PV staining on both sides. It is suggested that this reduction may reflect decreased expression of PV in GABAergic inhibitory neurons. Reduction of PV concentration in the presynaptic GABAergic terminals could lead to potentiation of inhibitory transmission in the spinal cord. Our results suggest that changes in expression of calcium-binding proteins in spinal cord dorsal horn neurons may modulate nociceptive transmission.
- MeSH
- artritida experimentální chemicky indukované metabolismus MeSH
- buňky zadních rohů míšních chemie MeSH
- down regulace MeSH
- financování organizované MeSH
- kaolin MeSH
- karagenan MeSH
- krysa rodu rattus MeSH
- lumbosakrální krajina MeSH
- parvalbuminy analýza MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
The retrosplenial cortex (RSC) is a mesocortical region broadly involved with memory and navigation. It shares many characteristics with the perirhinal cortex (PRC), both of which appear to be significantly involved in the spreading of epileptic activity. We hypothesized that RSC possesses an interneuronal composition similar to that of PRC. To prove the hypothesis we studied the general pattern of calretinin (CR) and parvalbumin (PV) immunoreactivity in the RSC of the rat brain, its optical density as well as the morphological features and density of CR- and PV-immunoreactive (CR+ and PV+) interneurons. We also analyzed the overall neuronal density on Nissl-stained sections in RSC. Finally, we compared our results with our earlier analysis of PRC (Barinka et al., 2012). Compared to PRC, RSC was observed to have a higher intensity of PV staining and lower intensity of CR staining of neuropil. Vertically-oriented bipolar neurons were the most common morphological type among CR+ neurons. The staining pattern did not allow for a similarly detailed analysis of somatodendritic morphology of PV+ neurons. RSC possessed lower absolute (i.e., neurons/mm(3)) and relative (i.e., percentage of the overall neuronal population) densities of CR+ neurons and similar absolute and lower relative densities of PV+ neurons relative to PRC. CR: PV neuronal ratio in RSC (1:2 in area 29 and 1:2.2 in area 30) differed from PRC (1:1.2 in area 35 and 1:1.7 in area 36). In conclusion, RSC, although similar in many aspects to PRC, differs strikingly in the interneuronal composition relative to PRC.
- MeSH
- analýza rozptylu MeSH
- denzitometrie MeSH
- interneurony metabolismus MeSH
- kalbindin 2 metabolismus MeSH
- krysa rodu rattus MeSH
- mozková kůra cytologie MeSH
- parvalbuminy metabolismus MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The strength of the acoustic startle response (ASR) to short bursts of broadband noise or tone pips (4, 8 and 16 kHz) and the prepulse inhibition (PPI) of the ASR elicited by prepulse tones (4, 8 and 16 kHz) were measured in parvalbumin-deficient (PV-/-) mice and in age-matched PV+/+ mice as controls. Hearing thresholds as determined from recordings of auditory brainstem responses were found to be similar in both genotypes. The ASRs to broadband noise and tones of low and middle frequencies were stronger than the ASRs in response to high-frequency tones in both groups. In PV-/- mice, we observed smaller ASR amplitudes in response to relatively weak startling stimuli (80-90 dB sound pressure level (SPL)) of either broadband noise or 8-kHz tones compared to those recorded in PV+/+ mice. For these startling stimuli, PV-/- mice had higher ASR thresholds and longer ASR latencies. PPI of the ASR in PV-/- mice was less effective than in PV+/+ mice, for all tested prepulse frequencies (4, 8 or 16 kHz) at 70 dB SPL. Our findings demonstrate no effect of PV deficiency on hearing thresholds in PV-/- mice. However, the frequency-specific differences in the ASR and the significant reduction of PPI of ASR likely reflect specific changes of neuronal circuits, mainly inhibitory, in the auditory centers in PV-deficient mice.
- MeSH
- akustická stimulace MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- parvalbuminy genetika metabolismus MeSH
- senzorické prahy MeSH
- sluch fyziologie MeSH
- sluchové kmenové evokované potenciály MeSH
- úleková reakce * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Changes in the levels of calcium binding proteins are known to occur in different parts of the brain during aging. In our study we attempted to define the effect that aging has on the parvalbumin-expressing system of neurons in the higher parts of the central auditory system. Age-related changes in parvalbumin immunoreactivity were investigated in the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) in two rat strains, normally aging Long-Evans (LE) and fast aging Fischer 344 (F344). The results demonstrate that the changes in PV-immunoreactivity are strain-dependent with an increase in the number of PV-immunoreactive (PV-ir) neurons occurring in the inferior colliculus of old LE rats and a pronounced decline in the number of PV-ir neurons appearing in the auditory cortex of aged F344 animals. In some parts of the AC of old F344 animals no PV-ir neurons were present at all. The number of PV-ir neurons in the MGB in all examined animals was very low independent of the strain and age. The loss of PV-ir neurons in the auditory cortex of Fischer 344 rats with aging may contribute to the substantial deterioration of hearing function in this strain.
- MeSH
- colliculus inferior metabolismus MeSH
- druhová specificita MeSH
- financování organizované MeSH
- krysa rodu rattus MeSH
- metathalamus metabolismus MeSH
- neurony metabolismus MeSH
- parvalbuminy metabolismus MeSH
- potkani inbrední F344 MeSH
- potkani Long-Evans MeSH
- proteiny vázající vápník metabolismus MeSH
- sluchové korové centrum metabolismus MeSH
- stárnutí metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
The perirhinal cortex (PRC) composed of areas 35 and 36 forms an important route for activity transfer between the hippocampus-entorhinal cortex and neocortex. Its function in memory formation and consolidation as well as in the initiation and spreading of epileptic activity was already partially elucidated. We studied the general pattern of calretinin (CR), parvalbumin (PV) and calbindin (CB) immunoreactivity and its corrected relative optical density (cROD) as well as morphological features and density of CR and PV immunoreactive (CR+, PV+) interneurons in the rat PRC. Neighboring neocortical association area Te3V was analyzed as well. The PRC differed from the Te3V in higher CR and lower PV overall immunoreactivity level. On CR immunostained sections, the difference between high cROD value in area 35 and low cROD value in area Te3V reached statistical significance (p<0.05). The pattern of CB immunoreactivity was similar to that of the neocortex. Vertically oriented bipolar neurons were the most common morphological type of CR+ neurons, multipolar neuronal morphology was typical among PV+ neurons and vertically oriented bipolar neurons and multipolar neurons were approximately equally frequent among CB+ neurons. The density of CR+ and PV+ neurons was stereologically measured. While the density of PV+ neurons was not significantly different in PRC when compared to Te3V, density of CR+ neurons in area 35 was significantly higher by comparison with Te3V (p<0.05). Further, the overall neuronal density was measured on Nissl stained sections and the proportion of CR+ and PV+ interneurons was expressed as a percentage of the total neurons counts. The percentage of CR+ interneurons was higher in area 35 by comparison with area Te3 (p<0.05), while the percentage of PV+ interneurons did not significantly differ among the examined areas. In conclusion, the PRC possesses specific interneuronal equipment with unusually high proportion of CR+ interneurons, what might be of importance for the presumed gating function of PRC in normal and diseased states.
- MeSH
- interneurony chemie metabolismus MeSH
- krysa rodu rattus MeSH
- mozková kůra chemie metabolismus MeSH
- neurony chemie metabolismus MeSH
- parvalbuminy analýza metabolismus MeSH
- S100 kalcium vázající protein G analýza metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The changes in density of inhibitory parvalbumin-immunoreactive interneurons were quantitatively studied by immunohistochemistry in a series of human neocortical samples comprising the spectrum of malformations of cortical development (MCD) encountered in epilepsy surgery and the non-malformed hippocampal sclerosis-temporal neocortex in patients with refractory temporal lobe epilepsy. The highest relative density of parvalbumin-immunoreactive cells was obtained in the control samples (n = 21). The number of parvalbumin-immunoreactive neurons was significantly decreased in non-malformed hippocampal sclerosis-temporal neocortex (n = 73, 80.5% of control values). In a proportion of the latter samples as well as in two controls we observed patchy regions of absence of parvalbumin staining. The total counts of parvalbumin-immunoreactive cells in all the categories of MCD - "mild MCD" (n = 25), focal cortical dysplasia type I (n = 19) and type II (n = 15) - were decreased representing 72.4%, 55.0% and 12.2% of control values, respectively. Significantly different parvalbumin-immunoreactive cell densities were demonstrated between the focal cortical dysplasia types IIA and IIB. In "mild MCD", we observed a more pronounced decrease of parvalbumin-immunoreactive cells in the infragranular layers. No significant differences were revealed between the temporal and extratemporal examples of analogous MCD types. This study provides evidence for reduction of inhibitory parvalbumin-immunoreactive interneurons in the epileptic neocortex affected by MCD as well as in morphologically unaffected epileptic temporal neocortex, thus representing a possible mechanism for their epileptogenicity.
- MeSH
- biologické markery MeSH
- diferenciální diagnóza MeSH
- dítě MeSH
- dospělí MeSH
- epilepsie temporálního laloku metabolismus patofyziologie patologie MeSH
- epilepsie metabolismus patofyziologie patologie MeSH
- financování organizované MeSH
- glióza metabolismus patofyziologie patologie MeSH
- hipokampus abnormality metabolismus patologie MeSH
- imunohistochemie MeSH
- interneurony metabolismus patologie MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- malformace nervového systému MeSH
- mladiství MeSH
- parvalbuminy metabolismus MeSH
- počet buněk MeSH
- předškolní dítě MeSH
- spánkový lalok abnormality metabolismus patologie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
Impairments in decision-making and behavioral flexibility in patients with schizophrenia (SCZ) are currently among the most investigated aspects of SCZ. Increased GLUergic excitatory activity and decreased GABAergic inhibitory activity induce mPFC-vHPC γ/θ band desynchronization in many tasks where behavioral flexibility is tested. However, these tasks used "perceptual" decision-making/flexibility but not navigational decision-making/flexibility. Our study investigated the role of frequency-specific optogenetic stimulation of GABAergic parvalbumin-positive (PV+) interneurons in two pivotal brain structures used in flexibility (mPFC) and navigation (vHPC), at frequencies resembling the γ/θ band (50 Hz, γ-like; and 10 Hz, θ-like) in an acute MK801 mouse model of navigational inflexibility. We used a modified version of the active place avoidance task on a rotating arena. The behavioral results revealed that frequency-specific optogenetic stimulation of the mPFC or vHPC had different effects on restoring navigational flexibility. Moreover, immunohistochemical assays confirmed that optogenetic stimulations activated PV+ interneurons that were transfected with the optogenetic actuators, advancing our understanding of the pivotal role of PV+ activity in SCZ-like navigational decision-making/flexibility.
- MeSH
- dizocilpinmaleát MeSH
- interneurony metabolismus fyziologie MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- optogenetika metody MeSH
- parvalbuminy * metabolismus MeSH
- prefrontální mozková kůra * patofyziologie metabolismus MeSH
- prostorová navigace * fyziologie MeSH
- schizofrenie * patofyziologie chemicky indukované metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Schizophrenia research has increased in recent decades and focused more on its neural basis. Decision-making and cognitive flexibility are the main cognitive functions that are impaired and considered schizophrenia endophenotypes. Cognitive impairment was recently connected with altered functions of N-methyl-d-aspartate (NMDAR) glutamatergic receptors, which increased cortical activity. Selective NMDAR antagonists, such as MK-801, have been used to model cognitive inflexibility in schizophrenia. Decreased GABAergic inhibitory activity has been shown elsewhere with enhanced cortical activity. This imbalance in the excitatory/inhibitory may reduce the entrainment of prefrontal gamma and hippocampal theta rhythms and result in gamma/theta band de-synchronization. The current study established an acute MK-801 administration model of schizophrenia-like cognitive inflexibility in rats and used the attentional set-shifting task in which rats learned to switch/reverse the relevant rule. During the task, we used in vivo optogenetic stimulations of parvalbumin-positive interneurons at specific light pulses in the prefrontal cortex and ventral hippocampus. The first experiments showed that acute dizocilpine in rats produced schizophrenia-like cognitive inflexibility. The second set of experiments demonstrated that specific optogenetic stimulation at specific frequencies of parvalbumin-positive interneurons in the prefrontal cortex and ventral hippocampus rescued the cognitive flexibility rats that received acute MK-801. These findings advance our knowledge of the pivotal role of parvalbumin interneurons in schizophrenia-like cognitive impairment and may guide further research on this severe psychiatric disorder.
- MeSH
- dizocilpinmaleát * farmakologie MeSH
- hipokampus metabolismus MeSH
- interneurony metabolismus MeSH
- kognice MeSH
- krysa rodu rattus MeSH
- optogenetika MeSH
- parvalbuminy metabolismus MeSH
- prefrontální mozková kůra metabolismus MeSH
- receptory N-methyl-D-aspartátu metabolismus MeSH
- schizofrenie * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH