Epicuticular chemistry reinforces the new taxonomic classification of the Bactrocera dorsalis species complex (Diptera: Tephritidae, Dacinae)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28873446
PubMed Central
PMC5584755
DOI
10.1371/journal.pone.0184102
PII: PONE-D-17-10464
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- faktorová analýza statistická MeSH
- kožní systém fyziologie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- Tephritidae chemie klasifikace MeSH
- uhlovodíky analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlovodíky MeSH
Bactrocera invadens Drew, Tsuruta & White, Bactrocera papayae Drew & Hancock, and Bactrocera philippinensis Drew & Hancock, key pest species within the Bactrocera dorsalis species complex, have been recently synonymized under the name Bactrocera dorsalis (Hendel). The closely related Bactrocera carambolae Drew & Hancock remains as a discrete taxonomic entity. Although the synonymizations have been accepted by most researchers, debate about the species limits remains. Because of the economic importance of this group of taxa, any new information available to support or deny the synonymizations is valuable. We investigated the chemical epicuticle composition of males and females of B. dorsalis, B. invadens, B. papayae, B. philippinensis, and B. carambolae by means of one- and two-dimensional gas chromatography-mass spectrometry, followed by multiple factor analyses and principal component analysis. Clear segregation of complex cuticule profiles of both B. carambolae sexes from B. dorsalis (Hendel) was observed. In addition to cuticular hydrocarbons, abundant complex mixtures of sex-specific oxygenated lipids (three fatty acids and 22 fatty acid esters) with so far unknown function were identified in epicuticle extracts from females of all species. The data obtained supports both taxonomic synonymization of B. invadens, B. papayae, and B. philippinensis with B. dorsalis, as well as the exclusion of B. carambolae from B. dorsalis.
Zobrazit více v PubMed
Drew RAI, Hancock DL (2000) Phylogeny of the tribe
Drew RAI, Hancock DL, White IM (1994) The identity of
Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, et al. (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: The PubMed DOI
ul Haq I, Vreysen MJB, Schutze M, Hendrichs J, Shelly T (2016) Effects of methyl eugenol feeding on mating compatibility of Asian population of PubMed DOI PMC
Khamis FM, Karam N, Ekesi S, de Meyer M, Bonomi A, Gomulski LM, et al. (2009) Uncovering the tracks of a recent and rapid invasion: the case of the fruit fly pest PubMed DOI
Schutze MK, Aketarawong N, Amornsak W, Armstrong KF, Augustinos AA, Barr N, et al. (2015) Synonymization of key pest species within the
Schutze MK, Jessup A, Ul-Haq I, Vreysen MJB, Wornoayporn V, Vera MT, et al. (2013) Mating compatibility among four mest Members of the PubMed
Schutze MK, Bourtzis K, Cameron SL, Clarke AR, De Meyer M, Hee AKW, et al. (2017) Integrative taxonomy versus taxonomic authority without peer-review: the case of the Oriental fruit fly, DOI
Drew RAI, Romig MC (2016) Keys to the tropical fruit flies (Tephritidae: Dacinae) of South-East Asia: Indomalaya to North-West Australasia: CABI.
Drew RAI, Romig M (2013) Tropical fruit flies of South-East Asia (Tephritidae: Dacinae). Wallingford: CABI.
Schutze MK, Mahmood K, Pavasovic A, Bo W, Newman J, Clarke AR, et al. (2015) One and the same: integrative taxonomic evidence that
Blomquist GJ, Nelson DR, Derenobales M (1987) Chemistry, biochemistry, and physiology of insect cuticular lipids. Archives of Insect Biochemistry and Physiology 6: 227–265.
Ferveur JF (2005) Cuticular hydrocarbons: their evolution and roles in PubMed DOI
Gibbs A, Crowe JH (1991) Intraindividual variation in cuticular lipids studied using fourier-transform infrared-spectroscopy. Journal of Insect Physiology 37: 743–748.
Golebiowski M, Bogus MI, Paszkiewicz M, Stepnowski P (2011) Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Analytical and Bioanalytical Chemistry 399: 3177–3191. doi: 10.1007/s00216-010-4439-4 PubMed DOI
Lockey KH (1988) Lipids of the insect cuticle—origin, composition and function. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 89: 595–645.
Kather R, Martin SJ (2012) Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects. Physiological Entomology 37: 25–32.
Blomquist GJ, Bagneres AG (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge: Cambridge Univ Press; 1–492 p.
Stocker RF (1994) The organization of the chemosensory system in PubMed
Boll W, Noll M (2002) The PubMed
Jackson LL, Bartelt RJ (1986) Cuticular hydrocarbons of
Vanickova L, Svatos A, Kroiss J, Kaltenpoth M, Do Nascimento RR, Hoskovec M, et al. (2012) Cuticular hydrocarbons of the South American fruit fly PubMed DOI
Vanickova L, Brizova R, Mendonca AL, Pompeiano A, Do Nascimento RR (2015) Intraspecific variation of cuticular hydrocarbon profiles in the
Vanickova L, Brizova R, Pompeiano A, Ferreira LL, de Aquino NC, Tavares RD, et al. (2015) Characterisation of the chemical profiles of Brazilian and Andean morphotypes belonging to the PubMed PMC
Vanickova L, Virgilio M, Tomcala A, Brizova R, Ekesi S, Hoskovec M, et al. (2014) Resolution of three cryptic agricultural pests ( PubMed DOI
Vanickova L, Brizova R, Pompeiano A, Ekesi S, De Meyer M (2015) Cuticular hydrocarbons corroborate the distinction between lowland and highland Natal fruit fly (Tephritidae, PubMed DOI PMC
Benelli G, Daane KM, Canale A, Niu CY, Messing RH, Vargas RI (2014) Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for Integrated Pest Management. Journal of Pest Science 87: 385–405.
El-Sayed AM (2013) The pherobase:database of insect pheromonesand semiochemicals.
Goh SH, Ooi KE, Chuah CH, Yong HS, Khoo SG, Ong SH (1993) Cuticular hydrocarbons from 2 species of Malaysian
Canale A, Benelli G, Germinara GS, Fusini G, Romano D, Rapalini F, et al. (2015) Behavioural and electrophysiological responses to overlooked female pheromone components in the olive fruit fly,
Tanaka N, Steiner LF, Ohinata K, Okamoto R (1969) Low-cost larval rearing medium for mass reproduction of oriental and mediterranean fruit flies. Journal of Economic Entomology 62: 967–968.
Carlson DA, Yocom SR (1986) Cuticular hydrocarbons from 6 species of tephritid fruit-flies. Archives of Insect Biochemistry and Physiology 3: 397–412.
van den Dool H, Kratz PD (1963) A generalization of retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography 11: 463–468. PubMed
Key M (2012) A tutorial in displaying mass spectrometry-based proteomic data using heat maps. BMC Bioinformatics 13: S10. PubMed PMC
Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.
Team RC (2014) R: A language and environment for statistical computing. In: Foundation R, Computing fS, editors. Vienna: R Foundation for Statistical Computing.
Husson F, Josse J, Le S, Mazet J (2015) FactoMineR: multivariate exploratory data analysis and data mining. R package version 129.
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. (2015) gplots: various R programming tools for plotting data. R package version 2160.
Hardy DE (1969) Taxonomy and distribution of oriental fruit fly and related species (Tephritidae: Diptera). Proceedings of the Hawaiian Entomological Society 20: 395–400.
Drew RAI, Tsuruta K, White IM (2005) A new species of pest fruit fly (Diptera: Tephritidae: Dacinae) from Sri Lanka and Africa. African Entomology 13: 149–154.
Drew RAI, Hancock DL (1994) The
Drew RAI, Raghu S, Halcoop P (2008) Bridging the morphological and biological species concepts: studies on the
Hee AKW, Wee SL, Nishida R, Ono H, Hendrichs J, Haymer DS, et al. (2015) Historical perspective on the synonymization of the four major pest species belonging to the PubMed DOI PMC
Gemeno C, Laserna N, Riba M, Valls J, Castane C, Alomar O (2012) Cuticular hydrocarbons discriminate cryptic PubMed DOI
Calderon-Fernandez GM, Girotti JR, Juarez MP (2011) Cuticular hydrocarbons of PubMed
dos Santos AB, do Nascimento FS (2015) Cuticular hydrocarbons of orchid bees males: interspecific and chemotaxonomy variation. Plos One 10. PubMed PMC
Espelie KE, Berisford CW, Dahlsten DL (1996) Use of cuticular hydrocarbons in bark beetle parasitoid taxonomy: a study of
Seifert B (2009) Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. Myrmecological News 12: 149–166.
Haverty MI, Nelson LJ (1997) Cuticular hydrocarbons of PubMed
Haverty MI, Woodrow RJ, Nelson LJ, Grace JK (2000) Cuticular hydrocarbons of termites of the Hawaiian Islands. Journal of Chemical Ecology 26: 1167–1191.
Broza M, Nation JL, Milne K, Harrison J (2000) Cuticular hydrocarbons as a tool supporting recognition of
Carlson DA, Service MW (1979) Differentiation between species of the Anopheles gambiae Giles complex (Diptera, Culicidae) by analysis of cuticular hydrocarbons. Annals of Tropical Medicine and Parasitology 73: 589–592. PubMed
Caputo B, Dani FR, Horne GL, Petrarca V, Turillazzi S, Coluzzi M, et al. (2005) Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector PubMed DOI
Bonduriansky R, Mallet MA, Arbuthnott D, Pawlowsky-Glahn V, Egozcue JJ, Rundle HD (2015) Differential effects of genetic vs. environmental quality in PubMed DOI
Pavkovic-Lucic S, Todosijevic M, Savic T, Vajs V, Trajkovic J, Andelkovic B, et al. (2016) "Does my diet affect my perfume?' Identification and quantification of cuticular compounds in five PubMed
Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, et al. (2014) Environmental heterogeneity, multivariate sexual selection and genetic constraints on cuticular hydrocarbons in PubMed
Gleason JM, James RA, Wicker-Thomas C, Ritchie MG (2009) Identification of quantitative trait loci function through analysis of multiple cuticular hydrocarbons differing between PubMed DOI
Chin JSR, Ellis SR, Pham HT, Blanksby SJ, Mori K, Koh QL, et al. (2014) Sex-specific triacylglycerides are widely conserved in PubMed PMC
Baker R, Bacon AJ (1985) The identification of spiroacetals in the volatile secretions of two species of fruit fly (
Lockey KH (1988) Lipids of the insect cuticle: origin, composition and function. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 89: 595–645.
Diaz-Fleischer F, Papaj DR, Prokopy RJ, Norrbom AL, Aluja M (2000) Evolution of fruit fly oviposition behavior; Aluja M, Norrbom AL, editors. Boca Raton: Crc Press-Taylor & Francis Group; 811–841 p.
Benelli G (2014) Aggressive behavior and territoriality in the olive fruit fly,
Benelli G (2015) Aggression in Tephritidae flies: where, when, why? Future directions for research in integrated pest management. Insects 6: 38–53. PubMed PMC
Golebiowski M, Malinski E, Bogus MI, Kumirska J, Stepnowski P (2008) The cuticular fatty acids of PubMed DOI
Golebiowski M, Cerkowniak M, Bogus MI, Wloka E, Dawgul M, Kamysz W, et al. (2013) Free fatty acids in the cuticular and internal lipids of PubMed DOI
Gutierrez AC, Golebiowski M, Pennisi M, Peterson G, Garcia JJ, Manfrino RG, et al. (2015) Cuticle fatty acid composition and differential susceptibility of three species of cockroaches to the entomopathogenic fungi PubMed DOI
Hensel R, Neinhuis C, Werner C (2016) The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews 45: 323–341. doi: 10.1039/c5cs00438a PubMed DOI