Epicuticular chemistry reinforces the new taxonomic classification of the Bactrocera dorsalis species complex (Diptera: Tephritidae, Dacinae)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28873446
PubMed Central
PMC5584755
DOI
10.1371/journal.pone.0184102
PII: PONE-D-17-10464
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- faktorová analýza statistická MeSH
- kožní systém fyziologie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- Tephritidae chemie klasifikace MeSH
- uhlovodíky analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlovodíky MeSH
Bactrocera invadens Drew, Tsuruta & White, Bactrocera papayae Drew & Hancock, and Bactrocera philippinensis Drew & Hancock, key pest species within the Bactrocera dorsalis species complex, have been recently synonymized under the name Bactrocera dorsalis (Hendel). The closely related Bactrocera carambolae Drew & Hancock remains as a discrete taxonomic entity. Although the synonymizations have been accepted by most researchers, debate about the species limits remains. Because of the economic importance of this group of taxa, any new information available to support or deny the synonymizations is valuable. We investigated the chemical epicuticle composition of males and females of B. dorsalis, B. invadens, B. papayae, B. philippinensis, and B. carambolae by means of one- and two-dimensional gas chromatography-mass spectrometry, followed by multiple factor analyses and principal component analysis. Clear segregation of complex cuticule profiles of both B. carambolae sexes from B. dorsalis (Hendel) was observed. In addition to cuticular hydrocarbons, abundant complex mixtures of sex-specific oxygenated lipids (three fatty acids and 22 fatty acid esters) with so far unknown function were identified in epicuticle extracts from females of all species. The data obtained supports both taxonomic synonymization of B. invadens, B. papayae, and B. philippinensis with B. dorsalis, as well as the exclusion of B. carambolae from B. dorsalis.
Zobrazit více v PubMed
Drew RAI, Hancock DL (2000) Phylogeny of the tribe Dacini (Dacinae) based on morphological, distributional, and biological data; Aluja M, Norrbom AL, editors. 491–504 p.
Drew RAI, Hancock DL, White IM (1994) The identity of Dacus limbipennis Macquart (Diptera, Tephritidae). Journal of the Australian Entomological Society 33: 376–376.
Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, et al. (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: The Bactrocera dorsalis complex of fruit flies. Annual Review of Entomology 50: 293–319. doi: 10.1146/annurev.ento.50.071803.130428 PubMed DOI
ul Haq I, Vreysen MJB, Schutze M, Hendrichs J, Shelly T (2016) Effects of methyl eugenol feeding on mating compatibility of Asian population of Bactrocera dorsalis (Diptera: Tephritidae) with African population and with B. carambolae. Journal of Economic Entomology 109: 148–153. doi: 10.1093/jee/tov274 PubMed DOI PMC
Khamis FM, Karam N, Ekesi S, de Meyer M, Bonomi A, Gomulski LM, et al. (2009) Uncovering the tracks of a recent and rapid invasion: the case of the fruit fly pest Bactrocera invadens (Diptera: Tephritidae) in Africa. Molecular Ecology 18: 4798–4810. doi: 10.1111/j.1365-294X.2009.04391.x PubMed DOI
Schutze MK, Aketarawong N, Amornsak W, Armstrong KF, Augustinos AA, Barr N, et al. (2015) Synonymization of key pest species within the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic changes based on a review of 20 years of integrative morphological, molecular, cytogenetic, behavioural and chemoecological data. Systematic Entomology 40: 456–471.
Schutze MK, Jessup A, Ul-Haq I, Vreysen MJB, Wornoayporn V, Vera MT, et al. (2013) Mating compatibility among four mest Members of the Bactrocera dorsalis fruit fly species complex (Diptera: Tephritidae). Journal of Economic Entomology 106: 695–707. PubMed
Schutze MK, Bourtzis K, Cameron SL, Clarke AR, De Meyer M, Hee AKW, et al. (2017) Integrative taxonomy versus taxonomic authority without peer-review: the case of the Oriental fruit fly, Bactrocera dorsalis (Tephritidae). Systematic Entomology in press. doi: 10.1111/syen.12250 DOI
Drew RAI, Romig MC (2016) Keys to the tropical fruit flies (Tephritidae: Dacinae) of South-East Asia: Indomalaya to North-West Australasia: CABI.
Drew RAI, Romig M (2013) Tropical fruit flies of South-East Asia (Tephritidae: Dacinae). Wallingford: CABI.
Schutze MK, Mahmood K, Pavasovic A, Bo W, Newman J, Clarke AR, et al. (2015) One and the same: integrative taxonomic evidence that Bactrocera invadens (Diptera: Tephritidae) is the same species as the Oriental fruit fly Bactrocera dorsalis. Systematic Entomology 40: 472–486.
Blomquist GJ, Nelson DR, Derenobales M (1987) Chemistry, biochemistry, and physiology of insect cuticular lipids. Archives of Insect Biochemistry and Physiology 6: 227–265.
Ferveur JF (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behavior Genetics 35: 279–295. doi: 10.1007/s10519-005-3220-5 PubMed DOI
Gibbs A, Crowe JH (1991) Intraindividual variation in cuticular lipids studied using fourier-transform infrared-spectroscopy. Journal of Insect Physiology 37: 743–748.
Golebiowski M, Bogus MI, Paszkiewicz M, Stepnowski P (2011) Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Analytical and Bioanalytical Chemistry 399: 3177–3191. doi: 10.1007/s00216-010-4439-4 PubMed DOI
Lockey KH (1988) Lipids of the insect cuticle—origin, composition and function. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 89: 595–645.
Kather R, Martin SJ (2012) Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects. Physiological Entomology 37: 25–32.
Blomquist GJ, Bagneres AG (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge: Cambridge Univ Press; 1–492 p.
Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster—a review. Cell and Tissue Research 275: 3–26. PubMed
Boll W, Noll M (2002) The Drosophila Pox neuro gene: control of male courtship behavior and fertility as revealed by a complete dissection of all enhancers. Development 129: 5667–5681. PubMed
Jackson LL, Bartelt RJ (1986) Cuticular hydrocarbons of Drosophila virilis—comparison by age and sex. Insect Biochemistry 16: 433–439.
Vanickova L, Svatos A, Kroiss J, Kaltenpoth M, Do Nascimento RR, Hoskovec M, et al. (2012) Cuticular hydrocarbons of the South American fruit fly Anastrepha fraterculus: variability with sex and age. Journal of Chemical Ecology 38: 1133–1142. doi: 10.1007/s10886-012-0177-8 PubMed DOI
Vanickova L, Brizova R, Mendonca AL, Pompeiano A, Do Nascimento RR (2015) Intraspecific variation of cuticular hydrocarbon profiles in the Anastrepha fraterculus (Diptera: Tephritidae) species complex. Journal of Applied Entomology 139: 679–689.
Vanickova L, Brizova R, Pompeiano A, Ferreira LL, de Aquino NC, Tavares RD, et al. (2015) Characterisation of the chemical profiles of Brazilian and Andean morphotypes belonging to the Anastrepha fraterculus complex (Diptera, Tephritidae). Zookeys: 193–209. PubMed PMC
Vanickova L, Virgilio M, Tomcala A, Brizova R, Ekesi S, Hoskovec M, et al. (2014) Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling. Bulletin of Entomological Research 104: 631–638. doi: 10.1017/S0007485314000406 PubMed DOI
Vanickova L, Brizova R, Pompeiano A, Ekesi S, De Meyer M (2015) Cuticular hydrocarbons corroborate the distinction between lowland and highland Natal fruit fly (Tephritidae, Ceratitis rosa) populations. Zookeys: 507–524. doi: 10.3897/zookeys.540.9619 PubMed DOI PMC
Benelli G, Daane KM, Canale A, Niu CY, Messing RH, Vargas RI (2014) Sexual communication and related behaviours in Tephritidae: current knowledge and potential applications for Integrated Pest Management. Journal of Pest Science 87: 385–405.
El-Sayed AM (2013) The pherobase:database of insect pheromonesand semiochemicals.
Goh SH, Ooi KE, Chuah CH, Yong HS, Khoo SG, Ong SH (1993) Cuticular hydrocarbons from 2 species of Malaysian Bactrocera fruit-flies. Biochemical Systematics and Ecology 21: 215–226.
Canale A, Benelli G, Germinara GS, Fusini G, Romano D, Rapalini F, et al. (2015) Behavioural and electrophysiological responses to overlooked female pheromone components in the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Chemoecology 25: 147–157.
Tanaka N, Steiner LF, Ohinata K, Okamoto R (1969) Low-cost larval rearing medium for mass reproduction of oriental and mediterranean fruit flies. Journal of Economic Entomology 62: 967–968.
Carlson DA, Yocom SR (1986) Cuticular hydrocarbons from 6 species of tephritid fruit-flies. Archives of Insect Biochemistry and Physiology 3: 397–412.
van den Dool H, Kratz PD (1963) A generalization of retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography 11: 463–468. PubMed
Key M (2012) A tutorial in displaying mass spectrometry-based proteomic data using heat maps. BMC Bioinformatics 13: S10. PubMed PMC
Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.
Team RC (2014) R: A language and environment for statistical computing. In: Foundation R, Computing fS, editors. Vienna: R Foundation for Statistical Computing.
Husson F, Josse J, Le S, Mazet J (2015) FactoMineR: multivariate exploratory data analysis and data mining. R package version 129.
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. (2015) gplots: various R programming tools for plotting data. R package version 2160.
Hardy DE (1969) Taxonomy and distribution of oriental fruit fly and related species (Tephritidae: Diptera). Proceedings of the Hawaiian Entomological Society 20: 395–400.
Drew RAI, Tsuruta K, White IM (2005) A new species of pest fruit fly (Diptera: Tephritidae: Dacinae) from Sri Lanka and Africa. African Entomology 13: 149–154.
Drew RAI, Hancock DL (1994) The Bactrocera dorsalis complex of fruit-flies (Diptera, Tephritidae, Dacinae) in Asia. Bulletin of Entomological Research: 1–68.
Drew RAI, Raghu S, Halcoop P (2008) Bridging the morphological and biological species concepts: studies on the Bactrocera dorsalis (Hendel) complex (Diptera: Tephritidae: Dacinae) in South-east Asia. Biological Journal of the Linnean Society 93: 217–226.
Hee AKW, Wee SL, Nishida R, Ono H, Hendrichs J, Haymer DS, et al. (2015) Historical perspective on the synonymization of the four major pest species belonging to the Bactrocera dorsalis species complex (Diptera, Tephritidae). Zookeys: 323–338. doi: 10.3897/zookeys.540.6028 PubMed DOI PMC
Gemeno C, Laserna N, Riba M, Valls J, Castane C, Alomar O (2012) Cuticular hydrocarbons discriminate cryptic Macrolophus species (Hemiptera: Miridae). Bulletin of Entomological Research 102: 624–631. doi: 10.1017/S0007485312000193 PubMed DOI
Calderon-Fernandez GM, Girotti JR, Juarez MP (2011) Cuticular hydrocarbons of Triatoma dimidiata (Hemiptera: Reduviidae): intraspecific variation and chemotaxonomy. Journal of Medical Entomology 48: 262–271. PubMed
dos Santos AB, do Nascimento FS (2015) Cuticular hydrocarbons of orchid bees males: interspecific and chemotaxonomy variation. Plos One 10. PubMed PMC
Espelie KE, Berisford CW, Dahlsten DL (1996) Use of cuticular hydrocarbons in bark beetle parasitoid taxonomy: a study of Roptrocerus xylophagorum (Ratzeburg) (Hymenoptera:Torymidae) from the United States, Europe and Australia. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 113: 193–198.
Seifert B (2009) Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. Myrmecological News 12: 149–166.
Haverty MI, Nelson LJ (1997) Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) from northern California indicate undescribed species. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 118: 869–880. PubMed
Haverty MI, Woodrow RJ, Nelson LJ, Grace JK (2000) Cuticular hydrocarbons of termites of the Hawaiian Islands. Journal of Chemical Ecology 26: 1167–1191.
Broza M, Nation JL, Milne K, Harrison J (2000) Cuticular hydrocarbons as a tool supporting recognition of Gryllotalpa tali and G. marismortui (Orthoptera: Gryllotalpidae) as distinct species in Israel. Annals of the Entomological Society of America 93: 1022–1030.
Carlson DA, Service MW (1979) Differentiation between species of the Anopheles gambiae Giles complex (Diptera, Culicidae) by analysis of cuticular hydrocarbons. Annals of Tropical Medicine and Parasitology 73: 589–592. PubMed
Caputo B, Dani FR, Horne GL, Petrarca V, Turillazzi S, Coluzzi M, et al. (2005) Identification and composition of cuticular hydrocarbons of the major Afrotropical malaria vector Anopheles gambiae s.s. (Diptera: Culicidae): analysis of sexual dimorphism and age-related changes. Journal of Mass Spectrometry 40: 1595–1604. doi: 10.1002/jms.961 PubMed DOI
Bonduriansky R, Mallet MA, Arbuthnott D, Pawlowsky-Glahn V, Egozcue JJ, Rundle HD (2015) Differential effects of genetic vs. environmental quality in Drosophila melanogaster suggest multiple forms of condition dependence. Ecology Letters 18: 317–326. doi: 10.1111/ele.12412 PubMed DOI
Pavkovic-Lucic S, Todosijevic M, Savic T, Vajs V, Trajkovic J, Andelkovic B, et al. (2016) "Does my diet affect my perfume?' Identification and quantification of cuticular compounds in five Drosophila melanogaster strains maintained over 300 generations on different diets. Chemistry & Biodiversity 13: 224–232. PubMed
Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, et al. (2014) Environmental heterogeneity, multivariate sexual selection and genetic constraints on cuticular hydrocarbons in Drosophila simulans. Journal of Evolutionary Biology 27: 700–713. PubMed
Gleason JM, James RA, Wicker-Thomas C, Ritchie MG (2009) Identification of quantitative trait loci function through analysis of multiple cuticular hydrocarbons differing between Drosophila simulans and Drosophila sechellia females. Heredity 103: 416–424. doi: 10.1038/hdy.2009.79 PubMed DOI
Chin JSR, Ellis SR, Pham HT, Blanksby SJ, Mori K, Koh QL, et al. (2014) Sex-specific triacylglycerides are widely conserved in Drosophila and mediate mating behavior. Elife 3. PubMed PMC
Baker R, Bacon AJ (1985) The identification of spiroacetals in the volatile secretions of two species of fruit fly (Dacus dorsalis, Dacus cucurbitae). Experientia 41: 1484–1485.
Lockey KH (1988) Lipids of the insect cuticle: origin, composition and function. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 89: 595–645.
Diaz-Fleischer F, Papaj DR, Prokopy RJ, Norrbom AL, Aluja M (2000) Evolution of fruit fly oviposition behavior; Aluja M, Norrbom AL, editors. Boca Raton: Crc Press-Taylor & Francis Group; 811–841 p.
Benelli G (2014) Aggressive behavior and territoriality in the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae): role of residence and time of day. Journal of Insect Behavior 27: 145–161.
Benelli G (2015) Aggression in Tephritidae flies: where, when, why? Future directions for research in integrated pest management. Insects 6: 38–53. PubMed PMC
Golebiowski M, Malinski E, Bogus MI, Kumirska J, Stepnowski P (2008) The cuticular fatty acids of Calliphora vicina, Dendrolimus pini and Galleria mellonella larvae and their role in resistance to fungal infection. Insect Biochemistry and Molecular Biology 38: 619–627. doi: 10.1016/j.ibmb.2008.03.005 PubMed DOI
Golebiowski M, Cerkowniak M, Bogus MI, Wloka E, Dawgul M, Kamysz W, et al. (2013) Free fatty acids in the cuticular and internal lipids of Calliphora vomitoria and their antimicrobial activity. Journal of Insect Physiology 59: 416–429. doi: 10.1016/j.jinsphys.2013.02.001 PubMed DOI
Gutierrez AC, Golebiowski M, Pennisi M, Peterson G, Garcia JJ, Manfrino RG, et al. (2015) Cuticle fatty acid composition and differential susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Ascomycota, Hypocreales). Journal of Economic Entomology 108: 752–760. doi: 10.1093/jee/tou096 PubMed DOI
Hensel R, Neinhuis C, Werner C (2016) The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews 45: 323–341. doi: 10.1039/c5cs00438a PubMed DOI