• This record comes from PubMed

Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives

. 2021 Apr 30 ; 12 (5) : . [epub] 20210430

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

The Dipteran family Tephritidae (true fruit flies) comprises more than 5000 species classified in 500 genera distributed worldwide. Tephritidae include devastating agricultural pests and highly invasive species whose spread is currently facilitated by globalization, international trade and human mobility. The ability to identify and exploit a wide range of host plants for oviposition, as well as effective and diversified reproductive strategies, are among the key features supporting tephritid biological success. Intraspecific communication involves the exchange of a complex set of sensory cues that are species- and sex-specific. Chemical signals, which are standing out in tephritid communication, comprise long-distance pheromones emitted by one or both sexes, cuticular hydrocarbons with limited volatility deposited on the surrounding substrate or on the insect body regulating medium- to short-distance communication, and host-marking compounds deposited on the fruit after oviposition. In this review, the current knowledge on tephritid chemical communication was analysed with a special emphasis on fruit fly pest species belonging to the Anastrepha, Bactrocera, Ceratitis, and Rhagoletis genera. The multidisciplinary approaches adopted for characterising tephritid semiochemicals, and the real-world applications and challenges for Integrated Pest Management (IPM) and biological control strategies are critically discussed. Future perspectives for targeted research on fruit fly chemical communication are highlighted.

See more in PubMed

Brezolin A.N., Martinazzo J., Muenchen D.K., de Cezaro A.M., Rigo A.A., Steffens C., Steffens J., Blassioli-Moraes M.C., Borges M. Tools for detecting insect semiochemicals: A review. Anal. Bioanal. Chem. 2018;410:4091–4108. doi: 10.1007/s00216-018-1118-3. PubMed DOI

Tinsworth E.F. Regulation of pheromones and other semiochemicals in the United States. In: Ridgway R.L., Silverstein R.M., Inscoe M.N., editors. Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. Marcel Dekker Inc.; New York, NY, USA: 1990. pp. 569–603.

Rodriguez L.C., Niemeyer H.M. Integrated pest management, semiochemicals and microbial pest-control agents in Latin American agriculture. Crop Prot. 2005;24:615–623. doi: 10.1016/j.cropro.2004.11.006. DOI

McNeil J.N., Millar J.G., Chapman R.F. Chemical communication: Pheromones and allelochemicals. In: Simpson S.J., Douglas A.E., editors. The Insects: Structure and Function. Cambridge University Press; Cambridge, UK: 2012. pp. 857–900.

Abd El-Ghany N.M. Semiochemicals for controlling insect pests. J. Plant Prot. Res. 2019;59:1–11. doi: 10.24425/jppr.2019.126036. DOI

Ruther J., Meiners T., Steidle J.L.M. Rich in phenomena-lacking in terms. A classification of kairomones. Chemoecology. 2002;12:161–167. doi: 10.1007/PL00012664. DOI

Schulz S. The Chemistry of Pheromones and Other Semiochemicals I. Springer; Berlin/Heidelberg, Germany: 2004.

Hansson B.S., Stensmyr M.C. Evolution of insect olfaction. Neuron. 2011;72:698–711. doi: 10.1016/j.neuron.2011.11.003. PubMed DOI

Joseph R.M., Carlson J.R. Drosophila chemoreceptors: A molecular interface between the chemical world and the brain. Trends Genet. 2015;31:683–695. doi: 10.1016/j.tig.2015.09.005. PubMed DOI PMC

Tumlinson J.H., Teal P.E.A. Relationship of structure and function to biochemistry in insect pheromone systems. In: Prestwich G.D., Blomquist G.J., editors. Pheromone Biochemistry. Academic Press; New York, NY, USA: 1987. pp. 3–26.

Gut L.J., Stelinski L.L., Thomson D.R., Miller J.R. Behaviour-modifying chemicals: Prospects and constraints in IPM. In: Koul O., Dhaliwal G.S., Cuperus G.W., editors. Integrated Pest Management: Potential, Constraints, and Challenges. CABI Publishing; Cambridge, MA, USA: 2004. pp. 73–120.

Wyatt T.D. Pheromones and Animal Behavior. Cambridge University Press; Cambridge, UK: 2014.

Karlson P., Luscher M. “Pheromones”: A new term for a class of biologically active substances. Nature. 1959;183:55–56. doi: 10.1038/183055a0. PubMed DOI

Butenandt V.A., Beckmann R., Stamm D., Hecker E. Über den sexual-lockstoff des seidenspinners Bombyx mori—Reindarstellung und konstitution. Z. Naturforsch. 1959;14:283–284.

Levine J.D., Millar J.G. Chemical signalling: Laser on the fly reveals a new male-specific pheromone. Curr. Biol. 2009;19:653–655. doi: 10.1016/j.cub.2009.06.051. PubMed DOI

Roelofs W.L. Chemistry of sex attraction. Proc. Natl. Acad. Sci. USA. 1995 doi: 10.1073/pnas.92.1.44. PubMed DOI PMC

Kaissling K.E., Kasang G., Bestmann H.J., Stransky W., Vostrowsky O. A new pheromone of the silkworm moth Bombyx mori. Sci. Nat. 1978;65:382–384. doi: 10.1007/BF00439702. DOI

Kaissling K.-E. Pheromone reception in insects. In: Mucignat-Caretta C., editor. Neurobiology of Chemical Communication. CRC Press/Taylor Francis; Boca Raton, FL, USA: 2014. PubMed

Lebreton S., Borrero-Echeverry F., Gonzalez F., Solum M., Wallin E.A., Hedenstrom E., Hansson B.S., Gustavsson A.L., Bengtsson M., Birgersson G., et al. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol. 2017;15:88. doi: 10.1186/s12915-017-0427-x. PubMed DOI PMC

Pankiw T. Cued in: Honey bee pheromones as information flow and collective decision-making. Apidologie. 2004;35:217–226. doi: 10.1051/apido:2004009. DOI

Yew J.Y., Chung H. Insect pheromones: An overview of function, form, and discovery. Prog. Lipid Res. 2015;59:88–105. doi: 10.1016/j.plipres.2015.06.001. PubMed DOI

Greenfield M.D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication. Oxford University Press; Oxford, UK: 2002.

Ferveur J.F. Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behav. Genet. 2005;35:279–295. doi: 10.1007/s10519-005-3220-5. PubMed DOI

Blomquist G.J., Jackson L.L. Chemistry and biochemistry of insect waxes. Prog. Lipid Res. 1979;17:319–345. doi: 10.1016/0079-6832(79)90011-9. PubMed DOI

Blomquist G.J., Bagnères A.G. Insect Hydrocarbons Biology, Biochemistry, and Chemical Ecology. Cambridge University Press; Cambridge, UK: 2010.

Vaníčková L., Canale A., Benelli G. Sexual chemoecology of mosquitoes (Diptera, Culicidae): Current knowledge and implications for vector control programs. Parasitol. Int. 2017;66:190–195. doi: 10.1016/j.parint.2016.09.010. PubMed DOI

Blomquist G.J., Howard R.W. Pheromone biosynthesis in social insects. In: Blomquist G.J., Vogt R.G., editors. Insect Pheromone Biochemistry and Molecular Biology. Elsevier; New York, NY, USA: 2003. pp. 323–340.

Howard R.W., Blomquist G.J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 2005;50:371–393. doi: 10.1146/annurev.ento.50.071803.130359. PubMed DOI

Nufio C.R., Papaj D.R. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 2001;99:273–293. doi: 10.1046/j.1570-7458.2001.00827.x. DOI

Hurter J., Boller E.F., Städler E., Blattmann B., Buser H.R., Bosshard N.U., Damm L., Kozlowski M.W., Schöni R., Raschdorf F., et al. Oviposition-deterring pheromone in Rhagoletis cerasi L.: Purification and determination of the chemical constitution. Experientia. 1987;43:157–164. doi: 10.1007/BF01942834. DOI

Aluja M., Boller E.F. Host marking pheromone of Rhagoletis cerasi: Field deployment of synthetic pheromone as a novel cherry fruit fly management strategy. Entomol. Exp. Appl. 1992;65:141–147. doi: 10.1111/j.1570-7458.1992.tb01637.x. DOI

Aluja M., Díaz-Fleischer F., Boller E.F., Hurter J., Edmunds A.J.F., Hagmann L., Patrian B., Reyes J. Application of feces extracts and synthetic analogues of the host marking pheromone of Anastrepha ludens significantly reduces fruit infestation by A. obliqua in Tropical plum and mango backyard orchards. J. Econ. Entomol. 2009;102:2268–2278. doi: 10.1603/029.102.0632. PubMed DOI

Cheseto X., Kachigamba D.L., Ekesi S., Ndung’u M., Teal P.E.A., Beck J.J., Torto B. Identification of the ubiquitous antioxidant tripeptide glutathione as a fruit fly semiochemical. J. Agric. Food Chem. 2017;65:8560–8568. doi: 10.1021/acs.jafc.7b03164. PubMed DOI

Cheseto X., Kachigamba D.L., Benderap M., Ekesi S., Ndung’u M., Beck J.J., Torto B. Identification of glutamic acid as a host marking pheromone of the African fruit fly species Ceratitis rosa (Diptera: Tephritidae) J. Agric. Food Chem. 2018;66:9933–9941. doi: 10.1021/acs.jafc.8b04481. PubMed DOI

Benelli G., Daane K.M., Canale A., Niu C.Y., Messing R.H., Vargas R.I. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for Integrated Pest Management. J. Pest Sci. 2014;87:385–405. doi: 10.1007/s10340-014-0577-3. DOI

Roitberg B.D., Prokopy R.J. Insects that mark host plants. Bioscience. 1987;37:400–406. doi: 10.2307/1310563. DOI

Hoffmeister T.S., Roitberg B.D. Counterespionage in an insect herbivore-parasitoid system. Naturwissenschaften. 1997;84:117–119. doi: 10.1007/s001140050358. DOI

White I.M., Elson-Harris M.M. Fruit Flies of Economic Significance: Their Identification and Bionomics. CAB International; Wallingford, UK: 1992.

Doorenweerd C., Leblanc L., Norrbom A.L., Jose M.S., Rubinoff D. A global checklist of the 932 fruit fly species in the tribe Dacini (Diptera, Tephritidae) Zookeys. 2018;730:19–56. doi: 10.3897/zookeys.730.21786. PubMed DOI PMC

Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., van Nieukerken E., et al. Species 2000 ITIS Catalogue of Life, 2019 Annual Checklist 2019. Naturalis; Leiden, The Netherlands: 2019.

Malavasi A. Introductory remarks. In: Shelly T.E., Epsky N., Jang E.B., Reyes-Flores J., Vargas R.I., editors. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. Springer; Dordrecht, The Netherlands: 2014.

Clarke A.R. Biology and Management of Bactrocera and Related Fruit Flies. CABI; Wallingford, UK: 2019.

Nugnes F., Russo E., Viggiani G., Bernardo U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects. 2018;9:182. doi: 10.3390/insects9040182. PubMed DOI PMC

Malacrida A.R., Gomulski L.M., Bonizzoni M., Bertin S., Gasperi G., Guglielmino C.R. Globalization and fruitfly invasion and expansion: The medfly paradigm. Genetica. 2007;131:1–9. doi: 10.1007/s10709-006-9117-2. PubMed DOI

Papadopoulos N.T. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. Springer; Dordrecht, The Netherlands: 2014. Fruit Fly Invasion: Historical, Biological, Economic Aspects and Management; pp. 219–252.

Vreysen M.J.B., Robinson A.S., Hendrichs J. Area-Wide Control of Insect Pests from Research to Field Implementation. Springer; Dordrecht, The Netherlands: 2007.

Sivinski J., Aluja M., Dodson G.N., Freidberg A., Headrick D.H., Kaneshiro K.Y., Landolt P.J. Topics in the evolution of fruit fly mating behavior. In: Aluja M., Norrbom A., editors. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. CRC Press; Boca Raton, FL, USA: 2000. pp. 751–792.

Feron M. L’instinct de reproduction chez la mouche méditerranéenne des fruits Ceratitis capitata Wied. (Dipt. Trypetidae). Comportement sexuel. Comportement de ponte. Rev. Pathol. Végétale d’Entomol. Agric. Fr. 1962;41:1–129.

Ekanayake W.M.T.D., Clarke A.R., Schutze M.K. Close-distance courtship of laboratory reared Bactrocera tryoni (Diptera: Tephritidae) Austral. Entomol. 2019;58:578–588. doi: 10.1111/aen.12365. DOI

Benelli G., Canale A., Bonsignori G., Ragni G., Stefanini C., Raspi A. Male wing vibration in the mating behavior of the olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae) J. Insect Behav. 2012;25:590–603. doi: 10.1007/s10905-012-9325-9. DOI

Poramarcom R. Ph.D. Thesis. University of Hawaii; Honolulu, HI, USA: 1988. Sexual communication in the Oriental fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae)

Benelli G., Giunti G., Canale A., Messing R.H. Lek dynamics and cues evoking mating behavior in tephritid flies infesting soft fruits: Implications for behavior-based control tools. Appl. Entomol. Zool. 2014;49:363–373. doi: 10.1007/s13355-014-0276-9. DOI

Bradbury J.W. The evolution of leks. In: Alexander R.D., Tinkle D.W., editors. Natural Selection and Social Behaviour. Chiron Press; New York, NY, USA: 1981. pp. 138–169.

Shelly T.E. Sexual selection on leks: A fruit fly primer. J. Insect Sci. 2018;18 doi: 10.1093/jisesa/iey048. PubMed DOI PMC

Iwahashi O., Majima T. Lek formation and male-male competition in the melon fly, Dacus cucurbitae Coquillett (Diptera, Tephritidae) Appl. Entomol. Zool. 1986;21:70–75. doi: 10.1303/aez.21.70. DOI

Mir S.H., Mir G.M. Lekking behaviour and male-male rivalry in the melon fly Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) J. Insect Behav. 2016;29:379–384. doi: 10.1007/s10905-016-9568-y. DOI

Raghu S., Clarke A.R. Spatial and temporal partitioning of behaviour by adult dacines: Direct evidence for methyl eugenol as a mate rendezvous cue for Bactrocera cacuminata. Physiol. Entomol. 2003;28:175–184. doi: 10.1046/j.1365-3032.2003.00328.x. DOI

Messina F.J., Subler J.K. Conspecific and heterospecific interactions of male Rhagoletis flies (Diptera, Tephritidae) on a shared host. J. Kansas Entomol. Soc. 1995;68:206–213.

Prokopy R.J., Bennett E.W., Bush G.L. Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae): II. Temporal organization. Can. Entomol. 1972;104:97–104. doi: 10.4039/Ent10497-1. DOI

Smith D.C., Prokopy R.J. Mating behavior of Rhagoletis mendax (Diptera: Tephritidae) flies in nature. Ann. Entomol. Soc. Am. 1982;75:388–392. doi: 10.1093/aesa/75.4.388. DOI

Buda V., Blazyte-Cereskiene L., Radziute S., Apsegaite V., Stamm P., Schulz S., Aleknavicius D., Mozuraitis R. Male-produced (-)-delta-heptalactone, pheromone of fruit fly Rhagoletis batava (Diptera: Tephritidae), a sea buckthorn berries pest. Insects. 2020;11:138. doi: 10.3390/insects11020138. PubMed DOI PMC

Nishida R., Shelly T.E., Whittier T.S., Kaneshiro K.Y. Alpha-copaene, a potential rendezvous cue for the mediterranean fruit fly, Ceratitis capitata? J. Chem. Ecol. 2000;26:87–100. doi: 10.1023/A:1005489411397. DOI

Shelly T., Dang C., Kennelly S. Exposure to orange (Citrus sinensis L.) trees, fruit, and oil enhances mating success of male Mediterranean fruit flies (Ceratitis capitata [Wiedemann]) J. Insect Behav. 2004;17:303–315. doi: 10.1023/B:JOIR.0000031532.29287.95. DOI

Warthen J.D., McInnis D.O. Isolation and identification of male medfly attractive components in Litchi chinensis stems and Ficus spp. stem exudates. J. Chem. Ecol. 1989;15:1931–1946. doi: 10.1007/BF01012277. PubMed DOI

Flath R.A., Cunningham R.T., Mon T.R., John J.O. Additional male Mediterranean fruit fly (Ceratitis capitata Wied) attractants from Angelica seed oil (Angelica archangelica L) J. Chem. Ecol. 1994;20:1969–1984. doi: 10.1007/BF02066237. PubMed DOI

Flath R.A., Cunningham R.T., Mon T.R., John J.O. Male lures for Mediterranean fruit fly (Ceratitis capitata Wied.): Structural analogs of α-copaene. J. Chem. Ecol. 1994;20:2595–2609. doi: 10.1007/BF02036194. PubMed DOI

Niogret J., Gill M.A., Espinoza H.R., Kendra P.E. Attraction and electroantennogram responses of male Mediterranean fruit fly (Diptera: Tephritidae) to six plant essential oils. J. Entomol. Zool. Stud. 2017;5:958–964.

Nishida R., Tan K.H., Serit M., Lajis N.H., Sukari A.M., Takahashi S., Fukami H. Accumulation of phenylpropanoids in the rectal glands of males of the Oriental fruit fly, Dacus dorsalis. Experientia. 1988;44:534–536. doi: 10.1007/BF01958941. DOI

Tan K.H., Nishida R. Sex pheromone and mating competition after methyl eugenol consumption in Bactrocera dorsalis complex. In: McPheron B.A., Steck G.J., editors. Fruit Fly Pests—A World Assessment of Their Biology and Management. St. Lucie Press; Delray Beach, FL, USA: 1996. pp. 147–153.

Hee A.K.W., Tan K.H. Attraction of female and male Bactrocera papayae to conspecific males fed with methyl eugenol and attraction of females to male sex pheromone components. J. Chem. Ecol. 1998;24:753–764. doi: 10.1023/A:1022302605357. DOI

Khoo C.C.-H., Tan K.-H. Attraction of both sexes of melon fly, Bactrocera cucurbitae to conspecific males—A comparison after pharmacophagy of cue-lure and a new attractant—zingerone. Entomol. Exp. Appl. 2000;97:317–320. doi: 10.1046/j.1570-7458.2000.00745.x. DOI

Wee S.L., Tan K.H. Female sexual response to male rectal volatile constituents in the fruit fly, Bactrocera carambolae (Diptera: Tephritidae) Appl. Entomol. Zool. 2005;40:365–372. doi: 10.1303/aez.2005.365. DOI

Wee S.L., Tan K.H., Nishida R. Pharmacophagy of methyl eugenol by males enhances sexual selection of Bactrocera carambolae (Diptera: Tephritidae) J. Chem. Ecol. 2007;33:1272–1282. doi: 10.1007/s10886-007-9295-0. PubMed DOI

Kobayashi R.M., Ohinata K., Chambers D.L., Fujimoto M.S. Sex pheromones of the Oriental fruit fly and the melon fly: Mating behavior, bioassay method, and attraction of females by live males and by suspected pheromone glands of males. Environ. Entomol. 1978;7:107–112. doi: 10.1093/ee/7.1.107. DOI

Drew R.A.I., Hooper G.H.S., Bateman M.A. Economic fruit flies of the South Pacific Region. 2nd ed. Queensland Department of Primary Industries; Brisbane, Australia: 1982.

Noushini S., Perez J., Park S.J., Holgate D., Jamie I., Jamie J., Taylor P. Rectal gland chemistry, volatile emissions, and antennal responses of male and female banana fruit fly, Bactrocera musae. Insects. 2020;11:32. doi: 10.3390/insects11010032. PubMed DOI PMC

Haniotakis G.E. Sexual attraction in the olive fruit fly Dacus oleae (Gmelin) Environ. Entomol. 1974;3:82–86. doi: 10.1093/ee/3.1.82. DOI

Haniotakis G.E. Male olive fly attraction to virgin females in the field. Ann. Zool. Ecol. Anim. 1977;9:273–276.

Baker R., Herbert R., Howse P.E., Jones O.T., Francke W., Reith W. Identification and synthesis of the major sex pheromone of the olive fly (Dacus oleae) J. Chem. Soc. Chem. Commun. 1980;1:52. doi: 10.1039/c39800000052. DOI

Carpita A., Canale A., Raffaelli A., Saba A., Benelli G., Raspi A. (Z)-9-tricosene identified in rectal gland extracts of Bactrocera oleae males: First evidence of a male-produced female attractant in olive fruit fly. Naturwissenschaften. 2012;99:77–81. doi: 10.1007/s00114-011-0868-y. PubMed DOI

De Marzo L., Nuzzaci L., Solinas M. Studio anatomico, istologico, ultrastrutturale e fisiologico del retto ed osservazioni etologiche in relazione alla possibile produzione di feromoni sessuali nel maschio di Dacus oleae (Gmelin) Entomologica. 1978;XIV:203–266.

Mavraganis V.G., Papadopoulos N.T., Kouloussis N.A. Extract of olive fruit fly males (Diptera: Tephritidae) attract virgin females. Entomol. Hell. 2017;19:14. doi: 10.12681/eh.11590. DOI

Levi-Zada A., Nestel D., Fefer D., Nemni-Lavy E., Deloya-Kahane I., David M. Analyzing diurnal and age-related pheromone emission of the olive fruit fly, Bactrocera oleae by sequential SPME-GCMS analysis. J. Chem. Ecol. 2012;38:1036–1041. doi: 10.1007/s10886-012-0167-x. PubMed DOI

Benelli G. Aggressive behavior and territoriality in the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae): Role of residence and time of day. J. Insect Behav. 2014;27:145–161. doi: 10.1007/s10905-013-9411-7. DOI

Canale A., Benelli G., Germinara G.S., Fusini G., Romano D., Rapalini F., Desneux N., Rotundo G., Raspi A., Carpita A. Behavioural and electrophysiological responses to overlooked female pheromone components in the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae) Chemoecology. 2015;25:147–157. doi: 10.1007/s00049-014-0183-0. DOI

Eberhard W.G. Sexual behavior and sexual selection in the Mediterranean fruit fly, Ceratitis capitata (Dacinae: Ceratitidini) In: Aluja M., Norrbom A.L., editors. Fruit flies (Tephritidae): Phylogeny and Evolution of Behavior. CRC Press; Boca Raton, FL, USA: 2000. pp. 459–489.

Robacker D.C., Hart W.G. Courtship and territoriality of laboratory-reared Mexican fruit-flies, Anastrepha ludens (Diptera, Tephritidae), in cages containing host and nonhost trees. Ann. Entomol. Soc. Am. 1985;78:488–494. doi: 10.1093/aesa/78.4.488. DOI

Silva M.T., Polloni Y.J., Bressan S. Mating behavior of some fruit flies of the genus Anastrepha Schiner, 1868 (Diptera: Tephritidae) in the laboratory. Rev. Bras. Entomol. 1985;29:155–164.

Tychsen P.H. Mating behavior of the Queensland fruit fly, Dacus tryoni (Diptera: Tephritidae), in field cages. J. Aust. Entomol. Soc. 1977;16:459–465. doi: 10.1111/j.1440-6055.1977.tb00139.x. DOI

Vaníčková L., Svatos A., Kroiss J., Kaltenpoth M., Do Nascimento R.R., Hoskovec M., Břízová R., Kalinova B. Cuticular hydrocarbons of the South American fruit fly Anastrepha fraterculus: Variability with sex and age. J. Chem. Ecol. 2012;38:1133–1142. doi: 10.1007/s10886-012-0177-8. PubMed DOI

Aluja M., Norrbom A. Fruit flies (Tephritidae) Phylogeny and Evolution of Behavior. CRC Press; Boca Raton, FL, USA: 2000.

Vaníčková L., Břízová R., Pompeiano A., Ekesi S., De Meyer M. Cuticular hydrocarbons corroborate the distinction between lowland and highland Natal fruit fly (Tephritidae, Ceratitis rosa) populations. Zookeys. 2015:507–524. doi: 10.3897/zookeys.540.9619. PubMed DOI PMC

Vaníčková L., Břízová R., Mendonca A.L., Pompeiano A., Do Nascimento R.R. Intraspecific variation of cuticular hydrocarbon profiles in the Anastrepha fraterculus (Diptera: Tephritidae) species complex. J. Appl. Entomol. 2015;139:679–689. doi: 10.1111/jen.12204. DOI

Lewis S.M., Vahed K., Koene J.M., Engqvist L., Bussière L.F., Perry J.C., Gwynne D., Lehmann G.U.C. Emerging issues in the evolution of animal nuptial gifts. Biol. Lett. 2014;10:20140336. doi: 10.1098/rsbl.2014.0336. PubMed DOI PMC

Vahed K. The function of nuptial feeding in insects: A review of empirical studies. Biol. Rev. 2007;73:43–78. doi: 10.1111/j.1469-185X.1997.tb00025.x. DOI

Benelli G., Romano D. Does indirect mating trophallaxis boost male mating success and female egg load in Mediterranean fruit flies? J. Pest Sci. 2018;91:181–188. doi: 10.1007/s10340-017-0854-z. DOI

Aluja M., Jácome I., Birke A., Lozada N., Quintero G. Basic patterns of behavior in wild Anastrepha striata (Diptera: Tephritidae) flies under field-cage conditions. Ann. Entomol. Soc. Am. 1993;86:776–793. doi: 10.1093/aesa/86.6.776. DOI

Perez-Staples D., Aluja M. Anastrepha striata (Diptera: Tephritidae) females that mate with virgin males live longer. Ann. Entomol. Soc. Am. 2004;97:1336–1341. doi: 10.1603/0013-8746(2004)097[1336:ASDTFT]2.0.CO;2. DOI

Guillen L., Pascacio-Villafan C., Stoffolano J.G., Lopez-Sanchez L., Velazquez O., Rosas-Saito G., Altuzar-Molina A., Ramirez M., Aluja M. Structural differences in the digestive tract between females and males could modulate regurgitation behavior in Anastrepha ludens (Diptera: Tephritidae) J. Insect Sci. 2019;19 doi: 10.1093/jisesa/iez070. PubMed DOI PMC

Sivinski J.M., Epsky N., Heath R.R. Pheromone deposition on leaf territories by male Caribbean fruit flies, Anastrepha suspensa (loew) (Diptera: Tephritidae) J. Insect Behav. 1994;7:43–51. doi: 10.1007/BF01989826. DOI

Papaj D.R., Garcia J.M., Alonso-Pimentel H. Marking of host fruit by male Rhagoletis boycei Cresson flies (Diptera: Tephritidae) and its effect on egg-laying. J. Insect Behav. 1996;9:585–598. doi: 10.1007/BF02213882. DOI

Jang E.B. Effects of mating and accessory-gland injections on olfactory-mediated behavior in the female Mediterranean fruit fly, Ceratitis capitata. J. Insect Physiol. 1995;41:705–710. doi: 10.1016/0022-1910(95)00015-M. DOI

Gomulski L.M., Dimopoulos G., Xi Z.Y., Scolari F., Gabrieli P., Siciliano P., Clarke A.R., Malacrida A.R., Gasperi G. Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, Ceratitis capitata. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0030857. PubMed DOI PMC

Zheng W.W., Luo D.Y., Wu F.Y., Wang J.L., Zhang H.Y. RNA sequencing to characterize transcriptional changes of sexual maturation and mating in the female oriental fruit fly Bactrocera dorsalis. BMC Genomics. 2016;17 doi: 10.1186/s12864-016-2532-6. PubMed DOI PMC

Kumaran N., van der Burg C.A., Qin Y.J., Cameron S.L., Clarke A.R., Prentis P.J. Plant-mediated female transcriptomic changes post-mating in a tephritid fruit fly, Bactrocera tryoni. Genome Biol. Evol. 2018;10:94–107. doi: 10.1093/gbe/evx257. PubMed DOI PMC

Campanini E.B., Congrains C., Torres F.R., de Brito R.A. Odorant-binding proteins expression patterns in recently diverged species of Anastrepha fruit flies. Sci. Rep. 2017;7:2194. doi: 10.1038/s41598-017-02371-2. PubMed DOI PMC

Devescovi F., Hurtado J., Taylor P.W. Mating-induced changes in responses of female Queensland fruit fly to male pheromones and fruit: A mechanism for mating-induced sexual inhibition. J. Insect Physiol. 2021;129:104195. doi: 10.1016/j.jinsphys.2021.104195. PubMed DOI

Averill A.L., Prokopy R.J. Intraspecific competition in the tephritid fruit fly Rhagoletis pomonella. Ecology. 1987;68:878–886. doi: 10.2307/1938359. DOI

Prokopy R.J., Roitberg B.D. Fruit fly foraging behavior. In: Robinson A.S., Hooper G., editors. Fruits Flies, Their Biology, Natural Enemies and Control. Elsevier; Amsterdam, The Netherlands: 1989. pp. 293–306.

Fletcher B.S., Prokopy R.J. Host location and oviposition in tephritid fruit flies. In: Bailey W.J., Ridsdill-Smith J., editors. Reproductive Behaviour of Insects: Individuals and Populations. Chapman Hall; London, UK: 1991. pp. 141–171.

Prokopy R.J., Ziegler J.R., Wong T.T.Y. Deterrence of repeated oviposition by fruit-marking pheromone in Ceratitis capitata (Diptera: Tephritidae) J. Chem. Ecol. 1978;4:55–63. doi: 10.1007/BF00988260. DOI

Prokopy R.J. Evidence for a marking pheromone deterring repeated oviposition in apple maggot flies. Environ. Entomol. 1972;1:326–332. doi: 10.1093/ee/1.3.326. DOI

Díaz-Fleischer F., Papaj D.R., Prokopy R.J., Norrbom A.L., Aluja M. Evolution of fruit fly oviposition behavior. In: Aluja M., Norrbom A.L., editors. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. CRC Press; Boca Raton, FL, USA: 2000. pp. 811–841.

Silva M.A., Bezerra-Silva G.C.D., Mastrangelo T. The host marking pheromone application on the management of fruit flies—A Review. Braz. Arch. Biol. Technol. 2012;55:835–842. doi: 10.1590/S1516-89132012000600005. DOI

Leal T.A.B.S., Zucoloto F.S. Selection of artificial hosts for oviposition by wild Anastrepha obliqua (Macquart) (Diptera, Tephritidae): Influence of adult food and effect of experience. Rev. Bras. Entomol. 2008;52:467–471. doi: 10.1590/S0085-56262008000300023. DOI

Crnjar R.M., Prokopy R.J. Morphological and electrophysiological mapping of tarsal chemoreptors of oviposition deterring pheromone in Rhagoletis pomonella flies. J. Insect Physiol. 1982;28:393–400. doi: 10.1016/0022-1910(82)90064-6. DOI

Zhang G.N., Hu F., Dou W., Wang J.J. Morphology and distribution of sensilla on tarsi and ovipositors of six fruit flies (Diptera: Tephritidae) Ann. Entomol. Soc. Am. 2012;105:319–327. doi: 10.1603/AN11132. DOI

Eisemann C.H., Rice M.J. Behavioural evidence for hygro- and mechanoreception by ovipositor sensilla of Dacus tryoni (Diptera: Tephritidae) Physiol. Entomol. 1989;14:273–277. doi: 10.1111/j.1365-3032.1989.tb01093.x. DOI

Liscia A., Crnjar R., Angioy A.M., Pietra P., Stoffolano J.G.J. I chemosensilli dell’ovopositore in Tabanus nigrovittatus (Macq.), Chrysops fuliginosus (Wied.), e Rhagoletis pomonella (Walsh) Boll. Soc. Ital. Biol. Sper. 1982;58:1325–1329. PubMed

Girolami V., Crnjar R., Angioy A.M., Strapazzon A., Pietra P., Stoffolano J.G.J., Prokopy R.J. Behavior and sensory physiology of Rhagoletis pomonella in relation to oviposition stimulants and deterrents in fruit. In: Cavalloro R., editor. Fruitflies of Economic Importance. Balkema Pub; Rotterdam, The Netherlands: Boston, MA, USA: 1986. pp. 183–190.

Stoffolano J.G., Yin L.R.S. Structure and function of the ovipositor and associated sensilla of the apple maggot, Rhagoletis pomonella (Walsh) (Diptera, Tephritidae) Int. J. Insect Morphol. Embryol. 1987;16:41–69. doi: 10.1016/0020-7322(87)90055-9. DOI

Norrbom A.L., Kim K.C. Revision of the schausi group of Anastrepha Schiner (Diptera: Tephritidae), with a discussion of the terminology of the female terminalia in the Tephritoidea. Ann. Entomol. Soc. Am. 1988;81:164–173. doi: 10.1093/aesa/81.2.164. DOI

Papaj D.R., Aluja M. Temporal dynamics of host-marking in the tropical tephritid fly, Anastrepha ludens. Physiol. Entomol. 1993;18:279–284. doi: 10.1111/j.1365-3032.1993.tb00600.x. DOI

Papaj D.R., Roitberg B.D., Opp S.B., Aluja M., Prokopy R.J., Wong T.T.Y. Effect of marking pheromone on clutch size in the Mediterranean fruit-fly. Physiol. Entomol. 1990;15:463–468. doi: 10.1111/j.1365-3032.1990.tb00535.x. DOI

Papaj D.R., Roitberg B.D., Opp S.B. Serial effects of host infestation on egg allocation by the Mediterranean fruit-fly—A rule of thumb and its functional-significance. J. Anim. Ecol. 1989;58:955–970. doi: 10.2307/5135. DOI

Papaj D.R., Averill A.L., Prokopy R.J., Wong T.T.Y. Host-marking pheromone and use of previously established oviposition sites by the Mediterranean fruit-fly (Diptera, Tephritidae) J. Insect Behav. 1992;5:583–598. doi: 10.1007/BF01048006. DOI

Roitberg B.D., van Lenteren J.C., van Alphen J.M.M., Galis F., Prokopy R.J. Foraging of Rhagoletis pomonella, a parasite of hawthorn (Crataegus), in nature. J. Anim. Ecol. 1982;48:307–325. doi: 10.2307/4326. DOI

Roitberg B.D., Cairl R.S., Prokopy R.J. Oviposition deterring pheromone influences dispersal distance in tephritid fruit flies. Entomol. Exp. Appl. 1984;35:217–220. doi: 10.1111/j.1570-7458.1984.tb03384.x. DOI

Nufio C.R., Papaj D.R. Host-marking behaviour as a quantitative signal of competition in the walnut fly Rhagoletis juglandis. Ecol. Entomol. 2004;29:336–344. doi: 10.1111/j.1365-2311.2004.00607.x. DOI

Averill A.L., Prokopy R.J. Oviposition-deterring fruit marking pheromone in Rhagoletis basiola. Florida Entomol. 1981;64:221–226. doi: 10.2307/3494573. DOI

Averill A.L., Prokopy R.J. Oviposition-deterring fruit marking pheromone in Rhagoletis zephyria. J. Georg. Entomol. Soc. 1982;17:315–319.

Aluja M., Diaz-Fleischer F. Foraging behavior of Anastrepha ludens, A. obliqua, and A. serpentina in response to feces extracts containing host marking pheromone. J. Chem. Ecol. 2006;32:367–389. doi: 10.1007/s10886-005-9007-6. PubMed DOI

Prokopy R.J., Papaj D.R. Behavior of flies of the genera Rhagoletis, Zonosemata, and Carpomya. In: Aluja M., Norrbom A.L., editors. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. CRC Press; Boca Raton, FL, USA: 2000. pp. 219–252.

Papaj D.R. Oviposition site guarding by male walnut flies and its possible consequences for mating success. Behav. Ecol. Sociobiol. 1994;34:187–195. doi: 10.1007/BF00167743. DOI

Cirio U., Italiana S.E. Osservazioni sul comportamento di ovideposizione della Rhagoletis completa Cresson (Diptera, Trypetidae) in laboratorio; Proceedings of the Atti del IX Congresso Nazionale Italiano di Entomologia, Tipografia Bertelly Picardi; Siena, Italy. 21–25 June 1972; pp. 99–117.

Papaj D.R. Use and avoidance of occupied hosts as a dynamic process in tephritid flies. In: Bernays E.A., editor. Insect-Plant Interactions. Volume 5. CRC Press; Boca Raton, FL, USA: 1993. pp. 25–46.

Lalonde R.G., Mangel M. Seasonal effects on superparasitism by Rhagoletis completa. J. Anim. Ecol. 1994;63:583–588. doi: 10.2307/5224. DOI

Prokopy R.J., Green T.A., Olson W.A., Vargas R.F., Kaneshia D., Wong T.Y. Discrimination by Dacus dorsalis females (Diptera: Tephritidae) against larval-infested fruit. Florida Entomol. 1989;72:319–323. doi: 10.2307/3494913. DOI

Fitt G.P. Oviposition behaviour of two tephritid fruit flies, Dacus tryoni and Dacus jarvisi, as influenced by the presence of larvae in the host fruit. Oecologia. 1984;62:37–46. doi: 10.1007/BF00377370. PubMed DOI

Prokopy R.J., Koyama J. Oviposition site partitioning in Dacus cucurbitae. Entomol. Exp. Appl. 1982;31:428–432. doi: 10.1111/j.1570-7458.1982.tb03172.x. DOI

Cirio U. Reperti sul meccanismo stimolo-risposta nell’ovideposizione del Dacus oleae (Gmelin) (Diptera: Trypetidae) Redia. 1971;52:10.

Girolami V., Vianello A., Strapazzon A., Ragazzi E., Veronese G. Ovipositional deterrents in Dacus oleae. Entomol. Exp. Appl. 1981;29:177–188. doi: 10.1111/j.1570-7458.1981.tb03057.x. DOI

Lo Scalzo R., Scarpati M.L., Verzegnassi B., Vita G. Olea europaea chemicals repellent to Dacus oleae females. J. Chem. Ecol. 1994;20:1813–1823. doi: 10.1007/BF02066224. PubMed DOI

Arita L.H., Kaneshiro K.Y. Structure and function of the rectal epithelium and anal glands during mating behavior in the Mediterranean fruit fly. Proc. Hawaiian Entomol. Soc. 1986;26:27–30.

Quilici S., Franck A., Peppuy A., Correia E.D.R., Mouniama C., Blard F. Comparative studies of courtship behavior of Ceratitis spp. (Diptera: Tephritidae) in Reunion island. Florida Entomol. 2002;85:138–142. doi: 10.1653/0015-4040(2002)085[0138:CSOCBO]2.0.CO;2. DOI

Fletcher B.S. Storage and release of a sex pheromone by the Queensland fruit fly, Dacus tryoni (Diptera: Trypetidae) Nature. 1968;219:631–632. doi: 10.1038/219631a0. PubMed DOI

Kuba H., Sokei Y. The production of pheromone clouds by spraying in the melon fly, Dacus cucurbitae Coquillett (Diptera, Tephritidae) J. Ethol. 1988;6:105–110. doi: 10.1007/BF02350875. DOI

Poramarcom R., Baimai V. Sexual behavior and signals used for mating of Bactrocera correcta. In: McPheron B.A., Steck G.J., editors. Fruit Fly Pests: A World Assessment of Their Biology and Management. St. Lucie Press; Delray Beach, FL, USA: 1996. pp. 51–58.

Nation J.L. Biology of pheromone release by male Caribbean fruit-flies, Anastrepha suspensa (Diptera, Tephritidae) J. Chem. Ecol. 1990;16:553–572. doi: 10.1007/BF01021786. PubMed DOI

Nation J.L. The role of pheromones in the mating system of Anastrepha fruit flies. In: Robinson A.S., Hooper G., editors. Fruit Flies: Their Biology, Natural Enemies and Control. Volume 16. Elsevier Science Publishers; Amsterdam, The Netherlands: 1989. pp. 189–205.

Nation J.L. Courtship behavior and evidence for a sex attractant in the male Caribbean fruit fly, Anastrepha suspensa. Ann. Entomol. Soc. Am. 1972;65:1364–1367. doi: 10.1093/aesa/65.6.1364. DOI

Yip E.C., Mikó I., Ulmer J.M., Cherim N.A., Townley M.A., Poltak S., Helms A.M., De Moraes C.M., Mescher M.C., Tooker J.F. Giant polyploid epidermal cells and male pheromone production in the tephritid fruit fly Eurosta solidaginis (Diptera: Tephritidae) J. Insect Physiol. 2021;130:104210. doi: 10.1016/j.jinsphys.2021.104210. PubMed DOI

Caetano F.H., Solferini V.N., de Britto F.B., Lins D.S., Aluani T., de Brito V.G., Zara F.J. Ultra morphology of the digestive system of Anastrepha fraterculus and Ceratitis capitata (Diptera Tephritidae) Braz. J. Morphol. Sci. 2006;23:455–462.

Barros M.D., Malavasi A. Morphology of adult male rectum of seven species of Anastrepha from Brazil and mating behavior correlations. In: McPheron B.A., Steck G.J., editors. Fruit Fly Pests—A World Assessment of Their Biology and Management. Taylor Francis Inc.; Abingdon, UK: 1996.

Lee L.W.Y., Chang T.H. Morphology of sex-pheromone gland in male oriental fruit fly and its suspected mechanism of pheromone release. In: Economopoulos A.P., editor. Proceedings of the Second International Symposium; 16–21 September; Kolymbari, Crete, Greece: Symposium Organizing Committee; 1986. pp. 16–21.

Economopoulos A.P., Gianakakis A., Tzanakakis M.E., Voyatzoglou A. Reproductive behaviour and physiology of the olive fruit fly. Anatomy of the adult rectum and odours emitted by adults. Ann. Entomol. Soc. Am. 1971;64:1112–1116. doi: 10.1093/aesa/64.5.1112. DOI

Khoo C.C.H., Tan K.H. Rectal gland of Bactrocera papayae: Ultrastructure, anatomy and sequestration of auto fluorescent compounds upon methyl eugenol consumption by the male fly. Microsc. Res. Tech. 2005;67:219–226. doi: 10.1002/jemt.20199. PubMed DOI

Arita L.H. Ph.D. Thesis. University of Hawaii; Honolulu, HI, USA: 1983. The Mating Behavior of the Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann)

Gomez Cendra P., Calcagno G., Belluscio L., Vilardi J.C. Male courtship behavior of the South American fruit fly, Anastrepha fraterculus, from an Argentinean laboratory strain. J. Insect Sci. 2011;11:1–18. doi: 10.1673/031.011.17501. PubMed DOI PMC

Nation J.L. Sex-specific glands in tephritid fruit flies of the genera Anastrepha, Ceratitis, Dacus and Rhagoletis (Diptera: Tephritidae) Int. J. Insect Morphol. Embryol. 1981;4:27–30. doi: 10.1016/S0020-7322(81)80017-7. DOI

Llosie J., Roche A. Organes odoriferants des males de Ceratitis capitata. Bull. Soc. Entomol. Fr. 1960;65:206–209.

Fletcher B.S. The structure and the function of the sex pheromone glands of the male Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 1969;15:1309–1322. doi: 10.1016/0022-1910(69)90193-0. DOI

Teles M.C. Structure and development of specific sex glands in males of some Brazilian fruit flies of the genus Anastrepha Schiner, 1868 (Diptera: Tephritidae); Proceedings of the CEC/IOBC International Symposium on Fruit Flies of Economic Importance 87; Rome, Italy. 7–10 April 1987; pp. 179–189.

Lima I.S., Howse P.E., Stevens D.R. Volatile components from the salivary glands of calling males of the south American fruit fly, Anastrepha fraterculus: Partial identification and behavioural activity. In: MacPheron B.A., Steck G.J., editors. Fruit Fly Pests. A World Assessment of Their Biology and Management. St. Lucie Press; Delray Beach, FL, USA: 1996. pp. 107–113.

Nation J.L. The structure and development of two sex specific glands in male Caribbean fruit flies. Ann. Entomol. Soc. Am. 1974;67:731–734. doi: 10.1093/aesa/67.5.731. DOI

Goncalves G.B., Silva C.E., Dos Santos J.C.G., Dos Santos E.S., Do Nascimento R.R., Da Silva E.L., Mendonca A.D.L., De Freitas M.D., Sant’Ana A.E.G. Comparison of the volatile components released by calling males of Ceratitis capitata (Diptera: Tephritidae) with those extractable from the salivary glands. Florida Entomol. 2006;89:375–379. doi: 10.1653/0015-4040(2006)89[375:COTVCR]2.0.CO;2. DOI

Heath R.R., Landolt P.J., Robacker D.C., Dueben B.D., Epsky N.D. Sexual pheromones of tephritid flies: Clues to unravel phylogeny and behavior. In: Aluja M., Norrbom A.L., editors. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. CRC Press; Boca Raton, FL, USA: 2000. pp. 793–809.

Nishida R., Tan K.H., Takahashi S., Fukami H. Volatile components of male rectal glands of the melon fly, Dacus cucurbitae Coquillett (Diptera, Tephritidae) Appl. Entomol. Zool. 1990;25:105–112. doi: 10.1303/aez.25.105. DOI

Nishida R. Ecological significance of male fruit fly attractants. In: Kawasaki K., Iwahashi O., Kaneshiro K.Y., editors. Proceedings of the International Symposium Biology Control Fruit Flies, University of Ryukyus; Ginowan, Japan. 1991. pp. 246–254.

Tan K.H., Nishida R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 2012;12:1–74. doi: 10.1673/031.012.5601. PubMed DOI PMC

Tan K.H., Nishida R., Jang E.B., Shelly T.E. Pheromones, Male Lures, and Trapping of Tephritid Fruit Flies. In: Shelly T.E., Epsky N., Jang E.B., Reyes-Flores J., Vargas R., editors. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. Volume 2. Springer; New York, NY, USA: 2014. pp. 15–74.

Shelly T.E., Dewire A.L.M. Chemically mediated mating success in male Oriental fruit-flies (Diptera, Tephritidae) Ann. Entomol. Soc. Am. 1994;87:375–382. doi: 10.1093/aesa/87.3.375. DOI

Light D.M., Jang E.B., Binder R.G., Flath R.A., Kint S. Minor and intermediate components enhance attraction of female Mediterranean fruit flies to natural male odor pheromone and its synthetic major components. J. Chem. Ecol. 1999;25:2757–2777. doi: 10.1023/A:1020855625244. DOI

Mazomenos B.E., Haniotakis G.E. A multicomponent female sex pheromone of Dacus oleae Gmelin: Isolation and bioassay. J. Chem. Ecol. 1981;7:437–444. doi: 10.1007/BF00995766. PubMed DOI

Milet-Pinheiro P., Navarro D.M.A., De Aquino N.C., Ferreira L.L., Tavares R.F., da Silva R.D.C., Lima-Mendonca A., Vanickova L., Mendonca A.L., Do Nascimento R.R. Identification of male-borne attractants in Anastrepha fraterculus (Diptera: Tephritidae) Chemoecology. 2015;25:115–122. doi: 10.1007/s00049-014-0180-3. DOI

Caceres C., Segura D.F., Vera M.T., Wornoayporn V., Cladera J.L., Teal P., Sapountzis P., Bourtzis K., Zacharopoulou A., Robinson A.S. Incipient speciation revealed in Anastrepha fraterculus (Diptera; Tephritidae) by studies on mating compatibility, sex pheromones, hybridization, and cytology. Biol. J. Linn. Soc. 2009;97:152–165. doi: 10.1111/j.1095-8312.2008.01193.x. DOI

Břízová R., Mendonca A.L., Vaníčková L., Mendonca A.L., Da Silva C.E., Tomcala A., Paranhos B.A.J., Dias V.S., Joachim-Bravo I.S., Hoskovec M., et al. Pheromone analyses of the Anastrepha fraterculus (Diptera: Tephritidae) cryptic species complex. Florida Entomol. 2013;96:1107–1115. doi: 10.1653/024.096.0351. DOI

Lima I.S., House P.E., do Nascimento R.R. Volatile substances from male Anastrepha fraterculus Wied. (Diptera: Tephritidae): Identification and behavioural activity. J. Braz. Chem. Soc. 2001;12:196–201. doi: 10.1590/S0103-50532001000200012. DOI

Juárez M.L., Devescovi F., Břízová R., Bachmann G., Segura D.F., Kalinová B., Fernández P., Ruiz M.J., Yang J., Teal P.E.A., et al. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation. Zookeys. 2015;540:125–155. doi: 10.3897/zookeys.540.6133. PubMed DOI PMC

Rocca J.R., Nation J.L., Strekowski L., Battiste M.A. Comparison of volatiles emitted by male Caribbean and Mexican fruit-flies. J. Chem. Ecol. 1992;18:223–244. doi: 10.1007/BF00993755. PubMed DOI

Robacker D.C. Behavioral responses of female Mexican fruit flies, Anastrepha ludens, to components of male-produced sex pheromone. J. Chem. Ecol. 1988;14:1715–1726. doi: 10.1007/BF01014639. PubMed DOI

Robacker D.C., Hart W.G. (Z)-3-nonenol, (Z,Z)-3,6-nonandienol and (S,S)-(-)-epianastrephin: Male produced pheromone of the Mexican fruit fly. Entomol. Exp. Appl. 1985;39:103–108. doi: 10.1111/j.1570-7458.1985.tb03549.x. DOI

Esponda-Gaxiola R.E. Bachelor’s Thesis. Monterrey Institute of Technology and Higher Studies; Monterrey, Mexico: 1977. Contribución al Estudio Quimico Del Atrayente Sexual de la Mosca Mexicana de la Fruta, Anastrepha ludens (Loew)

Stokes J.B., Uebel E.C., Warthen J.D., Jr., Jacobson M., Flippen-Anderson J.L., Gilardi R., Spishakoff L.M., Wilzer K.R. Isolation and identification of novel lactones from male Mexican fruit flies. J. Agric. Food Chem. 1983;31:1162–1167. doi: 10.1021/jf00120a007. DOI

Battiste M.A., Strekowski L., Vanderbilt D.P., Visnick M., King R.W., Nation J.L. Anastrephin and epianastrephin, novel lactone components isolated from the sex pheromone blend of male Caribbean and Mexican fruit flies. Tetrahedron Lett. 1983;24:2611–2614. doi: 10.1016/S0040-4039(00)87958-7. DOI

Bosa C.F., Cruz-López L., Zepeda-Cisneros C.S., Valle-Mora J., Guillén-Navarro K., Liedo P. Sexual behavior and male volatile compounds in wild and mass-reared strains of the Mexican fruit fly Anastrepha ludens (Loew) (Diptera: Tephritidae) held under different colony management regimes. Insect Sci. 2016;23:105–116. doi: 10.1111/1744-7917.12180. PubMed DOI

Gonçalves G.B., Silva C.E., Mendonça A.D.L., Vaníčková L., Tomčala A., Do Nascimento R.R. Pheromone communication in Anastrepha obliqua (Diptera: Tephritidae): A comparison of the volatiles and salivary gland extracts of two wild populations. Florida Entomol. 2013;96:1365–1374. doi: 10.1653/024.096.0416. DOI

Lopez-Guillen G., Lopez L.C., Malo E.A., Rojas J.C. Olfactory responses of Anastrepha obliqua (Diptera: Tephritidae) to volatiles emitted by calling males. Florida Entomol. 2011;94:874–881. doi: 10.1653/024.094.0423. DOI

Dos Silva C.S., dos Melo R.S., Tavares R.A.N., de Aquino N.C., de Tavares R.F., Vanícková L., de Mendonça A.L., Daza N.A.C., Nascimento R.R., dos Melo R.S., et al. A Diversidade de Debates na Pesquisa em Química. Atena Editora; Porto Alegre, Brazil: 2019. do Estudo comparativo do feromonio sexual de duas populacoes sul Americanas de Anastrepha obliqua.

López-Guillén G., Cruz-López L., Malo E.A., González-Hernández H., Cazares C.L., López-Collado J., Toledo J., Rojas J.C. Factors influencing the release of volatiles in Anastrepha obliqua males (Diptera: Tephritidae) Environ. Entomol. 2008;37:876–882. doi: 10.1093/ee/37.4.876. PubMed DOI

Meza-Hernandez J.S., Hernandez E., Salvador-Figueroa M., Cruz-Lopez L. Sexual compatibility, mating performance and sex pheromone release of mass-reared and wild Anastrepha obliqua (Diptera: Tephritidae) under field-cage conditions; Proceedings of the International Fruit Fly Symposium; Stellenbosch, South Africa. 6–10 May 2002; pp. 99–104.

Ibanez-Lopez A., Cruz-Lopez L. Glandulas salivales de Anastrepha obliqua (Macquart) (Diptera: Tephritidae): Analisis quimico y morfologico, y actividad biologica de los componentes volatiles. Folia Entomol. Mex. 2001;40:221–231.

Robacker D.C., Aluja M., Cosse A.A., Sacchetti P. Sex pheromone investigation of Anastrepha serpentina (Diptera: Tephritidae) Ann. Entomol. Soc. Am. 2009;102:560–566. doi: 10.1603/008.102.0329. DOI

Lima-Mendonça A., de Mendonça A.L., Sant’Ana A.E.G., Nascimento R.R. Do Semioquímicos de moscas das frutas do gênero Anastrepha. Quim. Nova. 2014;37 doi: 10.5935/0100-4042.20140050. DOI

Nation J.L. Sex pheromone components of Anastrepha suspensa and their role in mating behavior. In: Kawasaki K., Iwahashi O., Kaneshiro K.Y., editors. Proceedings of the International Symposium on the Biology and Control of Fruit Flies. University of Ryukyus; Okinawa, Ginowan, Japan: 1991. pp. 224–236.

Ponce W.P., Nation J.L., Emmel T.C., Smittle B.J., Teal P.E.A. Quantitative analysis of pheromone production in irradiated Caribbean fruit fly males, Anastrepha suspensa (Loew) J. Chem. Ecol. 1993;19:3045–3056. doi: 10.1007/BF00980601. PubMed DOI

Chuman T., Sivinski J., Heath R.R., Calkins C.O., Tumlinson J.H., Battiste M.A., Wydra R.L., Strekowski L., Nation J.L. Suspensolide, a new macrolide component of male Caribbean fruit fly (Anastrepha suspensa [Loew]) volatiles. Tetrahedron Lett. 1988;29:6561–6564. doi: 10.1016/S0040-4039(00)82397-7. DOI

Robacker D.C., Hart W.G. Electroantennograms of male and female Caribbean fruit-flies (Diptera, Tephritidae) elicited by chemicals produced by males. Ann. Entomol. Soc. Am. 1987;80:508–512. doi: 10.1093/aesa/80.4.508. DOI

Epsky N.D., Heath R.R. Food availability and pheromone production by males of Anastrepha suspensa (Diptera, Tephritidae) Environ. Entomol. 1993;22:942–947. doi: 10.1093/ee/22.5.942. DOI

Tumlinson J.H. Contemporary frontiers in insect semiochemical research. J. Chem. Ecol. 1988;14:2109–2130. doi: 10.1007/BF01014253. PubMed DOI

Heath R.R., Manukian A., Epsky N.D., Sivinski J., Calkins C.O., Landolt P.J. A bioassay system for collecting volatiles while simultaneously attracting tephritid fruit flies. J. Chem. Ecol. 1993 doi: 10.1007/BF00979673. PubMed DOI

Epsky N.D., Heath R.R. Pheromone production by male Anastrepha suspensa (Diptera: Tephritidae) under natural light cycles in greenhouse studies. Environ. Entomol. 1993;22:464–469. doi: 10.1093/ee/22.2.464. DOI

Nation J.L. Natural Products. Elsevier; Amsterdam, The Netherlands: 1983. Sex pheromone of the Caribbean fruit fly: Chemistry and field ecology; pp. 109–110.

Baker R., Bacon A. The identification of spiroacetals in the volatile secretions of two species of fruit fly (Dacus dorsalis, Dacus cucurbitae) Cell. Mol. Life Sci. 1985;41:1484–1485. doi: 10.1007/BF01950049. DOI

Ohinata K., Jacobson M., Kobayashi R.M., Chambers D.L., Fujimoto M.S., Higa H.H. Oriental fruit fly and melon fly: Biological and chemical studies of smoke produced by males. J. Environ. Sci. Health Part A. 1982;17:197–216. doi: 10.1080/10934528209375028. DOI

Nishida R., Shelly T.E., Kaneshiro K.Y., Tan K.-H. Area Wide Control Fruit Flies Other Insect Pests. CRC Press; Boca Raton, FL, USA: 2000. Roles of semiochemicals in mating systems: A comparison between oriental fruit fly and medfly.

Haniotakis G., Francke W., Mori K., Redlich H., Schurig V. Sex-specific activity of (R)-(-)- and (S)- (+)-1,7-dioxaspiro[5.5]undecane, the major pheromone of Dacus oleae. J. Chem. Ecol. 1986;12:1559–1568. doi: 10.1007/BF01012372. PubMed DOI

Gariboldi P., Jommi G., Rossi R., Vita G. Studies on the chemical constitution and sex pheromone activity of volatile substances emitted by Dacus oleae. Experientia. 1982;38:441–444. doi: 10.1007/BF01952628. DOI

Bellas T.E., Fletcher B.S. Identification of the major components in the secretion from the rectal pheromone glands of the Queensland fruit flies Dacus tryoni and Dacus neohumeralis (Diptera:Tephritidae) J. Chem. Ecol. 1979;5:795–803. doi: 10.1007/BF00986564. DOI

Booth Y.K., Schwartz B.D., Fletcher M.T., Lambert L.K., Kitching W., Voss J.J. De A diverse suite of spiroacetals, including a novel branched representative, is released by female Bactrocera tryoni (Queensland fruit fly) Chem. Commun. 2006:3975. doi: 10.1039/b611953k. PubMed DOI

El-Sayed A.M., Venkatesham U., Unelius C.R., Sporle A., Pérez J., Taylor P.W., Suckling D.M. Chemical composition of the rectal gland and volatiles released by female Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae) Environ. Entomol. 2019;48:807–814. doi: 10.1093/ee/nvz061. PubMed DOI

Tan H.K., Nishida R. Incorporation of raspberry ketone in the rectal glands of males of the Queensland fruit fly, Bactrocera tryoni Frogatt (Diptera: Tephritidae) Appl. Entomol. Zool. 1995;30:494–497. doi: 10.1303/aez.30.494. DOI

Levi-Zada A., Levy A., Rempoulakis P., Fefer D., Steiner S., Gazit Y., Nestel D., Yuval B., Byers J.A. Diel rhythm of volatile emissions of males and females of the peach fruit fly Bactrocera zonata. J. Insect Physiol. 2020;120 doi: 10.1016/j.jinsphys.2019.103970. PubMed DOI

Břízová R., Vaníčková L., Fatarova M., Ekesi S., Hoskovec M., Kalinova B. Analyses of volatiles produced by the African fruit fly species complex (Diptera, Tephritidae) Zookeys. 2015:385–404. doi: 10.3897/zookeys.540.9630. PubMed DOI PMC

Jacobson M., Ohinata K., Chambers D.L., Jones W.A., Fujimoto M.S. Insect sex attractants. Isolation, identification, and synthesis of sex pheromones of male Mediterranean fruit fly. J. Med. Chem. 1973;13:248–251. doi: 10.1021/jm00261a018. PubMed DOI

Ohinata K., Nakagawa S., Fujimoto M., Higa H., Jacobson M. Mediterranean fruit fly: Laboratory and field evaluations of synthetic sex pheromones. J. Environ. Sci. Health Part A. 1977 doi: 10.1080/10934527709374736. DOI

Ohinata K., Jacobson M., Nakagawa S., Urago T., Fujimoto M., Higa H. Methyl (E)-6-nonenoate: A new Mediterranean fruit fly male attractant. J. Econ. Entomol. 1979;72:648–650. doi: 10.1093/jee/72.4.648. DOI

Jang E.B., Light D.M., Dickens J.C., McGovern T.P., Nagata J.T. Electroantennogram responses of mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) to trimedlure and its trans isomers. J. Chem. Ecol. 1989;15:2219–2231. doi: 10.1007/BF01014111. PubMed DOI

Flath R.A., Jang E.B., Light D.M., Mon T.R., Carvalho L., Binder R.G., John J.O. Volatile pheromonal emissions from the male Mediterranean fruit fly—Effects of fly age and time of day. J. Agric. Food Chem. 1993;41:830–837. doi: 10.1021/jf00029a029. DOI

Merli D., Mannucci B., Bassetti F., Corana F., Falchetto M., Malacrida A.R., Gasperi G., Scolari F. Larval diet affects male pheromone blend in a laboratory strain of the medfly, Ceratitis capitata (Diptera: Tephritidae) J. Chem. Ecol. 2018;44:339–353. doi: 10.1007/s10886-018-0939-z. PubMed DOI

Vaníčková L., do Nascimento R.R., Hoskovec M., Jezkova Z., Břízová R., Tomcala A., Kalinova B. Are the wild and laboratory insect populations different in semiochemical emission? The case of the medfly sex pheromone. J. Agric. Food Chem. 2012;60:7168–7176. doi: 10.1021/jf301474d. PubMed DOI

Alfaro C., Vacas S., Zarzo M., Navarro-Llopis V., Primo J. Solid phase microextraction of volatile emissions of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae): Influence of fly sex, age, and mating status. J. Agric. Food Chem. 2011;59:298–306. doi: 10.1021/jf104183c. PubMed DOI

Siciliano P., He X.L., Woodcock C., Pickett J.A., Field L.M., Birkett M.A., Kalinova B., Gomulski L.M., Scolari F., Gasperi G., et al. Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata. Insect Biochem. Mol. Biol. 2014;48:51–62. doi: 10.1016/j.ibmb.2014.02.005. PubMed DOI PMC

Baker R., Herbert R.H., Grant G.G. Isolation and identification of the sex pheromone of the Mediterranean fruit fly, Ceratitis capitata (Wied.) J. Chem. Soc. Chem. Commun. 1985;12:824–825. doi: 10.1039/c39850000824. DOI

Heath R.R., Landolt P.J., Tumlinson J.H., Chambers D.L., Murphy R.E., Doolittle R.E., Dueben B.D., Sivinski J., Calkins C.O. Analysis, synthesis, formulation, and field testing of three major components of male mediterranean fruit fly pheromone. J. Chem. Ecol. 1991;17:1925–1940. doi: 10.1007/BF00993739. PubMed DOI

Raptopoulos D., Haniotakis G., Koutsaftikis A., Kelly D., Mavraganis V. Biological activity of chemicals identified from extracts and volatiles of male Rhagoletis cerasi. J. Chem. Ecol. 1995;21:1287–1297. doi: 10.1007/BF02027562. PubMed DOI

De Lima I.S., Howse P.E., Stevens I.D.R. Fruit Fly Pests. CRC Press; Boca Raton, FL, USA: 2020. Volatile components from the salivary glands of calling males of the South American fruit fly, Anastrepha fraterculus: Partial identification and behavioural activity; pp. 107–113. DOI

Robacker D.C., Garcia J.A. Responses of laboratory-strain Mexican fruit flies, Anastrepha ludens, to combinations of fermenting fruit odor and male-produced pheromone in laboratory bioassays. J. Chem. Ecol. 1990;16:2027–2038. doi: 10.1007/BF01020514. PubMed DOI

Perkins M., Fletcher M., Kitching W., Drew R., Moore C. Chemical studies of rectal gland secretions of some species of Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae) J. Chem. Ecol. 1990;16:2475–2487. doi: 10.1007/BF01017470. PubMed DOI

Fletcher M.T., Jacobs M.F., Kitching W., Krohn S., Drew R.A.I., Haniotakis G.E., Francke W. Absolute stereochemistry of the 1,7-dioxaspiro[5.5]undecanols in fruit-fly species, including the olive-fly. J. Chem. Soc. Chem. Commun. 1992:1457. doi: 10.1039/c39920001457. DOI

Zhang X.G., Wei C.M., Miao J., Zhang X.J., Wei B., Dong W.X., Xiao C. Chemical compounds from female and male rectal pheromone glands of the guava fruit fly, Bactrocera correcta. Insects. 2019;10:78. doi: 10.3390/insects10030078. PubMed DOI PMC

Tokushima I., Orankanok W., Tan K.H., Ono H., Nishida R. Accumulation of phenylpropanoid and sesquiterpenoid volatiles in male rectal pheromonal glands of the guava fruit fly, Bactrocera correcta. J. Chem. Ecol. 2010;36:1327–1334. doi: 10.1007/s10886-010-9874-3. PubMed DOI

Fletcher M.T., Wells J.A., Jacobs M.F., Krohn S., Kitching W., Drew R.A.I., Moore C.J., Francke W. Chemistry of fruit-flies. Spiroacetal-rich secretions in several Bactrocera species from the South-West Pacific region. J. Chem. Soc. Perkin Trans. 1. 1992:2827–2831. doi: 10.1039/p19920002827. DOI

Kitching W., Lewis J.A., Perkins M.V., Drew R., Moore C.J., Schurig V., Konig W.A., Francke W. Chemistry of fruit-flies—Composition of the rectal gland secretion of (male) Dacus cucumis (cucumber fly) and Dacus halfordiae—Characterization of (Z,Z)-2,8-Dimethyl-1,7-Dioxaspiro[5.5]Undecane. J. Org. Chem. 1989;54:3893–3902. doi: 10.1021/jo00277a028. DOI

Mazomenos B.E., Pomonis J.G. Male olive fruit fly pheromone: Isolation, identification and lab-bioassays; Proceedings of the CEC/IOBC International Symposium on Fruit Flies of Economic Importance; Athens, Greece. 16 November 1982; pp. 96–103.

Noushini S., Park S.J., Jamie I., Jamie J., Taylor P. Sampling technique biases in the analysis of fruit fly volatiles: A case study of Queensland fruit fly. Sci. Rep. 2020;10:19799. doi: 10.1038/s41598-020-76622-0. PubMed DOI PMC

Perkins M.V., Kitching W., Drew R.A.I., Moore C.J., König W.A. Chemistry of fruit flies: Composition of the male rectal gland secretions of some species of South-East Asian Dacinae. Re-examination of Dacus cucurbitae (melon fly) J. Chem. Soc., Perkin Trans. 1. 1990:1111–1117. doi: 10.1039/P19900001111. DOI

Baker R., Herbert R.H., Lomer R.A. Chemical components of the rectal gland secretions of male Dacus cucurbitae, the melon fly. Experientia. 1982;38:232–233. doi: 10.1007/BF01945082. DOI

Nishida R., Iwahashi O., Tan K.H. Accumulation of Dendrobium superbum (orchidaceae) fragrance in the rectal glands by males of the melon fly, Dacus cucurbitae. J. Chem. Ecol. 1993;19:713–722. doi: 10.1007/BF00985003. PubMed DOI

Ioannou C.S., Papadopoulos N.T., Kouloussis N.A., Tananaki C.I., Katsoyannos B.I. Essential oils of citrus fruit stimulate oviposition in the Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae) Physiol. Entomol. 2012;37:330–339. doi: 10.1111/j.1365-3032.2012.00847.x. DOI

Cosse A.A., Todd J.L., Millar J.G., Martinez L.A., Baker T.C. Electroantennographic and coupled gas chromatographic-electroantennographic responses of the mediterranean fruit fly, Ceratitis capitata, to male-produced volatiles and mango odor. J. Chem. Ecol. 1995;21:1823–1836. doi: 10.1007/BF02033679. PubMed DOI

Nation J.L. The sex pheromone blend of Caribbean fruit fly males: Isolation biological activity, and partial chemical characterization. J. Environ. Entomol. 1975;4:27–30. doi: 10.1093/ee/4.1.27. DOI

De Aquino N.C., Ferreira L.L., Tavares R., Silva C.S., Mendonça A., Joachim-Bravo I.S., Milet-Pinheiro P., Navarro D., De Abreu Galdino F.C., Do Nascimento R.R. Bioactive male-produced volatiles from Anastrepha obliqua and their role in attraction of conspecific females. J. Chem. Ecol. 2021;47:167–174. doi: 10.1007/s10886-021-01248-z. PubMed DOI

Robacker D.C., Hart W.G. Behavioral-responses of male and female Mexican fruit-flies, Anastrepha ludens, to male-produced chemicals in laboratory experiments. J. Chem. Ecol. 1986;12:39–47. doi: 10.1007/BF01045589. PubMed DOI

Aluja M., Cabagne G., Altuzar-Molina A., Pascacio-Villafan C., Enciso E., Guillen L. Host plant and antibiotic effects on scent bouquet composition of Anastrepha ludens and Anastrepha obliqua calling males, two polyphagous tephritid pests. Insects. 2020;11:309. doi: 10.3390/insects11050309. PubMed DOI PMC

Teal P.E.A., Gomez-Simuta Y., Proveaux A.T. Mating experience and juvenile hormone enhance sexual signaling and mating in male Caribbean fruit flies. Proc. Natl. Acad. Sci. USA. 2000;97:3708–3712. doi: 10.1073/pnas.97.7.3708. PubMed DOI PMC

Aceves-Aparicio E., Pérez-Staples D., Arredondo J., Corona-Morales A., Morales-Mávil J., Díaz-Fleischer F. Combined effects of methoprene and metformin on reproduction, longevity, and stress resistance in Anastrepha ludens (Diptera: Tephritidae): Implications for the Sterile Insect Technique. J. Econ. Entomol. 2021;114:142–151. doi: 10.1093/jee/toaa295. PubMed DOI

Landolt P.J., Averill A.L. Fruit flies. In: Hardie J., Minks A.K., editors. Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publication; Wallingford, UK: 1999. pp. 3–25.

Farine J.P., Ferveur J.F., Everaerts C. Volatile Drosophila cuticular pheromones are affected by social but not sexual experience. PLoS ONE. 2012;7:e40396. doi: 10.1371/journal.pone.0040396. PubMed DOI PMC

Droney D.C., Hock M.B. Male sexual signals and female choice in Drosophila grimshawi (Diptera: Drosophildae) J. Insect Behav. 1998;11:59–71. doi: 10.1023/A:1020866500228. DOI

Muller M., Buchbauer G. Essential oil components as pheromones. A review. Flavour Fragr. J. 2011;26:357–377. doi: 10.1002/ffj.2055. DOI

Engl T., Kaltenpoth M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 2018;35:386–397. doi: 10.1039/C7NP00068E. PubMed DOI

Henneken J., Goodger J.Q.D., Jones T.M., Elgar M.A. Diet-mediated pheromones and signature mixtures can enforce signal reliability. Front. Ecol. Evol. 2017;4 doi: 10.3389/fevo.2016.00145. DOI

Ren L., Ma Y., Xie M., Lu Y., Cheng D. Rectal bacteria produce sex pheromones in the male oriental fruit fly. Curr. Biol. 2021;31 doi: 10.1016/j.cub.2021.02.046. PubMed DOI

Conway J.R., Lex A., Gehlenborg N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–2940. doi: 10.1093/bioinformatics/btx364. PubMed DOI PMC

Barbosa-Cornelio R., Cantor F., Coy-Barrera E., Rodriguez D. Tools in the investigation of volatile semiochemicals on insects: From sampling to statistical analysis. Insects. 2019;10:241. doi: 10.3390/insects10080241. PubMed DOI PMC

Leal W.S. Reverse chemical ecology at the service of conservation biology. Proc. Natl. Acad. Sci. USA. 2017;114:12094–12096. doi: 10.1073/pnas.1717375114. PubMed DOI PMC

Brito N.F., Moreira M.F., Melo A.C.A. A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol. 2016;95:51–65. doi: 10.1016/j.jinsphys.2016.09.008. PubMed DOI

Torto B. Chemical Ecology. Encyclopedia of Life Support Systems. EOLSS Publishers Co. Ltd; Oxford, UK: 2009. Chemical signals as attractants, repellents and aggregation stimulants.

Al-Khshemawee H., Du X., Agarwal M., Yang J.O., Ren Y.L. Application of Direct Immersion Solid-Phase Microextraction (DI-SPME) for understanding biological changes of Mediterranean Fruit Fly (Ceratitis capitata) during mating procedures. Molecules. 2018;23:2951. doi: 10.3390/molecules23112951. PubMed DOI PMC

Arthur C.L., Pawliszyn J. Solid-Phase Microextraction with thermal-desorption using fused silica optical fibers. Anal. Chem. 1990;62:2145–2148. doi: 10.1021/ac00218a019. DOI

Pawliszyn J., Pawliszyn B., Pawliszyn M. Solid Phase Microextraction (SPME) Chem. Educ. 1997;2:1–7. doi: 10.1007/s00897970137a. DOI

Monnin T., Malosse C., Peeters C. Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in queenless ant Dinoponera quadriceps. J. Chem. Ecol. 1998;24:473–490. doi: 10.1023/A:1022360718870. DOI

Turillazzi S., Sledge M.F., Moneti G. Use of a simple method for sampling cuticular hydrocarbons from live social wasps. Ethol. Ecol. Evol. 1998;10:293–297. doi: 10.1080/08927014.1998.9522859. DOI

Tentschert J., Bestmann H.J., Heinze J. Cuticular compounds of workers and queens in two Leptothorax ant species—A comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecology. 2002;12:15–21. doi: 10.1007/s00049-002-8322-4. DOI

AL-Khshema H., Agarwal M., Ren Y.L. Optimization and validation for determination of volatile organic compounds from Mediterranean Fruit Fly (Medfly) Ceratitis capitata (Diptera: Tephritidae) by using HS-SPME-GC-FID/MS. J. Biol. Sci. 2017;17:347–352. doi: 10.3923/jbs.2017.347.352. DOI

Robacker D.C., Warfield W.C., Flath R.A. A four-component attractant for the mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae), from host fruit. J. Chem. Ecol. 1992;18:1239–1254. doi: 10.1007/BF00980077. PubMed DOI

Cruz-Lopez L., Malo E.A., Toledo J., Virgen A., del Mazo A., Rojas J.C. A new potential attractant for Anastrepha obliqua from Spondias mombin fruits. J. Chem. Ecol. 2006;32:351–365. doi: 10.1007/s10886-005-9006-7. PubMed DOI

Diaz-Fleischer F., C. P.J., Shelly T.E. Interactions between tephritid fruit fly physiological state and stimuli from baits and traps: Looking for the pied piper of Hamelin to lure pestiferous fruit flies. In: Shelly T.E., Epsky N., Jang E.B., Reyes-Flores J., Vargas R., editors. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies. Springer; Berlin/Heidelberg, Germany: 2014. pp. 145–172.

Jang E.B., Light D.M., Binder R.G., Flath R.A., Carvalho L.A. Attraction of female mediterranean fruit flies to the five major components of male-produced pheromone in a laboratory flight tunnel. J. Chem. Ecol. 1994;20:9–20. doi: 10.1007/BF02065987. PubMed DOI

Oldham N.J. Ph.D. Thesis. Keele University; Keele, UK: 1994. Chemical Studies on Exocrine Gland Secretion and Pheromones of Some Social Insects.

Sinha A.E., Fraga C.G., Prazen B.J., Synovec R.E. Trilinear chemometric analysis of two-dimensional comprehensive gas chromatography-time-of-flight mass spectrometry data. J. Chromatogr. A. 2004;1027:269–277. doi: 10.1016/j.chroma.2003.08.081. PubMed DOI

van Deursen M.M., Beens J., Janssen H.G., Leclercq P.A., Cramers C.A. Evaluation of time-of-flight mass spectrometric detection for fast gas chromatography. J. Chromatogr. A. 2000;878:205–213. doi: 10.1016/S0021-9673(00)00300-9. PubMed DOI

Vanickova L., Virgilio M., Tomcala A., Brizova R., Ekesi S., Hoskovec M., Kalinova B., Do Nascimento R.R., De Meyer M. Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling. Bull. Entomol. Res. 2014;104:631–638. doi: 10.1017/S0007485314000406. PubMed DOI

Warthen J.D., Mcgovern T.P. Gc/Ftir analyses of Trimedlure isomers and related esters. J. Chromatogr. Sci. 1986;24:451–457. doi: 10.1093/chromsci/24.10.451. DOI

Karas M., Bachmann D., Bahr U., Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 1987;78:53–68. doi: 10.1016/0168-1176(87)87041-6. DOI

Patton G.M., Fasulo J.M., Robins S.J. Analysis of lipids by high performance liquid chromatography: Part I. J. Nutr. Biochem. 1990;1:493–500. doi: 10.1016/0955-2863(90)90087-2. PubMed DOI

McHowad J., Jones J.H., Creer H.M. Quantification of individual phospholipid molecular species by UV absorption measurements. J. Lipid Res. 1996;37:2450–2460. doi: 10.1016/S0022-2275(20)37493-9. PubMed DOI

McHowad J., Jones J.H., Creer H.M. Gradient elution reverse-phase chromatographic isolation of individual glycerolphospholipid molecular species. J. Chromatogr. B. 1997;702:21–32. doi: 10.1016/S0378-4347(97)00386-1. PubMed DOI

Olsson N.U., Harding A.J., Harper C., Salem N.J. High-performance liquid chromatography method with light-scattering detection for measurement of lipid class composition: Analysis of brain from alcoholics. J. Chromatogr. B. 1996;681:213–218. doi: 10.1016/0378-4347(95)00576-5. PubMed DOI

Zhou Y., Qin Q., Zhang P.W., Chen X.T., Liu B.J., Cheng D.M., Zhang Z.X. Integrated LC-MS and GC-MS-based untargeted metabolomics studies of the effect of azadirachtin on Bactrocera dorsalis larvae. Sci. Rep. 2020;10:2306. doi: 10.1038/s41598-020-58796-9. PubMed DOI PMC

Buděšínský M., Pelař J. Cyklus Organická Chemie. Institute of Organic Chemistry and Biochemistry; Praha, Czech Republic: 2000.

Baker J.D., Heath R.R. NMR spectral assignment of lactone pheromone components emitted by Caribbean and Mexican fruit flies. J. Chem. Ecol. 1993;19:1511–1519. doi: 10.1007/BF00984894. PubMed DOI

Mori K. Significance of chirality in pheromone science. Bioorg. Med. Chem. 2007;15:7505–7523. doi: 10.1016/j.bmc.2007.08.040. PubMed DOI

Olszewski T.K., Grison C. A concise synthesis of sex pheromone of Mediterranean fruit fly, Ceratitis capitata via lithiated carbanion derived from enephosphoramide. Heteroat. Chem. 2010;21:139–147. doi: 10.1002/chin.201035218. DOI

Mori K., Uematsu T., Yanagi K., Minobe M. Synthesis of the optically active forms of 4,10-dihydroxy-1,7-dioxaspiro[5.5]undecane and their conversion to the enantiomers of 1,7-dioxaspiro[5.5]undecane, the olive fly pheromone. Tetrahedron. 1985;41:2751–2758. doi: 10.1016/S0040-4020(01)96376-8. DOI

Fusini G., Barsanti D., Angelici G., Casotti G., Canale A., Benelli G., Lucchi A., Carpita A. Identification and synthesis of new sex-specific components of olive fruit fly (Bactrocera oleae) female rectal gland, through original Negishi reactions on supported catalysts. Tetrahedron. 2018;74:4381–4389. doi: 10.1016/j.tet.2018.07.003. DOI

Canale A., Germinara S.G., Carpita A., Benelli G., Bonsignori G., Stefanini C., Raspi A., Rotundo G. Behavioural and electrophysiological responses of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), to male-and female-borne sex attractants. Chemoecology. 2013 doi: 10.1007/s00049-013-0131-4. DOI

Vaníčková L. Ph.D. Thesis. Institute of Chemical Technology; Prague, Czech Republic: 2012. Chemical Ecology of Fruit Flies: Genera Ceratitis and Anastrepha.

Břízová R. Master’s Thesis. Institute of Chemical Technology; Prague, Czech Republic: 2011. Analyses of Male Sex Pheromone of Anastrepha fraterculus (Diptera: Tephritidae)

Zykova K. Master’s Thesis. Institute of Chemical Technology; Prague, Czech Republic: 2013. Quantitative Composition Changes of Sex Pheromone in Anastrepha fraterculus Depending on Age.

Cruz-Lopez L., Malo E.A., Rojas J.C. Sex Pheromone of Anastrepha striata. J. Chem. Ecol. 2015;41:458–464. doi: 10.1007/s10886-015-0581-y. PubMed DOI

Noushini S., Perez J., Park S.J., Holgate D., Alvarez V.M., Jamie I., Jamie J., Taylor P. Attraction and electrophysiological response to identified rectal gland volatiles in Bactrocera frauenfeldi (Schiner) Molecules. 2020;25:1275. doi: 10.3390/molecules25061275. PubMed DOI PMC

Robacker D.C., Chapa B.E., Hart W.G. Electroantennograms of Mexican fruit flies to chemicals produced by males. Entomol. Exp. Appl. 1986;40:123–127. doi: 10.1111/j.1570-7458.1986.tb00492.x. DOI

Van Der Pers J.C.N., Haniotakis G.E., King B.M. Electroantennogram responses from olfactory receptors in Dacus oleae. Entomol. Hell. 1984;2:47–53. doi: 10.12681/eh.13901. DOI

Siderhurst M.S., Jang E.B. Cucumber volatile blend attractive to female melon fly, Bactrocera cucurbitae (Coquillett) J. Chem. Ecol. 2010;36:699–708. doi: 10.1007/s10886-010-9804-4. PubMed DOI

Liscia A., Angioni P., Sacchetti P., Poddighe S., Granchietti A., Setzu M.D., Belcari A. Characterization of olfactory sensilla of the olive fly: Behavioral and electrophysiological responses to volatile organic compounds from the host plant and bacterial filtrate. J. Insect Physiol. 2013;59:705–716. doi: 10.1016/j.jinsphys.2013.04.008. PubMed DOI

Cunningham J.P., Carlsson M.A., Villa T.F., Dekker T., Clarke A.R. Do fruit ripening volatiles enable resource specialism in polyphagous fruit flies? J. Chem. Ecol. 2016;42:931–940. doi: 10.1007/s10886-016-0752-5. PubMed DOI

Biasazin T.D., Karlsson M.F., Hillbur Y., Seyoum E., Dekker T. Identification of host blends that attract the African invasive fruit fly, Bactrocera invadens. J. Chem. Ecol. 2014;40:966–976. doi: 10.1007/s10886-014-0501-6. PubMed DOI

Kendra P.E., Epsky N.D., Montgomery W.S., Heath R.R. Response of Anastrepha suspensa (Diptera: Tephritidae) to terminal diamines in a food-based synthetic attractant. Environ. Entomol. 2008;37:1119–1125. doi: 10.1093/ee/37.5.1119. PubMed DOI

Kendra P.E., Montgomery W.S., Mateo D.M., Puche H., Epsky N.D., Heath R.R. Effect of age on EAG response and attraction of female Anastrepha suspensa (Diptera: Tephritidae) to ammonia and carbon dioxide. Environ. Entomol. 2005;34:584–590. doi: 10.1603/0046-225X-34.3.584. DOI

Tabanca N., Masi M., Epsky N.D., Nocera P., Cimmino A., Kendra P.E., Niogret J., Evidente A. Laboratory evaluation of natural and synthetic aromatic compounds as potential attractants for male Mediterranean fruit fly, Ceratitis capitata. Molecules. 2019;24:2409. doi: 10.3390/molecules24132409. PubMed DOI PMC

Jenkins D.A., Kendra P.E., Epsky N.D., Montgomery W.S., Heath R.R., Jenkins D.M., Goenaga R. Antennal responses of West Indian and Caribbean fruit flies (Diptera: Tephritidae) to ammonium bicarbonate and putrescine lures. Florida Entomol. 2012;95:28–34. doi: 10.1653/024.095.0106. DOI

Epsky N., Kendra P.E., Heath R.R. Response of Anastrepha suspensa to liquid protein baits and synthetic lure formulations; Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance; Salvador, Brazil. 10–15 September 2006; pp. 81–88.

Crnjar R., Scalera G., Liscia A., Angioy A.M., Bigiani A., Pietra P., Barbarossa I.T. Morphology and eag mapping of the antennal olfactory receptors in Dacus oleae. Entomol. Exp. Appl. 1989;51:77–85. doi: 10.1111/j.1570-7458.1989.tb01216.x. DOI

Nagai T. On the relationship between the electroantennogram and simultaneously recorded single sensillum response of the European corn borer Ostrinia nubilalis. Arch. Insect Biochem. Physiol. 1983;1:85–91. doi: 10.1002/arch.940010109. DOI

Olsson S.B., Hansson B.S. Electroantennogram and single sensillum recording in insect antennae. In: Touhara K., editor. Methods in Molecular Biology. Volume 1068 Springer Science and Business Media LLC; Berlin, Germany: 2013. PubMed

Bigiani A., Scalera G., Crnjar R., Barbarossa I.T., Magherini P.C., Pietra P. Distribution and function of the antennal olfactory sensilla in Ceratitis capitata Wied (Diptera, Trypetidae) Boll. Di Zool. 1989;56:305–311. doi: 10.1080/11250008909355655. DOI

Bisotto-de-Oliveira R., Redaelli L.R., Sant’ana J. Morphometry and distribution of sensilla on the antennae of Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) Neotrop. Entomol. 2011;40:212–216. doi: 10.1590/S1519-566X2011000200009. PubMed DOI

Jacob V., Scolari F., Delatte H., Gasperi G., Jacquin-Joly E., Malacrida A.R., Duyck P.F. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-15431-4. PubMed DOI PMC

Jacob V.E.J.M. Current source density analysis of electroantennogram recordings: A tool for mapping the olfactory response in an insect antenna. Front. Cell. Neurosci. 2018;12 doi: 10.3389/fncel.2018.00287. PubMed DOI PMC

Loy F., Solari P., Isola M., Crnjar R., Masala C. Morphological and electrophysiological analysis of tarsal sensilla in the medfly Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) Ital. J. Zool. 2016;83:456–468. doi: 10.1080/11250003.2016.1241830. DOI

Tait C., Batra S., Ramaswamy S.S., Feder J.L., Olsson S.B. Sensory specificity and speciation: A potential neuronal pathway for host fruit odour discrimination in Rhagoletis pomonella. Proc. Biol. Sci. 2016;283 doi: 10.1098/rspb.2016.2101. PubMed DOI PMC

Hare J.D. Bioassays with terrestrial invertebrates. In: Hayes K.F., editor. Methods in Chemical Ecology, Bioassays Methods. Volume 2. Kluwer Academic; Norwell, MA, USA: 1998. pp. 212–270.

Howse P.E., Stevens I.D.R., Jones O.T., Howse P.E., Stevens I.D.R., Jones O.T. Insect Pheromones and Their Use in Pest Management. Springer; Dordrecht, The Netherlands: 1998. Bioassay methods.

Baker T.C., Cardé R.T. Techniques for Behavioral Bioassays. In: Hummel H.E., Miller T.A., editors. Techniques in Pheromone Research. Springer Series in Experimental Entomology. Springer New York; New York, NY, USA: 1984. pp. 45–73.

Knudsen G.K., Tasin M., Aak A., Thöming G. A wind tunnel for odor mediated insect behavioural assays. J. Vis. Exp. 2018 doi: 10.3791/58385. PubMed DOI

Wu Z., Lin J., Zhang H., Zeng X. BdorOBP83a-2 mediates responses of the Oriental fruit fly to semiochemicals. Front. Physiol. 2016;7 doi: 10.3389/fphys.2016.00452. PubMed DOI PMC

Mazomenos B.E., Haniotakis G.E. Male olive fruit fly attraction to synthetic sex pheromone components in laboratory and field tests. J. Chem. Ecol. 1985;11:397–405. doi: 10.1007/BF01411425. PubMed DOI

Giunti G., Campolo O., Laudani F. Olive fruit volatiles route intraspecific interactions and chemotaxis in Bactrocera oleae (Rossi) (Diptera: Tephritidae) females. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-58379-8. PubMed DOI PMC

Landolt P.J., Heath R.R., Chambers D.L. Oriented flight responses of female Mediterranean fruit flies to calling males, odor of calling males, and a synthetic pheromone blend. Entomol. Exp. Appl. 1992;65:259–266. doi: 10.1111/j.1570-7458.1992.tb00679.x. DOI

Biasazin T.D., Herrera S.L., Kimbokota F., Dekker T. Translating olfactomes into attractants: Shared volatiles provide attractive bridges for polyphagy in fruit flies. Ecol. Lett. 2019;22:108–118. doi: 10.1111/ele.13172. PubMed DOI

Baker P., Howse P., Ondarza R.N., Reyes J. Field trials of synthetic sex pheromone components of the male Mediterranean fruit fly (Diptera: Tephritidae) in Southern Mexico. J. Econ. Entomol. 1990;83:2235–2245. doi: 10.1093/jee/83.6.2235. DOI

Jones O.T., Lisk J.C., Longhurst C., Howse P.E. Development of a monitoring trap for the olive fruit fly, Dacus oleae (Gmelin) (Diptera: Tephritidae), using a multicomponent of its sex pheromone as lure. Bull. Entomol. Res. 1983;73:97–106. doi: 10.1017/S0007485300013833. DOI

Mazomenos B.E., Haniotakis G.E., Ioannou A., Spanakis I., Kozirakis A. Field evaluation of the olive fruit fly pheromone traps with various dispensers and concentrations; Proceedings of the International Symposium of Fruit Flies of Economic Importance; Athens, Greece. 16 November 1982; pp. 506–512.

Perdomo A.J., Baranowski R.M., Nation J.L. Recapture of virgin female Caribbean fruit flies from traps baited with males. Florida Entomol. 1975;58:291–295. doi: 10.2307/3493694. DOI

Perdomo A.J., Nation J.L., Baranowski R.M. Attraction of female and male caribbean fruit flies to food-baited and male-baited traps under field conditions. Environ. Entomol. 1976 doi: 10.1093/ee/5.6.1208. DOI

Nakagawa S., Steiner L.F., Farias G.J. Response of virgin female Mediterranean fruit flies to live mature normal males, sterile males, and Trimedlure in plastic traps. J. Econ. Entomol. 1981;74:566–567. doi: 10.1093/jee/74.5.566. DOI

Shelly T.E. Male signalling and lek attractiveness in the Mediterranean fruit fly. Anim. Behav. 2000;60:245–251. doi: 10.1006/anbe.2000.1470. PubMed DOI

Webb J.C., Burk T., Sivinski J. Attraction of female Caribbean fruit flies, Anastrepha suspensa (Diptera: Tephritidae), to the presence of males and male-produced stimuli in field cages. Ann. Entomol. Soc. Am. 1983;76:996–998. doi: 10.1093/aesa/76.6.996. DOI

Ono H., Hee A.K.-W., Jiang H. Recent advancements in studies on chemosensory mechanisms underlying detection of semiochemicals in Dacini fruit flies of economic importance (Diptera: Tephritidae) Insects. 2021;12:106. doi: 10.3390/insects12020106. PubMed DOI PMC

Pelosi P., Iovinella I., Zhu J., Wang G., Dani F.R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biol. Rev. Camb. Philos. Soc. 2018;93:184–200. doi: 10.1111/brv.12339. PubMed DOI

Gomulski L.M., Dimopoulos G., Xi Z.Y., Soares M.B., Bonaldo M.F., Malacrida A.R., Gasperi G. Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata. BMC Genomics. 2008;9 doi: 10.1186/1471-2164-9-243. PubMed DOI PMC

Zheng W.W., Peng T., He W., Zhang H.Y. High-throughput sequencing to reveal genes involved in reproduction and development in Bactrocera dorsalis (Diptera: Tephritidae) PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0036463. PubMed DOI PMC

Zheng W.W., Peng W., Zhu C.P., Zhang Q., Saccone G., Zhang H.Y. Identification and expression profile analysis of odorant binding proteins in the Oriental fruit fly Bactrocera dorsalis. Int. J. Mol. Sci. 2013;14:14936–14949. doi: 10.3390/ijms140714936. PubMed DOI PMC

Ramsdell K.M., Lyons-Sobaski S.A., Robertson H.M., Walden K.K., Feder J.L., Wanner K., Berlocher S.H. Expressed sequence tags from cephalic chemosensory organs of the northern walnut husk fly, Rhagoletis suavis, including a putative canonical odorant receptor. J. Insect Sci. 2010;10:51. doi: 10.1673/031.010.5101. PubMed DOI PMC

Schwarz D., Robertson H.M., Feder J.L., Varala K., Hudson M.E., Ragland G.J., Hahn D.A., Berlocher S.H. Sympatric ecological speciation meets pyrosequencing: Sampling the transcriptome of the apple maggot Rhagoletis pomonella. BMC Genomics. 2009;10 doi: 10.1186/1471-2164-10-633. PubMed DOI PMC

Wu Z.Z., Zhang H., Wang Z.B., Bin S.Y., He H.L., Lin J.T. Discovery of chemosensory genes in the Oriental fruit fly, Bactrocera dorsalis. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0129794. PubMed DOI PMC

Wu Z.Z., Kang C., Qu M.Q., Chen J.L., Chen M.S., Bin S.Y., Lin J.T. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics. 2019;20 doi: 10.1186/s12864-019-6022-5. PubMed DOI PMC

Chen X.-F., Xu L., Zhang Y.-X., Wei D., Wang J.-J., Jiang H.-B. Genome-wide identification and expression profiling of odorant-binding proteins in the oriental fruit fly, Bactrocera dorsalis. Comp. Biochem. Physiol. Part D Genomics Proteomics. 2019;31:100605. doi: 10.1016/j.cbd.2019.100605. PubMed DOI

Xu P.H., Wang Y.H., Akami M., Niu C.Y. Identification of olfactory genes and functional analysis of BminCSP and BminOBP21 in Bactrocera minax. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0222193. PubMed DOI PMC

Campanini E.B., de Brito R.A. Molecular evolution of Odorant-binding proteins gene family in two closely related Anastrepha fruit flies. BMC Evol. Biol. 2016;16 doi: 10.1186/s12862-016-0775-0. PubMed DOI PMC

Rezende V.B., Congrains C., Lima A.L., Campanini E.B., Nakamura A.M., Oliveira J.L., Chahad-Ehlers S., Junior I.S., Alves de Brito R. Head transcriptomes of two closely related species of fruit flies of the Anastrepha fraterculus group reveals divergent genes in species with extensive gene flow. G3. 2016;6:3283–3295. doi: 10.1534/g3.116.030486. PubMed DOI PMC

Papanicolaou A., Schetelig M.F., Arensburger P., Atkinson P.W., Benoit J.B., Bourtzis K., Castanera P., Cavanaugh J.P., Chao H., Childers C., et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 2016;17:192. doi: 10.1186/s13059-016-1049-2. PubMed DOI PMC

Liu H., Zhao X.F., Fu L., Han Y.Y., Chen J., Lu Y.Y. BdorOBP2 plays an indispensable role in the perception of methyl eugenol by mature males of Bactrocera dorsalis (Hendel) Sci. Rep. 2017;7:15894. doi: 10.1038/s41598-017-15893-6. PubMed DOI PMC

Liu Z., Liang X.F., Xu L., Keesey I.W., Lei Z.R., Smagghe G., Wang J.J. An antennae-specific Odorant-Binding Protein is involved in Bactrocera dorsalis olfaction. Front. Ecol. Evol. 2020;8 doi: 10.3389/fevo.2020.00063. DOI

Nakamura A.M., Chahad-Ehlers S., Lima A.L.A., Taniguti C.H., Sobrinho I., Torres F.R., de Brito R.A. Reference genes for accessing differential expression among developmental stages and analysis of differential expression of OBP genes in Anastrepha obliqua. Sci. Rep. 2016;6 doi: 10.1038/srep17480. PubMed DOI PMC

Pelosi P., Zhu J., Knoll W. Odorant-binding proteins as sensing elements for odour monitoring. Sensors. 2018;18:3248. doi: 10.3390/s18103248. PubMed DOI PMC

Falchetto M., Ciossani G., Scolari F., Di Cosimo A., Nenci S., Field L.M., Mattevi A., Zhou J.J., Gasperi G., Forneris F. Structural and biochemical evaluation of Ceratitis capitata odorant-binding protein 22 affinity for odorants involved in intersex communication. Insect Mol. Biol. 2019;28:431–443. doi: 10.1111/imb.12559. PubMed DOI

Pelosi P., Zhu J., Knoll W. From radioactive ligands to biosensors: Binding methods with olfactory proteins. Appl. Microbiol. Biotechnol. 2018;102:8213–8227. doi: 10.1007/s00253-018-9253-5. PubMed DOI

Paolini S., Tanfani F., Fini C., Bertoli E., Pelosi P. Porcine odorant-binding protein: Structural stability and ligand affinities measured by Fourier-transform infrared spectroscopy and fluorescence spectroscopy. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1999;1431:179–188. doi: 10.1016/S0167-4838(99)00037-0. PubMed DOI

Wojtasek H., Leal W.S. Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J. Biol. Chem. 1999;274:30950–30956. doi: 10.1074/jbc.274.43.30950. PubMed DOI

Qiao H.L., Tuccori E., He X.L., Gazzano A., Field L., Zhou J.J., Pelosi P. Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem. Mol. Biol. 2009;39:414–419. doi: 10.1016/j.ibmb.2009.03.004. PubMed DOI

Ban L., Scaloni A., D’Ambrosio C., Zhang L., Yan Y., Pelosi P. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell. Mol. Life Sci. 2003;60:390–400. doi: 10.1007/s000180300032. PubMed DOI PMC

Drew R.A.I. The responses of fruit fly species (Diptera: Tephritidae) in the South Pacific area to male attractants. Aust. J. Entomol. 1974;13:267–270. doi: 10.1111/j.1440-6055.1974.tb02206.x. DOI

Wee S.-L., Peek T., Clarke A.R. The responsiveness of Bactrocera jarvisi (Diptera: Tephritidae) to two naturally occurring phenylbutaonids, zingerone and raspberry ketone. J. Insect Physiol. 2018;109:41–46. doi: 10.1016/j.jinsphys.2018.06.004. PubMed DOI

Park K.C., Jeong S.A., Kwon G., Oh H.-W. Olfactory attraction mediated by the maxillary palps in the striped fruit fly, Bactrocera scutellata: Electrophysiological and behavioral study. Arch. Insect Biochem. Physiol. 2018;99:e21510. doi: 10.1002/arch.21510. PubMed DOI

Jayanthi P.D.K., Kempraj V., Aurade R.M., Roy T.K., Shivashankara K.S., Verghese A. Computational reverse chemical ecology: Virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis. BMC Genomics. 2014;15 doi: 10.1186/1471-2164-15-209. PubMed DOI PMC

Jayanthi P.D.K., Kempraj V., Aurade R. Computational reverse chemical ecology: Prospecting semiochemicals for pest management using in silico approach in Plutella xylostella Linn. Pest Manag. Hortic. Ecosyst. 2016;22:20–27.

Kuntz I.D., Blaney J.M., Oatley S.J., Langridge R., Ferrin T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 1982;161:269–288. doi: 10.1016/0022-2836(82)90153-X. PubMed DOI

Meng X.Y., Zhang H.X., Mezei M., Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011;7:146–157. doi: 10.2174/157340911795677602. PubMed DOI PMC

McConkey B.J., Sobolev V., Edelman M. The performance of current methods in ligand-protein docking. Curr. Sci. 2002;83:845–856.

Venthur H., Zhou J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 2018;9 doi: 10.3389/fphys.2018.01163. PubMed DOI PMC

Liu Z., Smagghe G., Lei Z.R., Wang J.J. Identification of male- and female-specific olfaction genes in antennae of the Oriental fruit fly (Bactrocera dorsalis) PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0147783. PubMed DOI PMC

Miyazaki H., Otake J., Mitsuno H., Ozaki K., Kanzaki R., Chieng A.C.T., Hee A.K.W., Nishida R., Ono H. Functional characterization of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles. Insect Biochem. Mol. Biol. 2018;101:32–46. doi: 10.1016/j.ibmb.2018.07.002. PubMed DOI

Jin S., Zhou X.F., Gu F., Zhong G.H., Yi X. Olfactory plasticity: Variation in the expression of chemosensory receptors in Bactrocera dorsalis in different physiological states. Front. Physiol. 2017;8 doi: 10.3389/fphys.2017.00672. PubMed DOI PMC

Tsoumani K.T., Belavilas-Trovas A., Gregoriou M.-E., Mathiopoulos K.D. Anosmic flies: What Orco silencing does to olive fruit flies. BMC Genet. 2020;21:140. doi: 10.1186/s12863-020-00937-0. PubMed DOI PMC

Ono H., Miyazaki H., Mitsuno H., Ozaki K., Kanzaki R., Nishida R. Functional characterization of olfactory receptors in three Dacini fruit flies (Diptera: Tephritidae) that respond to 1-nonanol analogs as components in the rectal glands. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2020;239 doi: 10.1016/j.cbpb.2019.110346. PubMed DOI

Sato K., Pellegrino M., Nakagawa T., Nakagawa T., Vosshall L.B., Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008;452:1002–1006. doi: 10.1038/nature06850. PubMed DOI

Butterwick J.A., del Mármol J., Kim K.H., Kahlson M.A., Rogow J.A., Walz T., Ruta V. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018;560:447–452. doi: 10.1038/s41586-018-0420-8. PubMed DOI PMC

Liu H., Chen Z.-S., Zhang D.-J., Lu Y.-Y. BdorOR88a modulates the responsiveness to methyl eugenol in mature males of Bactrocera dorsalis (Hendel) Front. Physiol. 2018;9 doi: 10.3389/fphys.2018.00987. PubMed DOI PMC

Katritch V., Cherezov V., Stevens R.C. Structure-function of the G Protein–Coupled Receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 2013;53:531–556. doi: 10.1146/annurev-pharmtox-032112-135923. PubMed DOI PMC

Cheng J.-F., Yu T., Chen Z.-J., Chen S., Chen Y.-P., Gao L., Zhang W.-H., Jiang B., Bai X., Walker E.D., et al. Comparative genomic and transcriptomic analyses of chemosensory genes in the citrus fruit fly Bactrocera (Tetradacus) minax. Sci. Rep. 2020;10:18068. doi: 10.1038/s41598-020-74803-5. PubMed DOI PMC

Porter B.A. The Apple Maggot. U.S. Dep. Agric. Tech. Bull. 1928;66:1–48.

Häfliger E. Das Auswahlvermögen der Kirschenfliege bei der Eiablage. Mitt. Schweiz. Entomol. Ges. 1953;26:258–264.

Prokopy R.J., Greany P., Chambers D. Oviposition-deterring pheromone in Anastrepha suspensa. Environ. Entomol. 1977;6:463–465. doi: 10.1093/ee/6.3.463. DOI

Simões M.H., Polloni Y.J., Pauludetti M.A. Biología de algunas especies de Anastrepha (Diptera: Tephritidae) en laboratório; Proceedings of the III Latin-American Entomology Congress; Ilheus, Brazil. 23 July 1978.

Prokopy R.J., Malavasi A., Morgante J.S. Oviposition deterring pheromone in Anastrepha fraterculus flies. J. Chem. Ecol. 1982;8:763–771. doi: 10.1007/BF00988317. PubMed DOI

Poloni Y.J., Silva M.T. Proceedings of the Fruit Flies: II International Symposium. Elsevier Science Publishers; Kolymbari, Greece: 1986. Considerations on the reproductive of Anastrepha pseudoparallela Loew 1873 (Diptera: Tephritidae)

Selivon D. Master’s Thesis. University of São Paulo; Sao Paulo, Brazil: 1991. Alguns Aspectos do Comportamento de Anastrepha striata Schiner e Anastrepha bistrigata Bezzii (Diptera: Tephritidae)

Silva J.G. Master’s Thesis. University of São Paulo; Sao Paulo, Brazil: 1991. Biologia e Comportamento de Anastrepha grandis (Macquart, 1846) (Diptera: T ephritidae)

Aluja-Schuneman M.R., Díaz-Fleischer F., Edmunds A.J.F., Hagmann L. Isolation, Structural Determination, Synthesis, Biological Activity and Application as Control Agent of the Host Marking Pheromone (and Derivatives Thereof) of the Fruit Flies of the Type Anastrepha (Diptera: Tephritidae) US6555120B1. 2003 Apr 29;

Averill A.L., Prokopy R.J. Residual activity of oviposition-deterring pheromone in Rhagoletis pomonella (Diptera: Tephritidae) and female response to infested fruit. J. Chem. Ecol. 1987;13:167–177. doi: 10.1007/BF01020360. PubMed DOI

Prokopy R.J., Reynolds A.H. Ovipositional enhancement through socially facilitated behavior in Rhagoletis pomonella flies. Entomol. Exp. Appl. 1998;86:281–286. doi: 10.1046/j.1570-7458.1998.00290.x. DOI

Wiesmann R. Die orientierung der kirschfliege Rhagoletis cerasi L. Landwirtsch. Jahrb. Schweiz. 1937;51:1080–1109.

Katsoyannos B.I. Oviposition-deterring, male-arresting, fruit-marking pheromone in Rhagoletis cerasi. Environ. Entomol. 1975;4:801–807. doi: 10.1093/ee/4.5.801. DOI

Prokopy R.J. Oviposition-deterring fruit marking pheromone in Rhagoletis fausta. Environ. Entomol. 1975;4:298–300. doi: 10.1093/ee/4.2.298. DOI

Prokopy R.J., Reissig W.H., Moericke V. Marking pheromones deterring repeated oviposition in Rhagoletis flies. Entomol. Exp. Appl. 1976;20:170–178. doi: 10.1111/j.1570-7458.1976.tb02630.x. DOI

Bauer G. Life-history strategy of Rhagoletis alternata (Diptera: Trypetidae), a fruit fly operating in a ‘non-interactive’ system. J. Anim. Ecol. 1986;55:785. doi: 10.2307/4416. DOI

Arredondo J., Diaz-Fleischer F. Oviposition deterrents for the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) from fly faeces extracts. Bull. Entomol. Res. 2006;96:35–42. doi: 10.1079/BER2005399. PubMed DOI

Roitberg B.D., Prokopy R.J. Host deprivation influence on response of Rhagoletis pomonella to its oviposition deterring pheromone. Physiol. Entomol. 1983;8:69–72. doi: 10.1111/j.1365-3032.1983.tb00334.x. DOI

Mumtaz M., AliNiazee M. The oviposition-deterring pheromone in the western cherry fruit fly, Rhagoletis indifferens Curran (Dipt., Tephritidae). Biological properties. Zeitschrift für Angew. Entomol. 1983;96:83–93. doi: 10.1111/j.1439-0418.1983.tb03645.x. DOI

Boller E. Oviposition-deterring pheromone of the European cherry fruit fly: Status of research and potential applications. In: Mitchell E.R., editor. Management of Insect Pests with Semiochemicals. Springer; Boston, MA, USA: 1981. pp. 457–462.

Boller E.F., Hurter J. Oviposition deterring pheromone in Rhagoletis cerasi: Behavioral laboratory test to measure pheromone activity. Entomol. Exp. Appl. 1985;39:163–169. doi: 10.1111/j.1570-7458.1985.tb03558.x. DOI

Prokopy R.J., Averill A.L., Bardinelli C.M., Bowdan E.S., Cooley S.S., Crnjar R.M., Dundulis E.A., Roitberg C.A., Spatcher P.J., Tumlinson J.H., et al. Site of production of an oviposition-deterring pheromone component in Rhagoletis pomonella flies. J. Insect Physiol. 1982;28:1–7. doi: 10.1016/0022-1910(82)90016-6. DOI

Hurter J., Katsoyannos B., Boller E.F., Wirz P. Beitrag zur Anreicherung und teilweisen Reinigung des eiablageverhindernden Pheromons der Kirschenfliege, Rhagoletis cerasi L. (Dipt., Trypetidae) Zeitschrift für Angew. Entomol. 1976;80:50–56. doi: 10.1111/j.1439-0418.1976.tb03298.x. DOI

Kachigamba D.L. Ph.D. Thesis. Jomo Kenyatta University of Agriculture and Technology; Nairobi, Kenya: 2012. Host-marking behaviour and pheromones in major fruit fly species (Diptera: Tephritidae) infesting mango (Mangifera indica) in Kenya.

Ernst B., Wagner B. Synthesis of the oviposition-deterring pheromone (Odp) in Rhagoletis cerasi L. Helv. Chim. Acta. 1989;72:165–171. doi: 10.1002/hlca.19890720122. DOI

Boller E.F., Aluja M. Oviposition deterring pheromone in Rhagoletis cerasi L. Biological activity of 4 synthetic isomers and HMP discrimination of two host races as measured by an improved laboratory bioassay. J. Appl. Entomol. 1992;113:113–119. doi: 10.1111/j.1439-0418.1992.tb00644.x. DOI

Edmunds A.J.F., Aluja M., Diaz-Fleischer F., Patrian B., Hagmann L. Host marking pheromone (HMP) in the Mexican fruit fly Anastrepha ludens. Chimia. 2010;64:37–42. doi: 10.2533/chimia.2010.37. PubMed DOI

Scarpati M.L., Loscalzo R., Vita G. Olea europaea volatiles attractive and repellent to the Olive fruit fly (Dacus oleae, Gmelin) J. Chem. Ecol. 1993;19:881–891. doi: 10.1007/BF00985017. PubMed DOI

Kachigamba D.L., Ekesi S., Ndung’u M.W., Gitonga L.M., Teal P.E.A., Torto B. Evidence for potential of managing some African fruit fly species (Diptera: Tephritidae) using the mango fruit fly host-marking pheromone. J. Econ. Entomol. 2012;105:2068–2075. doi: 10.1603/EC12183. PubMed DOI

Carlson D.A., Mayer M.S., Silhacek D.L., James J.D., Beroza M., Bierl B.A. Sex attractant pheromone of the house fly: Isolation, identification and synthesis. Science. 1971 doi: 10.1126/science.174.4004.76. PubMed DOI

Antony C., Jallon J.-M. The chemical basis for sex recognition in Drosophila melanogaster. J. Insect Physiol. 1982;28:873–880. doi: 10.1016/0022-1910(82)90101-9. DOI

Blomquist G.J., Dillwith J.W., Adams T.S. Pheromone Biochemistry. Elsevier; Amsterdam, The Netherlands: 1987. Biosynthesis and endocrine regulation of sex pheromone production in Diptera; pp. 217–250.

Rogoff W.M., Beltz A.D., Johnsen J.O., Plapp F.W. A sex pheromone in the housefly, Musca domestica L. J. Insect Physiol. 1964;10:239–246. doi: 10.1016/0022-1910(64)90006-X. DOI

Mayer M.S., James J.D. Response of male Musca domestica to a specific olfactory attractant and its initial chemical purification. J. Insect Physiol. 1971;17:833–842. doi: 10.1016/0022-1910(71)90101-6. DOI

Silhacek D.L., Carlson D.A., Mayer M.S., James J.D. Composition and sex attractancy of cuticular hydrocarbons from houseflies: Effects of age, sex, and mating. J. Insect Physiol. 1972 doi: 10.1016/0022-1910(72)90133-3. DOI

Stocker R.F. The organization of the chemosensory system in Drosophila melanogaster: A review. Cell Tissue Res. 1994;275:3–26. doi: 10.1007/BF00305372. PubMed DOI

Boll W., Noll M. The Drosophila Pox neuro gene: Control of male courtship behavior and fertility as revealed by a complete dissection of all enhancers. Development. 2002;129:5667–5681. doi: 10.1242/dev.00157. PubMed DOI

Bray S., Amrein H. A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron. 2003;39:1019–1029. doi: 10.1016/S0896-6273(03)00542-7. PubMed DOI

Jackson L.L., Bartelt R.J. Cuticular hydrocarbons of Drosophila virilis. Comparison by age and sex. Insect Biochem. 1986;16:433–439. doi: 10.1016/0020-1790(86)90056-9. DOI

Kim Y.-K., Phillips D.R., Chao T., Ehrman L. Developmental isolation and subsequent adult behavior of Drosophila paulistorum. VI. Quantitative variation in cuticular hydrocarbons. Behav. Genet. 2004;34:385–394. doi: 10.1023/B:BEGE.0000023644.87050.1a. PubMed DOI

Carlson D.A., Yocom S.R. Cuticular hydrocarbons from six species of tephritid fruit flies. Arch. Insect Biochem. Physiol. 1986;3:397–412. doi: 10.1002/arch.940030407. DOI

Bosa C.F., Cruz-Lopez L., Guillen-Navarro K., Zepeda-Cisneros C.S., Liedo P. Variation in the cuticular hydrocarbons of the Mexican fruit fly Anastrepha ludens males between strains and age classes. Arch. Insect Biochem. Physiol. 2018;99 doi: 10.1002/arch.21513. PubMed DOI

Lavine B.K., Carlson D.A., Calkins C.O. Classification of tephritid fruit fly larvae by gas chromatography pattern/recognition techniques. Microchem. J. 1992;45:50–57. doi: 10.1016/0026-265X(92)90070-J. DOI

Sutton B.D., Carlson D.A. Interspecific variation in tephritid fruit fly larvae surface hydrocarbons. Arch. Insect Biochem. Physiol. 1993;23:53–65. doi: 10.1002/arch.940230202. DOI

Sutton B.D., Steck G.J. Discrimination of Caribbean and Mediterranean fruit fly larvae (Diptera: Tephritidae) by cuticular hydrocarbon analysis. Florida Entomol. 1994;77:231. doi: 10.2307/3495508. DOI

Vaníčková L., Hernández-Ortiz V., Joachim Bravo I.S., Dias V., Passos Roriz A.K., Laumann R.A., de Mendonça A.L., Jordão Paranhos B.A., do Nascimento R.R. Current knowledge of the species complex Anastrepha fraterculus (Diptera, tephritidae) in Brazil. Zookeys. 2015;540:211–237. doi: 10.3897/zookeys.540.9791. PubMed DOI PMC

Goh S.H., Ooi K.E., Chuah C.H., Yong H.S., Khoo S.G., Ong S.H. Cuticular hydrocarbons from two species of Malaysian Bactrocera fruit flies. Biochem. Syst. Ecol. 1993;21:215–226. doi: 10.1016/0305-1978(93)90039-T. DOI

Vanickova L., Nagy R., Pompeiano A., Kalinova B. Epicuticular chemistry reinforces the new taxonomic classification of the Bactrocera dorsalis species complex (Diptera: Tephritidae, Dacinae) PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0184102. PubMed DOI PMC

Galhoum A. Taxonomic studies on two Tephritid species (Order: Diptera), Bactrocera oleae and B. zonata, using the cuticular hydrocarbons profile. Al Azhar Bull. Sci. 2017;28:45–54. doi: 10.21608/absb.2017.8166. DOI

Park S.J., Pandey G., Castro-Vargas C., Oakeshott J.G., Taylor P.W., Mendez V. Cuticular chemistry of the Queensland fruit fly Bactrocera tryoni (Froggatt) Molecules. 2020;25:4185. doi: 10.3390/molecules25184185. PubMed DOI PMC

Arakaki N., Kuba H., Soemori H. Mating behavior of the Oriental fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae) Appl. Entomol. Zool. 1984;19:42–51. doi: 10.1303/aez.19.42. DOI

Shen J., Hu L., Zhou X., Dai J., Chen B., Li S. Allyl-2,6-dimethoxyphenol, a female-biased compound, is robustly attractive to conspecific males of Bactrocera dorsalis at close range. Entomol. Exp. Appl. 2019;167:811–819. doi: 10.1111/eea.12833. DOI

Hu L., Chen B., Liu K., Yu G., Chen Y., Dai J., Zhao X., Zhong G., Zhang Y., Shen J. OBP2 in the midlegs of the male Bactrocera dorsalis is involved in the perception of the female-biased sex pheromone 4-allyl-2,6-dimethoxyphenol. J. Agric. Food Chem. 2021;69:126–134. doi: 10.1021/acs.jafc.0c05945. PubMed DOI

Bagneres A.G., Morgan E.D. A simple method for analysis of insect cuticular hydrocarbons. J. Chem. Ecol. 1990;16:3263–3276. doi: 10.1007/BF00982097. PubMed DOI

Brill J.H., Bertsch W. An investigation of sampling methods for the analysis of cuticular hydrocarbons. J. Entomol. Sci. 1985;20:435–443. doi: 10.18474/0749-8004-20.4.435. DOI

Cvacka J., Jiroš P., Šobotník J., Hanus R., Svatoš A. Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization mass spectrometry. J. Chem. Ecol. 2006;32:409–434. doi: 10.1007/s10886-005-9008-5. PubMed DOI

Chin J.S.R., Yew J.Y. Pheromones in the Fruit Fly. Methods Mol. Biol. 2013;1068:15–27. doi: 10.1007/978-1-62703-619-1_2. PubMed DOI

Lockey K.H. Cuticular hydrocarbons of adult Cylindrinotus laevioctostriatus (Goeze) and Phylan gibbus (Fabricius) (Coleoptera: Tenebrionidae) Insect Biochem. 1981;11:549–561. doi: 10.1016/0020-1790(81)90023-8. DOI

Kosi A.Z., Chinta S., Headrick D.H., Cokl A., Millar J.G. Do chemical signals mediate reproductive behavior of Trupanea vicina, an emerging pest of ornamental marigold production in California? Entomol. Exp. Appl. 2013;149:44–56. doi: 10.1111/eea.12107. DOI

Papadopoulos N.T., Carey J.R., Liedo P., Muller H.-G., Senturk D. Virgin females compete for mates in the male lekking species Ceratitis capitata. Physiol. Entomol. 2009;34:238–245. doi: 10.1111/j.1365-3032.2009.00680.x. DOI

Kroiss J., Svatos A., Kaltenpoth M. Rapid identification of insect cuticular hydrocarbons using Gas Chromatography-Ion-Trap Mass Spectrometry. J. Chem. Ecol. 2011;37:420–427. doi: 10.1007/s10886-011-9933-4. PubMed DOI

Howard R.W., McDaniel C.A., Nelson D.R., Blomquist G.J. Chemical ionization mass spectrometry. Application to insect-derived cuticular alkanes. J. Chem. Ecol. 1980;6:609–623. doi: 10.1007/BF00987673. DOI

Moravcova D., Kahle V., Rehulkova H., Chmelik J., Rehulka P. Short monolithic columns for purification and fractionation of peptide samples for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis in proteomics. J. Chromatogr. A. 2009;1216:3629–3636. doi: 10.1016/j.chroma.2009.01.075. PubMed DOI

McLafferty F.W. Registry of Mass Spectral Data. 5th ed. Wiley; New York, NY, USA: 1989.

Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Allured; Carol Stream, IL, USA: 2007.

Carlson D.A., Roan C.S., Yost R.A., Hector J. Dimethyl disulfide derivatives of long-chain alkenes, alkadienes, and alkatrienes for gas-chromatography mass-spectrometry. Anal. Chem. 1989;61:1564–1571. doi: 10.1021/ac00189a019. DOI

Oldham N.J., Svatos A. Determination of the double bond position in functionalized monoenes by chemical ionization ion-trap mass spectrometry using acetonitrile as a reagent gas. Rapid Commun. Mass Spectrom. 1999;13:331–336. doi: 10.1002/(SICI)1097-0231(19990315)13:5331::AID-RCM4873.0.CO;2-A. DOI

Yew J.Y., Dreisewerd K., Luftmann H., Müthing J., Pohlentz G., Kravitz E.A. A new male sex pheromone and novel cuticular cues for chemical communication in Drosophila. Curr. Biol. 2009;19:1245–1254. doi: 10.1016/j.cub.2009.06.037. PubMed DOI PMC

Cvacka J., Svatos A. Matrix-assisted laser desorption/ionization analysis of lipids and high molecular weight hydrocarbons with lithium 2,5-dihydroxybenzoate matrix. Rapid Commun. Mass Spectrom. 2003;17:2203–2207. doi: 10.1002/rcm.1178. PubMed DOI

Vrkoslav V., Muck A., Cvacka J., Svatos A. MALDI imaging of neutral cuticular lipids in insects and plants. J. Am. Soc. Mass Spectrom. 2010;21:220–231. doi: 10.1016/j.jasms.2009.10.003. PubMed DOI

Sivinski J.M., Calkins C. Pheromones and parapheromones in the control of tephritids. Florida Entomol. 1986;69:157. doi: 10.2307/3494757. DOI

Romano D., Donati E., Benelli G., Stefanini C. A review on animal–robot interaction: From bio-hybrid organisms to mixed societies. Biol. Cybern. 2019;113:201–225. doi: 10.1007/s00422-018-0787-5. PubMed DOI

Halloy J., Sempo G., Caprari G., Rivault C., Asadpour M., Tache F., Said I., Durier V., Canonge S., Ame J.M., et al. Social integration of robots into groups of cockroaches to control self-organized choices. Science. 2007;318:1155–1158. doi: 10.1126/science.1144259. PubMed DOI

Romano D., Benelli G., Kavallieratos N.G., Athanassiou C.G., Canale A., Stefanini C. Beetle-robot hybrid interaction: Sex, lateralization and mating experience modulate behavioural responses to robotic cues in the larger grain borer Prostephanus truncatus (Horn) Biol. Cybern. 2020;114:473–483. doi: 10.1007/s00422-020-00839-5. PubMed DOI

Romano D., Benelli G., Stefanini C. Opposite valence social information provided by bio-robotic demonstrators shapes selection processes in the green bottle fly. J. R. Soc. Interface. 2021;18:rsif.2021.0056. doi: 10.1098/rsif.2021.0056. PubMed DOI PMC

Papadopoulos N.T., Katsoyannos B.I., Kouloussis N.A., Hendrichs J., Carey J.R., Heath R.R. Early detection and population monitoring of Ceratitis capitata (Diptera: Tephritidae) in a mixed-fruit orchard in northern Greece. J. Econ. Entomol. 2001;94:971–978. doi: 10.1603/0022-0493-94.4.971. PubMed DOI

Suckling D.M., Kean J.M., Stringer L.D., Cáceres-Barrios C., Hendrichs J., Reyes-Flores J., Dominiak B.C. Eradication of tephritid fruit fly pest populations: Outcomes and prospects. Pest Manag. Sci. 2016;72:456–465. doi: 10.1002/ps.3905. PubMed DOI

Casaña-Giner V., Levi V., Navarro-Llopis V., Jang E.B. Implication of SAR of male medfly attractants in insect olfaction. SAR QSAR Environ. Res. 2002;13:629–640. doi: 10.1080/1062936021000043382. PubMed DOI

Jang E., Khrimian A., Holler T. Field response of Mediterranean fruit flies to ceralure B1 relative to most active isomer and commercial formulation of trimedlure. J. Econ. Entomol. 2010 doi: 10.1603/EC09296. PubMed DOI

Shelly T.E., Cowan A.N., Edu J., Pahio E. Mating success of male Mediterranean fruit flies following exposure to two sources of α-copaene, manuka oil and mango. Florida Entomol. 2008;91:9–15. doi: 10.1653/0015-4040(2008)091[0009:MSOMMF]2.0.CO;2. DOI

Shelly T.E., Whittier T.S., Villalobos E.M. Trimedlure affects mating success and mate attraction in male Mediterranean fruit flies. Entomol. Exp. Appl. 1996;78:181–185. doi: 10.1111/j.1570-7458.1996.tb00780.x. DOI

Papadopoulos N.T., Katsoyannos B.I., Kouloussis N.A., Hendrichs J. Effect of orange peel substances on mating competitiveness of male Ceratitis capitata. Entomol. Exp. Appl. 2001;99:253–261. doi: 10.1046/j.1570-7458.2001.00824.x. DOI

Shelly T.E., Epsky N.D. Exposure to tea tree oil enhances the mating success of male Mediterranean fruit flies (Diptera: Tephritidae) Florida Entomol. 2015;98:1127–1133. doi: 10.1653/024.098.0417. DOI

Shelly T.E. Exposure to α-copaene and α-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae) Ann. Entomol. Soc. Am. 2001;94:497–502. doi: 10.1603/0013-8746(2001)094[0497:ETCACC]2.0.CO;2. DOI

Kouloussis N.A., Gerofotis C.D., Ioannou C.S., Iliadis I.V., Papadopoulos N.T., Koveos D.S. Towards improving sterile insect technique: Exposure to orange oil compounds increases sexual signalling and longevity in Ceratitis capitata males of the Vienna 8 GSS. PLoS ONE. 2017;12:e0188092. doi: 10.1371/journal.pone.0188092. PubMed DOI PMC

Dean D., Pierre H., Mosser L., Kurashima R., Shelly T. Field longevity and attractiveness of trimedlure plugs to male Ceratitis capitata in Florida and Hawaii. Florida Entomol. 2018;101:441–446. doi: 10.1653/024.101.0322. DOI

(IAEA) International Atomic Energy Agency . Trapping Guidelines for Area-Wide Fruit Fly Programmes. IAEA; Vienna, Austria: 2003.

Royer J.E., Agovaua S., Bokosou J., Kurika K., Mararuai A., Mayer D.G., Niangu B. Responses of fruit flies (Diptera: Tephritidae) to new attractants in Papua New Guinea. Austral. Entomol. 2018;57:40–49. doi: 10.1111/aen.12269. DOI

Royer J.E. Responses of fruit flies (Tephritidae: Dacinae) to novel male attractants in north Queensland, Australia, and improved lures for some pest species. Austral. Entomol. 2015;54:411–426. doi: 10.1111/aen.12141. DOI

Shelly T.E., Villalobos E.M. Cue Lure and the mating behavior of male melon flies (Diptera: Tephritidae) Florida Entomol. 1995;78:473. doi: 10.2307/3495532. DOI

Shelly T.E. Effects of methyl eugenol and raspberry ketone/cue lure on the sexual behavior of Bactrocera species (Diptera: Tephritidae) Appl. Entomol. Zool. 2010;45:349–361. doi: 10.1303/aez.2010.349. DOI

Khan M.A.M., Shuttleworth L.A., Osborne T., Collins D., Gurr G.M., Reynolds O.L. Raspberry ketone accelerates sexual maturation and improves mating performance of sterile male Queensland fruit fly, Bactrocera tryoni (Froggatt) Pest Manag. Sci. 2019;75:1942–1950. doi: 10.1002/ps.5307. PubMed DOI

Akter H., Mendez V., Morelli R., Pérez J., Taylor P.W. Raspberry ketone supplement promotes early sexual maturation in male Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae) Pest Manag. Sci. 2017;73:1764–1770. doi: 10.1002/ps.4538. PubMed DOI

Wee S.-L., Clarke A.R. Male-lure type, lure dosage, and fly age at feeding all influence male mating success in Jarvis’ fruit fly. Sci. Rep. 2020;10:15004. doi: 10.1038/s41598-020-72209-x. PubMed DOI PMC

Akter H., Pérez J., Park S.J. Raspberry ketone supplements provided to immature male Queensland fruit fly, Bactrocera tryoni (Froggatt), increase the amount of volatiles in rectal glands. Chemoecology. 2020;31:89–99. doi: 10.1007/s00049-020-00333-1. DOI

Cunningham R.T., Suda D.Y. Male annihilation through mass-trapping of male flies with methyleugenol to reduce infestation of Oriental fruit fly (Diptera: Tephritidae) larvae in papaya. J. Econ. Entomol. 1986;79:1580–1582. doi: 10.1093/jee/79.6.1580. DOI

Haq I.U., Cáceres C., Meza J.S., Hendrichs J., Vreysen M.J.B. Different methods of methyl eugenol application enhance the mating success of male Oriental fruit fly (Dipera: Tephritidae) Sci. Rep. 2018;8:6033. doi: 10.1038/s41598-018-24518-5. PubMed DOI PMC

De Vincenzi M., Silano M., Stacchini P., Scazzocchio B. Constituents of aromatic plants: I. Methyleugenol. Fitoterapia. 2000;71:216–221. doi: 10.1016/S0367-326X(99)00150-1. PubMed DOI

Haniotakis G., Kozyrakis M., Fitsakis T., Antonidaki A. An effective mass trapping method for the control of Dacus oleae (Diptera, tephritidae) J. Econ. Entomol. 1991;84:564–569. doi: 10.1093/jee/84.2.564. DOI

Sarles L., Fassotte B., Boullis A., Lognay G., Verhaeghe A., Marko I., Verheggen F.J. Improving the monitoring of the walnut husk fly (Diptera: Tephritidae) using male-produced lactones. J. Econ. Entomol. 2018;111:2032–2037. doi: 10.1093/jee/toy169. PubMed DOI

Vargas R.I., Souder S.K., Hoffman K., Mercogliano J., Smith T.R., Hammond J., Davis B.J., Brodie M., Dripps J.E. Attraction and mortality of Bactrocera dorsalis (Diptera: Tephritidae) to STATIC spinosad ME weathered under operational conditions in California and Florida: A reduced-risk male annihilation treatment. J. Econ. Entomol. 2014;107:1362–1369. doi: 10.1603/EC14121. PubMed DOI

(CDFA) California Department of Food and Agriculture . Oriental Fruit Fly Fact Sheet. CDFA; Sacramento, CA, USA: 2008.

Vargas R., Piñero J., Leblanc L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects. 2015;6:297–318. doi: 10.3390/insects6020297. PubMed DOI PMC

Papadopoulos N.T., Plant R.E., Carey J.R. From trickle to flood: The large-scale, cryptic invasion of California by tropical fruit flies. Proc. R. Soc. B Biol. Sci. 2013;280:20131466. doi: 10.1098/rspb.2013.1466. PubMed DOI PMC

Manoukis N.C., Vargas R.I., Carvalho L., Fezza T., Wilson S., Collier T., Shelly T.E. A field test on the effectiveness of male annihilation technique against Bactrocera dorsalis (Diptera: Tephritidae) at varying application densities. PLoS ONE. 2019;14:e0213337. doi: 10.1371/journal.pone.0213337. PubMed DOI PMC

Manrakhan A., Venter J.H., Hattingh V. The progressive invasion of Bactrocera dorsalis (Diptera: Tephritidae) in South Africa. Biol. Invasions. 2015;17:2803–2809. doi: 10.1007/s10530-015-0923-2. DOI

Manrakhan A., Hattingh V., Venter J.-H., Holtzhausen M. Eradication of Bactrocera invadens (Diptera: Tephritidae) in Limpopo Province, South Africa. Afr. Entomol. 2011;19:650–659. doi: 10.4001/003.019.0307. DOI

Steiner L.F., Hart W.G., Harris E.J., Cunningham R.T., Ohinata K., Kamakahi D.C. Eradication of the Oriental fruit fly from the Mariana Islands by the methods of male annihilation and sterile insect release. J. Econ. Entomol. 1970;63:131–135. doi: 10.1093/jee/63.1.131. DOI

Koyama J., Teruya T., Tanaka K. Eradication of the Oriental fruit fly (Diptera: Tephritidae) from the Okinawa Islands by a male annihilation method. J. Econ. Entomol. 1984;77:468–472. doi: 10.1093/jee/77.2.468. DOI

Seewooruthun S.I., Permalloo S., Gungah B., Soonnoo A.R., Alleck M. Area-Wide Control of Fruit Flies and Other Insect Pests. Penerbit Universiti Sains Malaysia; Penang, Malaysia: 2000. Eradication of an exotic fruit fly from Mauritius; pp. 389–394.

Ekesi S., De Meyer M., Mohamed S.A., Virgilio M., Borgemeister C. Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annu. Rev. Entomol. 2016;61:219–238. doi: 10.1146/annurev-ento-010715-023603. PubMed DOI

Tasnin M.S., Merkel K., Clarke A.R. Effects of advanced age on olfactory response of male and female Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) J. Insect Physiol. 2020;122:104024. doi: 10.1016/j.jinsphys.2020.104024. PubMed DOI

Mau R.F.L., Jang E.B., Vargas R. The Hawaii area-wide fruit fly management programme. In: Vreysen M.J.B., Robinson A.S., Hendrichs J., editors. Area-Wide Control of Insect Pests from research to Field Implementation. Springer; Dordrecht, The Netherlands: 2007. pp. 671–683.

Ballo S., Demissie G., Tefera T., Mohamed S.A., Khamis F.M., Niassy S., Ekesi S. Sustainability in Plant and Crop Protection. Springer; Cham, Switzerland: 2020. Use of para-pheromone methyl eugenol for suppression of the mango fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Southern Ethiopia; pp. 203–217.

Speranza S., Bellocchi G., Pucci C. IPM trials on attract-and-kill mixtures against the olive fly Bactrocera oleae (Diptera Tephritidae) Bull. Insectol. 2004;57:111–115.

Broumas T., Haniotakis G., Liaropoulos C., Tomazou T., Ragoussis N. The efficacy of an improved form of the mass-trapping method, for the control of the olive fruit fly, Bactrocera oleae (Gmelin) (Dipt., Tephritidae): Pilot-scale feasibility studies. J. Appl. Entomol. 2002;126:217–223. doi: 10.1046/j.1439-0418.2002.00637.x. DOI

Montiel A., Ramos P., Jones O.T., Lisk J.C., Howse P.E., Baker R. Interferencias en el apareamiento de la mosca del olivo (Dacus oleae Gmel.) con el principal componente de su feromona sexual. Bol. Serv. Plagas. 1982;8:193–200.

Montiel A., Jones O.T. Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. IOBC WPRS Bull. 2002;25:147–156.

Navarro-Llopis V., Alfaro C., Primo J., Vacas S. Response of two tephritid species, Bactrocera oleae and Ceratitis capitata, to different emission levels of pheromone and parapheromone. Crop Prot. 2011;30:913–918. doi: 10.1016/j.cropro.2011.03.007. DOI

Ferveur J.F. Genetic control of pheromones in Drosophila simulans. I. Ngbo, a locus on the second chromosome. Genetics. 1991;128:293–301. doi: 10.1093/genetics/128.2.293. PubMed DOI PMC

Gleason J.M., Jallon J.M., Rouault J.D., Ritchie M.G. Quantitative trait loci for cuticular hydrocarbons associated with sexual isolation between Drosophila simulans and D. sechellia. Genetics. 2005;171:1789–1798. doi: 10.1534/genetics.104.037937. PubMed DOI PMC

Liimatainen J.O., Jallon J.M. Genetic analysis of cuticular hydrocarbons and their effect on courtship in Drosophila virilis and D. lummei. Behav. Genet. 2007;37 doi: 10.1007/s10519-007-9158-z. PubMed DOI

Snellings Y., Herrera B., Wildemann B., Beelen M., Zwarts L., Wenseleers T., Callaerts P. The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. Sci Rep. 2018;8:4996. doi: 10.1038/s41598-018-23189-6. PubMed DOI PMC

Leonhardt B.A., Rice R.E., Harte E.M., Cunningham R.T. Evaluation of dispensers containing trimedlure, the attractant for the Mediterranean fruit fly (Diptera: Tephritidae) J. Econ. Entomol. 1984;77:744–749. doi: 10.1093/jee/77.3.744. DOI

Domínguez-Ruiz J., Sanchis J., Navarro-Llopis V., Primo J. A new long-life trimedlure dispenser for Mediterranean fruit fly. J. Econ. Entomol. 2008;101:1325–1330. doi: 10.1603/0022-0493(2008)101[1325:ANLTDF]2.0.CO;2. PubMed DOI

Cameron D.N.S., McRae C., Park S.J., Taylor P.W., Jamie I.M. Vapor pressures and thermodynamic properties of phenylpropanoid and phenylbutanoid attractants of male Bactrocera, Dacus, and Zeugodacus fruit flies at ambient temperatures. J. Agric. Food Chem. 2020;68:9654–9663. doi: 10.1021/acs.jafc.0c03376. PubMed DOI

Lehman K.A., Barahona D.C., Manoukis N.C., Carvalho L.A.F.N., De Faveri S.G., Auth J.E., Siderhurst M.S. Raspberry ketone trifluoroacetate trapping of Zeugodacus cucurbitae (Diptera: Tephritidae)in Hawaii. J. Econ. Entomol. 2019;112:1306–1313. doi: 10.1093/jee/toz006. PubMed DOI

Katsoyannos B., Boller E. Second field application of oviposition-deterring pheromone of the European cherry fruit fly, Rhagoletis cerasi L. (Diptera: Tephritidae) Zeitschrift für Angew. Entomol. 1980;89:278–281. doi: 10.1111/j.1439-0418.1980.tb03467.x. DOI

Katsoyannos B.I., Boller E.F. First field application of oviposition-deterring marking pheromone of European cherry fruit fly. Environ. Entomol. 1976;5:151–152. doi: 10.1093/ee/5.1.151. DOI

Aluja M., Boller E.F. Host marking pheromone of Rhagoletis cerasi: Foraging behavior in response to synthetic pheromonal isomers. J. Chem. Ecol. 1992;18:1299–1311. doi: 10.1007/BF00994357. PubMed DOI

Boller E., Hurter J. The marking pheromone of the cherry fruit fly: A novel non-toxic and ecologically safe technique to protect cherries against cherry fruit fly infestation; Proceedings of the Second International Symposium on Insect Pheromones; 1998.

Prokopy R.J. Epideitic pheromones that influence spacing patterns of phytophagous insects. In: Nordlund D.A., Jones R.L., Lewis W.J., editors. Semiochemicals: Their Role in Pest Control. Wiley Press; New York, NY, USA: 1981. pp. 181–213.

Cook S.M., Khan Z.R., Pickett J.A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 2007;52:375–400. doi: 10.1146/annurev.ento.52.110405.091407. PubMed DOI

Birke A., Lopez-Ramirez S., Jimenez-Mendoza R., Acosta E., Ortega R., Edmunds A., Aluja M. Host marking pheromone and GF120(TM) applied in a push-pull scheme reduce grapefruit infestation by Anastrepha ludens in field-cage studies. J. Pest Sci. 2020;93:507–518. doi: 10.1007/s10340-019-01155-z. DOI

Cai P., Song Y., Huo D., Lin J., Zhang H., Zhang Z., Xiao C., Huang F., Ji Q. Chemical cues induced from fly-oviposition mediate the host-seeking behaviour of Fopius arisanus (Hymenoptera: Braconidae), an effective egg parasitoid of Bactrocera dorsalis (Diptera: Tephritidae), within a tritrophic context. Insects. 2020;11:231. doi: 10.3390/insects11040231. PubMed DOI PMC

Benelli G., Revadi S., Carpita A., Giunti G., Raspi A., Anfora G., Canale A. Behavioral and electrophysiological responses of the parasitic wasp Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) to Ceratitis capitata-induced fruit volatiles. Biol. Control. 2013;64:116–124. doi: 10.1016/j.biocontrol.2012.10.010. DOI

Giunti G., Canale A., Messing R.H., Donati E., Stefanini C., Michaud J.P., Benelli G. Parasitoid learning: Current knowledge and implications for biological control. Biol. Control. 2015;90:208–219. doi: 10.1016/j.biocontrol.2015.06.007. DOI

Stelinski L.L., Rodriguez-Saona C., Meyer W.L. Recognition of foreign oviposition-marking pheromone in a multi-trophic context. Naturwissenschaften. 2009;96:585–592. doi: 10.1007/s00114-009-0507-z. PubMed DOI

Faraone N., Hillier N.K., Cutler G.C. Collection of host-marking pheromone from Rhagoletis mendax (Diptera: Tephritidae) Can. Entomol. 2016;148:552–555. doi: 10.4039/tce.2015.87. DOI

Li H., Ren L., Xie M., Gao Y., He M., Hassan B., Lu Y., Cheng D. Egg-surface bacteria are indirectly associated with oviposition aversion in Bactrocera dorsalis. Curr. Biol. 2020;30:4432–4440. doi: 10.1016/j.cub.2020.08.080. PubMed DOI

Calcagnile M., Tredici S.M., Talà A., Alifano P. Bacterial semiochemicals and transkingdom interactions with insects and plants. Insects. 2019;10:441. doi: 10.3390/insects10120441. PubMed DOI PMC

Knipling E.F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 1955;48:459–462. doi: 10.1093/jee/48.4.459. DOI

Gurr G.M., Kvedaras O.L. Synergizing biological control: Scope for sterile insect technique, induced plant defences and cultural techniques to enhance natural enemy impact. Biol. Control. 2010;52:198–207. doi: 10.1016/j.biocontrol.2009.02.013. DOI

Whittier T.S., Nam F.Y., Shelly T.E., Kaneshiro K.Y. Male courtship success and female discrimination in the mediterranean fruit fly (Diptera: Tephritidae) J. Insect Behav. 1994;7:159–170. doi: 10.1007/BF01990078. DOI

Pereira R., Yuval B., Liedo P., Teal P.E.A., Shelly T.E., McInnis D.O., Hendrichs J. Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies. J. Appl. Entomol. 2013;137:178–190. doi: 10.1111/j.1439-0418.2011.01664.x. DOI

Segura D.F., Belliard S.A., Vera M.T., Bachmann G.E., Ruiz M.J., Jofre-Barud F., Fernández P.C., López M.L., Shelly T.E. Plant chemicals and the sexual behavior of male tephritid fruit flies. Ann. Entomol. Soc. Am. 2018;111:239–264. doi: 10.1093/aesa/say024. DOI

Vargas R.I., Shelly T.E., Leblanc L., Piñero J.C. Vitamins and Hormones. Elsevier; Amsterdam, The Netherlands: 2010. Recent advances in methyl eugenol and Cue-Lure technologies for fruit fly detection, monitoring, and control in Hawaii; pp. 575–595. PubMed

Khan M.A.M., Manoukis N.C., Osborne T., Barchia I.M., Gurr G.M., Reynolds O.L. Semiochemical mediated enhancement of males to complement sterile insect technique in management of the tephritid pest Bactrocera tryoni (Froggatt) Sci. Rep. 2017;7:13366. doi: 10.1038/s41598-017-13843-w. PubMed DOI PMC

Wehrenfennig C., Schott M., Gasch T., During R.A., Vilcinskas A., Kohl C.D. On-site airborne pheromone sensing. Anal. Bioanal. Chem. 2013;405:6389–6403. doi: 10.1007/s00216-013-7113-9. PubMed DOI

Fernandez-Grandon G.M., Girling R.D., Poppy G.M. Utilizing insect behavior in chemical detection by a behavioral biosensor. J. Plant Interact. 2011;6:109–112. doi: 10.1080/17429145.2010.544778. DOI

Schroth P., Schoning M.J., Schutz S., Malkoc U., Steffen A., Marso M., Hummel H.E., Kordos P., Luth H. Coupling of insect antennae to field-effect transistors for biochemical sensing. Electrochim. Acta. 1999;44:3821–3826. doi: 10.1016/S0013-4686(99)00088-2. DOI

Repasky K.S., Shaw J.A., Scheppele R., Melton C., Carsten J.L., Spangler L.H. Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines. Appl. Opt. 2006;45:1839–1843. doi: 10.1364/AO.45.001839. PubMed DOI

Tomberlin J.K., Tertuliano M., Rains G., Lewis W.J. Conditioned Microplitis croceipes Cresson (Hymenoptera: Braconidae) detect and respond to 2,4-DNT: Development of a biological sensor. J. Forensic. Sci. 2005;50:1187–1190. doi: 10.1520/JFS2005014. PubMed DOI

Tertuliano M., Tomberlin J.K., Jurjevic Z., Wilson D., Rains G.C., Lewis W.J. The ability of conditioned Microplitis croceipes (Hymenoptera: Braconidae) to distinguish between odors of aflatoxigenic and non-aflatoxigenic fungal strains. Chemoecology. 2005;15:89–95. doi: 10.1007/s00049-005-0299-3. DOI

Carey A.F., Carlson J.R. Insect olfaction from model systems to disease control. Proc. Natl. Acad. Sci. USA. 2011;108:12987–12995. doi: 10.1073/pnas.1103472108. PubMed DOI PMC

Strauch M., Lüdke A., Münch D., Laudes T., Galizia C.G., Martinelli E., Lavra L., Paolesse R., Ulivieri A., Catini A., et al. More than apples and oranges—Detecting cancer with a fruit fly’s antenna. Sci. Rep. 2015;4:3576. doi: 10.1038/srep03576. PubMed DOI PMC

Pelosi P., Mastrogiacomo R., Iovinella I., Tuccori E., Persaud K.C. Structure and biotechnological applications of odorant-binding proteins. Appl. Microbiol. Biotechnol. 2014;98:61–70. doi: 10.1007/s00253-013-5383-y. PubMed DOI

Lu Y.L., Li H.L., Zhuang S.L., Zhang D.M., Zhang Q., Zhou J., Dong S.Y., Liu Q.J., Wang P. Olfactory biosensor using odorant-binding proteins from honeybee: Ligands of floral odors and pheromones detection by electrochemical impedance. Sensors Actuators B Chem. 2014;193:420–427. doi: 10.1016/j.snb.2013.11.045. DOI

Sankaran S., Panigrahi S., Mallik S. Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens. Bioelectron. 2011;26:3103–3109. doi: 10.1016/j.bios.2010.07.122. PubMed DOI

Kuang Z.F., Kim S.N., Crookes-Goodson W.J., Farmer B.L., Naik R.R. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano. 2010;4:452–458. doi: 10.1021/nn901365g. PubMed DOI

Kotlowski C., Larisika M., Guerin P.M., Kleber C., Krober T., Mastrogiacomo R., Nowak C., Pelosi P., Schutz S., Schwaighofer A., et al. Fine discrimination of volatile compounds by graphene-immobilized odorant-binding proteins. Sensors Actuators B Chem. 2018;256:564–572. doi: 10.1016/j.snb.2017.10.093. DOI

Lu Y.L., Yao Y., Li S., Zhang Q., Liu Q.J. Olfactory biosensor based on odorant-binding proteins of Bactrocera dorsalis with electrochemical impedance sensing for pest management. Sens. Rev. 2017;37:396–403. doi: 10.1108/SR-03-2017-0044. DOI

Bohbot J.D., Dickens J.C. Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS ONE. 2009;4:e7032. doi: 10.1371/journal.pone.0007032. PubMed DOI PMC

Stensmyr M.C., Dweck H.K.M., Farhan A., Ibba I., Strutz A., Mukunda L., Linz J., Grabe V., Steck K., Lavista-Llanos S., et al. A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell. 2012;151:1345–1357. doi: 10.1016/j.cell.2012.09.046. PubMed DOI

Bohbot J.D., Vernick S. The emergence of insect Odorant Receptor-based biosensors. Biosensors. 2020;10:26. doi: 10.3390/bios10030026. PubMed DOI PMC

Moitra P., Bhagat D., Kamble V.B., Umarji A.M., Pratap R., Bhattacharya S. First example of engineered β-cyclodextrinylated MEMS devices for volatile pheromone sensing of olive fruit pests. Biosens. Bioelectron. 2021;173:112728. doi: 10.1016/j.bios.2020.112728. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...