Cuticular hydrocarbons corroborate the distinction between lowland and highland Natal fruit fly (Tephritidae, Ceratitis rosa) populations
Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26798275
PubMed Central
PMC4714085
DOI
10.3897/zookeys.540.9619
Knihovny.cz E-zdroje
- Klíčová slova
- Ceratitis rosa, GC×GC/MS, chemotaxonomy, cryptic species, integrative taxonomy,
- Publikační typ
- časopisecké články MeSH
The cuticular hydrocarbons (CHs) and morphology of two Ceratitis rosa Karsch (Diptera: Tephritidae) populations, putatively belonging to two cryptic taxa, were analysed. The chemical profiles were characterised by two-dimensional gas chromatography with mass spectrometric detection. CHs of Ceratitis rosa that originated from the lowlands and highlands of Kenya comprised of n-alkanes, monomethylalkanes, dimethylalkanes and unsaturated hydrocarbons in the range of the carbon backbone from C14 to C37. Hydrocarbons containing C29, C31, C33 and C35 carbon atoms predominated in these two populations. 2-Methyltriacontane was the predominant compound in both populations. Quantitative differences in the distribution of hydrocarbons of different chain lengths, mainly the C22, C32, C33 and C34 compounds of these two populations, were observed despite indistinct qualitative differences in these hydrocarbons. Morphological analyses of male legs confirmed that the flies belong to different morphotypes of Ceratitis rosa previously labelled as R1 and R2 for lowland and highland populations, respectively. A statistical analysis of the CH compositions of the putative R1 and R2 species showed distinct interspecific identities, with several CHs specific for each of the lowland and highland populations. This study supports a hypothesis that the taxon Ceratitis rosa consists of at least two biological species.
International Center for Insect Physiology and Ecology PO Box 30772 00100 GPO Nairobi Kenya
Royal Museum for Central Africa Leuvensesteenweg 13 B 3080 Tervuren Belgium
Zobrazit více v PubMed
Aluja M, Norrbom AL. (2001) Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. CRC Press LLC, Boca Raton.
Baliraine FN, Bonizzoni M, Guglielmino CR, Osir EO, Lux SA, Mulaa FJ, Gomulski LM, Zheng L, Quilici S, Gasperi G, Malacrida AR. (2004) Population genetics of the potentially invasive African fruit fly species, Ceratitis rosa and Ceratitis fasciventris (Diptera: Tephritidae). Molecular Ecology 13: 683–695. doi: 10.1046/j.1365-294X.2004.02105.x PubMed DOI
Blomquist GJ, Bagnères AG. (2010) Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, New York. doi: 10.1017/CBO9780511711909 DOI
Bontonou G, Wicker-Thomas C. (2014) Sexual communiaction in the Drosophila genus. Insects 5: 439–458. doi: 10.3390/insects5020439 PubMed DOI PMC
Carlson DA, Yocom SR. (1986) Cuticular hydrocarbons from six species of Tephritid fruit flies. Archives of Insect Biochemistry and Physiology 3: 397–412. doi: 10.1002/arch.940030407 DOI
Clarke KR. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x DOI
De Meyer M. (2000) Phylogeny of the genus Ceratitis (Dacinae: Ceratitidini). In: Aluja M, Norrbom AL. (Eds) Fruit Fies (Tephritidae): Phylogeny and Evolution of Behavior. CRC, Boca Raton, 409–428.
De Meyer M. (2001) On the identity of the Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Entomologie 71: 55–62.
De Meyer M, Freidberg A. (2006) Revision of the subgenus Ceratitis (Pterandrus) Bezzi (Diptera: Tephritidae). Israel Journal of Entomology 35/36: 197–315.
De Meyer M, Robertson MP, Peterson AT, Mansell MW. (2008) Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). Journal of Biogeography 35: 270–281.
De Meyer M, Delatte H, Ekesi S, Jordaens K, Kalinová B, Manrakhan A, Mwatawala M, Steck G, Van Cann J, Vaníčková L, Břízová R, Virgilio M. (2015) An integrative approach to unravel the Ceratitis FAR (Diptera, Tephritidae) cryptic species complex: a review. In: De Meyer M, Clarke AR, Vera MT, Hendrichs J. (Eds) Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade. ZooKeys 540: 405–427. doi: 10.3897/zookeys.540.10046 PubMed DOI PMC
Duyck PF, David P, Quilici S. (2004) A review of relationships between interspecifc competition and invasions in fruit flies (Diptera: Tephritidae). Ecological Entomology 29: 511–520. doi: 10.1111/j.0307-6946.2004.00638.x DOI
Etges WJ. (1998) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IV. Correlated responses in behavioral isolation to artificial selection on a life-history trait. American Naturalist 152: 129–144. doi: 10.1086/286154 PubMed DOI
Etges WJ, Jackson LL. (2001) Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species. Journal of Chemical Ecology 27: 2125–2149. doi: 10.1023/A:1012203222876 PubMed DOI
Ferveur JF. (2005) Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behavior Genetics 35: 279–295. doi: 10.1007/s10519-005-3220-5 PubMed DOI
Gibbs A, Chippindale A, Rose M. (1997) Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. Journal of Experimental Biology 200: 1821–1832. PubMed
Gibbs AG. (2011) Thermodynamics of cuticular transpiration. Journal of Insect Physiology 57: 1066–1069. doi: 10.1016/j.jinsphys.2011.05.003 PubMed DOI
Goh SH, Ooi KE, Chuah CH, Yong HS, Khoo SG, Ong SH. (1993) Cuticular hydrocarbons from two species of Malaysian Bactrocera fruit flies. Biochemical Systematics and Ecology 21: 215–226. doi: 10.1016/0305-1978(93)90039-T DOI
Grout TG, Stoltz KC. (2007) Developmental rates at constant temperature of three economically important Ceratitis spp. (Diptera: Tephritidae) from Southern Africa. Environmental Entomology 36: 1310–1317. doi: 10.1603/0046-225X(2007)36[1310:DRACTO]2.0.CO;2 PubMed DOI
Havens JA, Etges WJ. (2013) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection. Journal of Evolutionary Biology 26: 562–576. doi: 10.1111/jeb.12073 PubMed DOI
Higa I, Fuyama Y. (1993) Genetics of food preference in Drosophila sechellia. 1. Responses to food attractants. Genetica 88: 129–136. doi: 10.1007/BF02424469 PubMed DOI
Houot B, Svetec N, Godoy-Herrera R, Ferveur JF. (2010) Effects of laboratory acclimation on the variation of reproduction-related characters in Drosophila melanogaster. PubMed
Howard RW, Blomquist GJ. (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology 50: 371–393. doi: 10.1146/annurev.ento.50.071803.130359 PubMed DOI
Jennings JH, Etges WJ, Schmitt T, Hoikkala A. (2014) Cuticular hydrocarbons of Drosophila montana: Geographic variation, sexual dimorphism and potential roles as pheromones. Journal of Insect Physiology 61: 16–24. doi: 10.1016/j.jinsphys.2013.12.004 PubMed DOI
Jones CD. (2001) The genetica basis of larval resistance to a host plant toxin in Drosophila sechellia. Genetic Research 78: 225–233. doi: 10.1017/S0016672301005298 PubMed DOI
Kather R, Martin SJ. (2012) Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects. Physiological Entomology 37: 25–32. doi: 10.1111/j.1365-3032.2011.00826.x DOI
Key M. (2012) A tutorial in displaying mass spectrometry-based proteomic data using heat maps. BMC Bioinformatics 13 Suppl 16: S10. doi: 10.1186/1471-2105-13-S16-S10 PubMed DOI PMC
Milet-Pinheiro P, Navarro DMA, De Aquino NC, Ferreira LL, Tavares RF, Da Silva RCC, Lima-Mendonça A, Vaníčková L, Mendonça AL, Do Nascimento RR. (2014) Identification of male-borne attractants in Anastrepha fraterculus (Diptera: Tephritidae). Chemoecology. doi: 10.1007/s00049-014-0180-3 DOI
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. (2015) vegan: Community Ecology Package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan
Quilici S, Franck A, Peppuy A, Dos Reis Correia E, Mouniama C, Blard F. (2002) Comparative studies of courtship behavior of Ceratitis spp. (Diptera: Tephritidae) in Reunion island. Florida Entomologist 85: 138–142. doi: 10.1653/0015-4040(2002)085[0138:CSOCBO]2.0.CO;2 DOI
R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
Rouault J, Capy P, Jallon J-M. (2001) Variations of male cuticular hydrocarbons with geoclimatic variables: An adaptative mechanism in Drosophila melanogaster? Genetica 110: 117–130. doi: 10.1023/A:1017987220814 PubMed DOI
Rouault JD, Marican C, Wicker-Thomas C, Jallon JM. (2004) Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. simulans. Genetica 120: 195–212. doi: 10.1023/B:GENE.0000017641.75820.49 PubMed DOI
Shelly TE. (2000) Male signalling and lek attractiveness in the Mediterranean fruit fly. Animal Behaviour 60: 245–251. doi: 10.1006/anbe.2000.1470 PubMed DOI
Shelly TE, Edu J, Pahio E, Nishimoto J. (2007) Scented males and choosy females: does male odor influence female mate choice in the Mediterranean fruit fly? Journal of Chemical Ecology 33: 2308–2324. doi: 10.1007/s10886-007-9394-y PubMed DOI
Stennett MD, Etges WJ. (1997) Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. Journal of Chemical Ecology 23: 2803–2824. doi: 10.1023/A:1022519228346 DOI
Sutton BD, Carlson BD. (1993) Interspecific variation in Tephritid fruit fly larvae surface hydrocarbons. Archives of Insect Biochemistry and Physiology 23: 53–65. doi: 10.1002/arch.940230202 DOI
Tanga CM, Manrakhan A, Daneel JH, Mohamed SA, Khamis FM, Ekesi S. (2015) Comparative analysis of development and survival of two Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae) populations from Kenya and South Africa. In: De Meyer M, Clarke AR, Vera MT, Hendrichs J. (Eds) Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade. ZooKeys 540: 467–487. doi: 10.3897/zookeys.540.9906 PubMed DOI PMC
Van Cann J, Virgilio M, Jordaens K, De Meyer M. (2015) Wing morphometrics as a possible tool for the diagnosis of the Ceratitis fasciventris, C. anonae, C. rosa complex (Diptera, Tephritidae). In: De Meyer M, Clarke AR, Vera MT, Hendrichs J. (Eds) Resolution of Cryptic Species Complexes of Tephritid Pests to Enhance SIT Application and Facilitate International Trade. ZooKeys 540: 489–506. doi: 10.3897/zookeys.540.9724 PubMed DOI PMC
Van Den Dool H, Kratz PD. (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography A 11: 463–471. doi: 10.1016/S0021-9673(01)80947-X PubMed DOI
Vaníčková L. (2012) Chemical ecology of fruit flies: Genera Ceratitis and Anastrepha. PhD thesis, Institute of Chemical Technology, Prague, Czech Republic.
Vaníčková L, Břízová R, Mendonça AL, Pompeiano A, Do Nascimento RR. (2015) Intraspecific variation of cuticular hydrocarbon profiles in Anastrepha fraterculus (Diatrea: Tephritidae) species complex. Journal of Applied Entomology. doi: 10.1111/jen.12204 DOI
Vaníčková L, do Nascimento RR, Hoskovec M, Ježková Z, Břízová R, Tomčala A, Kalinová B. (2012a) Are the wild and laboratory insect populations different in semiochemical emission? The case of medfly sex pheromone. Journal of Agricultural and Food Chemistry 60: 7168–7176. doi: 10.1021/jf301474d PubMed DOI
Vaníčková L, Svatoš A, Kroiss J, Kaltenpoth M, Nascimento RR, Hoskovec M, Břízová R, Kalinová B. (2012b) Cuticular hydrocarbons of the South American fruit fly Anastrepha fraterculus: Variability with sex and age. Journal of Chemical Ecology 38: 1133–1142. doi: 10.1007/s10886-012-0177-8 PubMed DOI
Vaníčková L, Virgilio M, Tomčala A, Břízová R, Ekesi S, Hoskovec M, Kalinová B, Do Nascimento RR, De Meyer M. (2014) Resolution of three cryptic agricultural pests (Ceratitis fasciventris, C. anonae, C. rosa, Diptera: Tephritidae) using cuticular hydrocarbon profiling. Bulletin of Entomological Research 104: 631–638. doi: 10.1017/S0007485314000406 PubMed DOI
Veltsos P, Wicker-Thomas C, Butlin RK, Hoikkala A, Ritchie MG. (2012) Sexual selection on song and cuticular hydrocarbons in two distinct populations of Drosophila montana. Ecology and Evolution 2: 80–94. doi: 10.1002/ece3.75 PubMed DOI PMC
Virgilio M, Delatte H, Quilici S, Backeljau T, De Meyer M. (2013) Cryptic diversity and gene flow among three African agricultural pests: Ceratitis rosa, Ceratitis fasciventris and Ceratitis anonae (Diptera, Tephritidae). Molecular Ecology 22: 2526–2539. doi: 10.1111/mec.12278 PubMed DOI
Virgilio M, Jordaens K, Breman FC, Backeljau T, De Meyer M. (2012) Identifying insects with incomplete DNA barcode libraries, African fruit flies (Diptera: Tephritidae) as a test case. PLoS ONE 7: e31581. doi: 10.1371/journal.pone.0031581 PubMed DOI PMC
Wagoner KM, Lehmann T, Huestis DL, Ehrmann BM, Cech NB, Wasseberg G. (2014) Identification of morphological and chemical markers of dry- and wet-season conditions in female Anopheles gambiae mosquitoes. Parasites and Vectors 7: 1–13. doi: 10.1186/1756-3305-7-294 PubMed DOI PMC
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B. (2015) gplots: Various R Programming Tools for Plotting Data. R package version 2.16.0. http://CRAN.R-project.org/package=gplots
Yuval B, Hendrichs J. (2001) Behavior of flies in the genus Ceratitis (Dacinae: Ceratitidini). In: Aluja M, Norrbom AL (Eds) Fruit Flies (Tephritidae) Phylogeny and Evolution of Behavior. CRC Press LLC, Boca Raton.
Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives
Salinity in Autumn-Winter Season and Fruit Quality of Tomato Landraces
Analyses of volatiles produced by the African fruit fly species complex (Diptera, Tephritidae)