Digital data sources and methods for conservation culturomics

. 2021 Apr ; 35 (2) : 398-411. [epub] 20210322

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33749027

Ongoing loss of biological diversity is primarily the result of unsustainable human behavior. Thus, the long-term success of biodiversity conservation depends on a thorough understanding of human-nature interactions. Such interactions are ubiquitous but vary greatly in time and space and are difficult to monitor efficiently at large spatial scales. However, the Information Age also provides new opportunities to better understand human-nature interactions because many aspects of daily life are recorded in a variety of digital formats. The emerging field of conservation culturomics aims to take advantage of digital data sources and methods to study human-nature interactions and thus to provide new tools for studying conservation at relevant temporal and spatial scales. Nevertheless, technical challenges associated with the identification, access, and analysis of relevant data hamper the wider adoption of culturomics methods. To help overcome these barriers, we propose a conservation culturomics research framework that addresses data acquisition, analysis, and inherent biases. The main sources of culturomic data include web pages, social media, and other digital platforms from which metrics of content and engagement can be obtained. Obtaining raw data from these platforms is usually desirable but requires careful consideration of how to access, store, and prepare the data for analysis. Methods for data analysis include network approaches to explore connections between topics, time-series analysis for temporal data, and spatial modeling to highlight spatial patterns. Outstanding challenges associated with culturomics research include issues of interdisciplinarity, ethics, data biases, and validation. The practical guidance we offer will help conservation researchers and practitioners identify and obtain the necessary data and carry out appropriate analyses for their specific questions, thus facilitating the wider adoption of culturomics approaches for conservation applications.

Fuentes de Información Digital y Métodos para la Culturomia de la Conservación Resumen La continua pérdida de biodiversidad es el resultado principal del comportamiento humano insostenible. Por esto, el éxito a largo plazo de la conservación de la biodiversidad depende de una comprensión exhaustiva de las interacciones humano-naturaleza. Dichas interacciones son ubicuas pero varían enormemente en el tiempo y el espacio, lo que dificulta su monitoreo eficiente a escalas espaciales amplias. Sin embargo, la Era de la Información también nos proporciona nuevas oportunidades para comprender de mejor manera las interacciones humano-naturaleza pues muchos aspectos de la vida diaria quedan registrados en una variedad de formatos digitales. El campo emergente de la culturomia de la conservación busca aprovechar los recursos y los métodos digitales para estudiar las interacciones humano-naturaleza y así proporcionar nuevas herramientas para el estudio de la conservación a escalas temporales y espaciales relevantes. No obstante, las dificultades técnicas asociadas con la identificación, acceso y análisis de la información relevante obstaculizan la adopción más amplia de los métodos de la culturomia. Para ayudar a superar estas barreras proponemos un marco de trabajo de investigación de culturomia de la conservación que aborde la obtención de datos, el análisis y los sesgos inherentes. Entre las principales fuentes de datos sobre culturomia se incluyen las páginas web, las redes sociales y otras plataformas digitales a partir de las cuales se pueden obtener medidas del contenido y la participación. Normalmente se busca obtener datos crudos a partir de este tipo de plataformas, pero esto requiere que se tengan en consideración las vías de acceso, el almacenaje y la preparación de la información para su posterior análisis. Los métodos para el análisis de datos incluyen analísis de redes para explorar las conexiones entre los temas, el análisis de series de tiempo para los datos temporales y el modelado espacial para resaltar los patrones espaciales. Los desafíos sobresalientes asociados a la investigación en culturomia incluyen temas de interdisciplinariedad, ética, sesgos de datos y validación. La orientación práctica que ofrecemos ayudará a los investigadores y practicantes de la conservación a identificar y obtener los datos necesarios. También les ayudará a realizar análisis apropiados para responder a sus preguntas específicas, facilitando así la adopción más amplia de las estrategias de culturomia para su aplicación en la conservación.

Biology Centre of the Czech Academy of Sciences Institute of Hydrobiology České Budějovice 37005 Czech Republic

CESAM Centre for Environmental and Marine Studies University of Aveiro Campus Universitário de Santiago Aveiro 3910 193 Portugal

CIBIO InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado Instituto Superior de Agronomia Universidade de Lisboa Lisboa 1349 017 Portugal

CIBIO InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Laboratório Associado Universidade do Porto Porto 4485 661 Portugal

Department of Ecosystem Biology Faculty of Science University of South Bohemia České Budějovice 37005 Czech Republic

Department of Geosciences and Geography Helsinki Lab of Interdisciplinary Conservation Science University of Helsinki Helsinki 00014 Finland

Department of Zoology University of Oxford Oxford OX1 3SZ U K

Helsinki Institute of Sustainability Science University of Helsinki Helsinki 00014 Finland

Institute of Biological and Health Sciences Federal University of Alagoas Maceió 57072 900 Brazil

Mitrani Department of Desert Ecology The Jacob Blaustein Institutes for Desert Research Ben Gurion University of the Negev Midreshet Ben Gurion 8499000 Israel

Oxford Martin School University of Oxford Oxford OX1 3BD U K

San Diego Zoo Institute for Conservation Research Escondido CA 92027 U S A

School of Geography and the Environment University of Oxford Oxford OX1 3QY U K

School of Life Sciences University of KwaZulu Natal Durban 4041 South Africa

The Albert Katz International School for Desert Studies The Jacob Blaustein Institutes for Desert Research Ben Gurion University of the Negev Midreshet Ben GurionDurban 8499000 Israel

Zobrazit více v PubMed

Acerbi A. 2019. Cultural evolution in the digital age. Oxford University Press, Oxford, United Kingdom.

Archibald CL, Butt N. 2018. Using Google search data to inform global climate change adaptation policy. Climatic Change 150:447-456.

Bennett NJ, et al. 2017. Conservation social science: understanding and integrating human dimensions to improve conservation. Biological Conservation 205:93-108.

Blangiardo M, Cameletti M. 2015. Spatial and spatio-temporal Bayesian models with R - INLA. Wiley, Chichester, United Kingdom.

Braczkowski A, et al. 2018. Reach and messages of the world's largest ivory burn. Conservation Biology 32:765-773.

Bruns A. 2019. After the ‘APIcalypse’: social media platforms and their fight against critical scholarly research. Information, Communication & Society 22:1544-1566.

Ciaburro G. 2018. Regression analysis with R. Packt Publishing, Birmingham, United Kingdom.

Cisco. 2018. Cisco Visual Networking Index: forecast and trends, 2017-2022 white paper, Available from https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html (accessed October 2020).

Cooper MW, Di Minin E, Hausmann A, Qin S, Schwartz AJ, Correia RA. 2019. Developing a global indicator for Aichi Target 1 by merging online data sources to measure biodiversity awareness and engagement. Biological Conservation 230:29-36.

Correia RA. 2019. Google trends data need validation: comment on Durmuşoğlu (2017). Human and Ecological Risk Assessment: An International Journal 25:787-790.

Correia RA, Di Minin E, Jarić I, Jepson P, Ladle R, Mittermeier J, Roll U, Soriano-Redondo A, Veríssimo D. 2019a. Inferring public interest from search engine data requires caution. Frontiers in Ecology and the Environment 17:254-255.

Correia RA, Jarić I, Jepson P, Malhado ACM, Alves JA, Ladle RJ. 2018a. Nomenclature instability in species culturomic assessments: why synonyms matter. Ecological Indicators 90:74-78.

Correia RA, Jepson P, Malhado ACM, Ladle RJ. 2016. Familiarity breeds content: assessing bird species popularity with culturomics. PeerJ 4:e1728.

Correia RA, Jepson P, Malhado ACM, Ladle RJ. 2017. Internet scientific name frequency as an indicator of cultural salience of biodiversity. Ecological Indicators 78:549-555.

Correia RA, Jepson P, Malhado ACM, Ladle RJ. 2018b. Culturomic assessment of Brazilian protected areas: exploring a novel index of protected area visibility. Ecological Indicators 85:165-171.

Correia RA, Ruete A, Stropp J, Malhado ACM, dos Santos JW, Lessa T, Alves JA, Ladle RJ. 2019b. Using ignorance scores to explore biodiversity recording effort for multiple taxa in the Caatinga. Ecological Indicators 106:105539.

Cowpertwait PSP, Metcalfe AV. 2009. Introductory time series with R. Springer, New York.

Daume S, Galaz V. 2016. Anyone know what species this is?” - Twitter conversations as embryonic citizen science communities. PLOS ONE 11 (e0151387).

Di Minin E, Fink C, Hausmann A, Kremer J, Kulkarni R. 2021. How to address data privacy concerns when using social media data in conservation science. Conservation Biology.

Di Minin E, Fink C, Hiippala T, Tenkanen H. 2019. A framework for investigating illegal wildlife trade on social media with machine learning. Conservation Biology 33:210-213.

Di Minin E, Fink C, Tenkanen H, Hiippala T. 2018. Machine learning for tracking illegal wildlife trade on social media. Nature Ecology & Evolution 2:406-407.

Di Minin E, Tenkanen H, Toivonen T. 2015. Prospects and challenges for social media data in conservation science. Frontiers in Environmental Science 3:63.

Do Y. 2019. Valuating aesthetic benefits of cultural ecosystem services using conservation culturomics. Ecosystem Services 36:100894.

Do Y, Kim JY, Lineman M, Kim DK, Joo GJ. 2015. Using internet search behavior to assess public awareness of protected wetlands. Conservation Biology 29:271-279.

El Bizri HR, Morcatty TQ, Lima JJS, Valsecchi J. 2015. The thrill of the chase: uncovering illegal sport hunting in Brazil through YouTube posts. Ecology and Society 20:30.

Fernández-Bellon D, Kane A. 2020. Natural history films raise species awareness-a big data approach. Conservation Letters 13:e12678.

Ficetola GF. 2013. Is interest toward the environment really declining? The complexity of analysing trends using internet search data. Biodiversity and Conservation 22:2983-2988.

Fink C, Hausmann A, Di Minin E. 2020. Online sentiment towards iconic species. Biological Conservation 241:108289.

Francis FT, et al. 2019. Shifting headlines? Size trends of newsworthy fishes PeerJ 7:e6395.

Fukano Y, Soga M. 2019. Spatio-temporal dynamics and drivers of public interest in invasive alien species. Biological Invasions 21:3521-3532.

Funk SM, Rusowsky D. 2014. The importance of cultural knowledge and scale for analysing internet search data as a proxy for public interest toward the environment. Biodiversity and Conservation 23:3101-3112.

Geldmann J, Heilmann-Clausen J, Holm TE, Levinsky I, Markussen B, Olsen K, Rahbek C, Tøttrup AP, Leung B. 2016. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Diversity and Distributions 22:1139-1149.

Ghermandi A, Sinclair M. 2019. Passive crowdsourcing of social media in environmental research: a systematic map. Global Environmental Change 55:36-47.

Graham M, De Sabbata S, Zook MA. 2015. Towards a study of information geographies: (im)mutable augmentations and a mapping of the geographies of information. Geo: Geography and Environment 2:88-105.

Harrison JR, Roberts DL, Hernandez-Castro J. 2016. Assessing the extent and nature of wildlife trade on the dark web. Conservation Biology 30:900-904.

Hausmann A, Toivonen T, Heikinheimo V, Tenkanen H, Slotow R, Di Minin E. 2017. Social media reveal that charismatic species are not the main attractor of ecotourists to sub-Saharan protected areas. Scientific Reports 7:763.

Hausmann A, Toivonen T, Slotow R, Tenkanen H, Moilanen A, Heikinheimo V, Di Minin E. 2018. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conservation Letters 11:e12343.

Hayes D, Cappa F, Cardon J. 2018. A framework for more effective dark web marketplace investigations. Information 9:186.

Heumann C, Schomaker M, Shalabh. 2016. Introduction to statistics and data analysis: with exercises, solutions and applications in R. Springer, New York.

Hinsley A, Lee TE, Harrison JR, Roberts DL. 2016. Estimating the extent and structure of trade in horticultural orchids via social media. Conservation Biology 30:1038-1047.

International Telecommunication Union. 2020. Individuals using the Internet, 2005-2019. Available from https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (accessed January 2020).

Jarić I, et al. 2020. iEcology: harnessing large online resources to generate ecological insights. Trends in Ecology & Evolution 35:630-639.

Jarić I, et al. 2021. Invasion culturomics and iEcology approaches to better understand biological invasions. Conservation Biology.

Jarić I, Correia RA, Roberts DL, Gessner J, Meinard Y, Courchamp F. 2019. On the overlap between scientific and societal taxonomic attentions - insights for conservation. Science of the Total Environment 648:772-778.

Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson K. 2012. JAABA: interactive machine learning for automatic annotation of animal behavior. Nature Methods 10:64-67.

Kesebir S, Kesebir P. 2017. A growing disconnection from nature is evident in cultural products. Perspectives on Psychological Science 12:258-269.

Kidd LR, Gregg EA, Bekessy SA, Robinson JA, Garrard GE. 2018. Tweeting for their lives: visibility of threatened species on Twitter. Journal for Nature Conservation 46:106-109.

Kitchin R. 2014. Big Data, new epistemologies and paradigm shifts. Big Data & Society 1. https://doi.org/10.1177/2053951714528481.

Kohler F, Brondizio ES. 2017. Considering the needs of indigenous and local populations in conservation programs. Conservation Biology 31:245-251.

Ladle RJ, Correia RA, Do Y, Joo GJ, Malhado ACM, Proulx R, Roberge JM, Jepson P. 2016. Conservation culturomics. Frontiers in Ecology and the Environment 14:270-276.

Ladle RJ, Jepson P, Correia RA, Malhado ACM. 2017. The power and the promise of culturomics. Frontiers in Ecology and the Environment 15:290-291.

Ladle RJ, Jepson P, Correia RA, Malhado ACM, Gould R. 2019. A culturomics approach to quantifying the salience of species on the global internet. People and Nature 1:524-532.

Lansdall-Welfare T, Sudhahar S, Thompson J, Lewis J, Cristianini N. 2017. Content analysis of 150 years of British periodicals. Proceedings of the National Academy of Sciences of the United States of America 114:E457-E465.

Leckner S, Severson P. 2019. Exploring the meaning problem of big and small data through digital method triangulation. Nordicom Review 40:79-94.

Lennox RJ, Verissimo D, Twardek WM, Davis CR, Jaric I. 2020. Sentiment analysis as a measure of conservation culture in scientific literature. Conservation Biology 34:462-471.

Lindenmayer D, Scheele B. 2017. Do not publish. Science 356:800-801.

Measey J, Basson A, Rebelo AD, Nunes AL, Vimercati G, Louw M, Mohanty NP. 2019. Why have a pet amphibian? Insights from YouTube. Frontiers in Ecology and Evolution 7:52.

Megias DA, Anderson SC, Smith RJ, Veríssimo D. 2017. Investigating the impact of media on demand for wildlife: A case study of Harry Potter and the UK trade in owls. Plos One 12:e0182368.

Merriam-Webster. 2020. Dictionary: corpus. Available from https://www.merriam-webster.com/dictionary/corpus (accessed January 2020).

Michel J-B, Shen YK, Aiden AP, Veres A, Gray MK, Pickett JP, Hoiberg D, Clancy D, Norvig P, Orwant J. 2011. Quantitative analysis of culture using millions of digitized books. Science 331:176-182.

Miranda EBP, Ribeiro RP, Strüssmann C. 2016. The ecology of human-anaconda conflict: a study using internet videos. Tropical Conservation Science 9:43-77.

Mittermeier JC, Roll U, Matthews TJ, Grenyer R. 2019. A season for all things: phenological imprints in Wikipedia usage and their relevance to conservation. PLOS Biology 17:e3000146.

Monkman GG, Kaiser M, Hyder K. 2018a. The ethics of using social media in fisheries research. Reviews in Fisheries Science & Aquaculture 26:235-242.

Monkman GG, Kaiser MJ, Hyder K. 2018b. Text and data mining of social media to map wildlife recreation activity. Biological Conservation 228:89-99.

Nghiem LTP, Papworth SK, Lim FKS, Carrasco LR. 2016. Analysis of the capacity of Google Trends to measure interest in conservation topics and the role of online news. PLOS ONE 11 (e0152802). https://doi.org/10.1371/journal.pone.0152802.

Papworth SK, Nghiem TPL, Chimalakonda D, Posa MRC, Wijedasa LS, Bickford D, Carrasco LR. 2015. Quantifying the role of online news in linking conservation research to Facebook and Twitter. Conservation Biology 29:825-833.

Priyadarshani N, Marsland S, Castro I. 2018. Automated birdsong recognition in complex acoustic environments: a review. Journal of Avian Biology 49:jav-01447.

Proulx R, Massicotte P, Pepino M. 2014. Googling trends in conservation biology. Conservation Biology 28:44-51.

Ramachandram D, Taylor GW. 2017. Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Processing Magazine 34:96-108.

Richards DR. 2013. The content of historical books as an indicator of past interest in environmental issues. Biodiversity and Conservation 22:2795-2803.

Roberge J-M. 2014. Using data from online social networks in conservation science: which species engage people the most on Twitter? Biodiversity and Conservation 23:715-726.

Roll U, Correia RA, Berger-Tal O. 2018. Using machine learning to disentangle homonyms in large text corpora. Conservation Biology 32:716-724.

Roll U, Mittermeier JC, Diaz GI, Novosolov M, Feldman A, Itescu Y, Meiri S, Grenyer R. 2016. Using Wikipedia page views to explore the cultural importance of global reptiles. Biological Conservation 204:42-50.

Sbragaglia V, Correia RA, Coco S, Arlinghaus R, Schmidt J. 2019. Data mining on YouTube reveals fisher group-specific harvesting patterns and social engagement in recreational anglers and spearfishers. ICES Journal of Marine Science https://doi.org/10.1093/icesjms/fsz100.

Schroeder R, Taylor L. 2015. Big data and Wikipedia research: social science knowledge across disciplinary divides. Information, Communication & Society 18:1039-1056.

Schultz PW. 2011. Conservation means behavior. Conservation Biology 25:1080-1083.

Schwartz T. 2011. Culturomics: periodicals gauge culture's pulse. Science 332:35-36.

Sherren K, Smit M, Holmlund M, Parkins JR, Chen Y. 2017. Conservation culturomics should include images and a wider range of scholars. Frontiers in Ecology and the Environment 15:289-290.

Shook E, Leetaru K, Cao G, Padmanabhan A, Wang S. 2012. Happy or not: generating topic-based emotional heatmaps for culturomics using CyberGIS. Pages 1-6 in 2012 IEEE 8th International Conference on E-Science.

Soriano-Redondo A, Bearhop S, Lock L, Votier SC, Hilton GM. 2017. Internet-based monitoring of public perception of conservation. Biological Conservation 206:304-309.

Statista. 2019. Most popular social networks worldwide as of October 2019, ranked by number of active users. Available from https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ (accessed January 2020).

Stergiou KI. 2017. The most famous fish: human relationships with fish as inferred from the corpus of online English books (1800-2000). Ethics in Science and Environmental Politics 17:9-18.

Toivonen T, Heikinheimo V, Fink C, Hausmann A, Hiippala T, Järv O, Tenkanen H, Di Minin E. 2019. Social media data for conservation science: a methodological overview. Biological Conservation 233:298-315.

Troumbis AY. 2019. The time and timing components of conservation culturomics cycles and scenarios of public interest in the Google era. Biodiversity and Conservation 28:1717-1727.

Väisänen T, Heikinheimo V, Hiippala T, Toivonen T. 2021. Discovering human-nature interactions in national parks using social media photographs and computer vision. Conservation Biology.

Vardi R, Mittermeier JC, Roll U. 2021. Combining culturomic sources to uncover trends in popularity and seasonal interest in plants. Conservation Biology.

Veríssimo D, Anderson S, Tlusty M. 2020. Did the movie Finding Dory increase demand for blue tang fish? Ambio 49:903-911.

Veríssimo D, MacMillan DC, Smith RJ, Crees J, Davies ZG. 2014. Has climate change taken prominence over biodiversity conservation? Bioscience 64:625-629.

Vieira FAS, Bragagnolo C, Correia RA, Malhado ACM, Ladle RJ. 2018. A salience index for integrating multiple user perspectives in cultural ecosystem service assessments. Ecosystem Services 32:182-192.

Westgate MJ, Barton PS, Pierson JC, Lindenmayer DB. 2015. Text analysis tools for identification of emerging topics and research gaps in conservation science. Conservation Biology 29:1606-1614.

Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D. 2012. Darwin Core: an evolving community-developed biodiversity data standard. PLOS ONE 7 (e29715). https://doi.org/10.1371/journal.pone.0029715.

Wikimedia. 2020. List of Wikipedias. Available from https://meta.wikimedia.org/wiki/List_of_Wikipedias (accessed January 2020).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...