Salinity in Autumn-Winter Season and Fruit Quality of Tomato Landraces
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31611885
PubMed Central
PMC6769068
DOI
10.3389/fpls.2019.01078
Knihovny.cz E-zdroje
- Klíčová slova
- fruit quality, landraces, metabolites, off-season, salinity, tomato,
- Publikační typ
- časopisecké články MeSH
Tomato landraces, originated by adaptive responses to local habitats, are considered a valuable resource for many traits of agronomic interest, including fruit nutritional quality. Primary and secondary metabolites are essential determinants of fruit organoleptic quality, and some of them, such as carotenoids and phenolics, have been associated with beneficial proprieties for human health. Landraces' fruit taste and flavour are often preferred by consumers compared to the commercial varieties' ones. In an autumn-winter greenhouse hydroponic experiment, the response of three Southern-Italy tomato landraces (Ciettaicale, Linosa and Corleone) and one commercial cultivar (UC-82B) to different concentrations of sodium chloride (0 mM, 60 mM or 120 mM NaCl) were evaluated. At harvest, no losses in marketable yield were noticed in any of the tested genotypes. However, under salt stress, fresh fruit yield as well as fruit calcium concentration were higher affected in the commercial cultivar than in the landraces. Furthermore, UC-82B showed a trend of decreasing lycopene and total antioxidant capacity with increasing salt concentration, whereas no changes in these parameters were observed in the landraces under 60 mM NaCl. Landraces under 120 mM NaCl accumulated more fructose and glucose in the fruits, while salt did not affect hexoses levels in UC-82B. Ultra-performance liquid chromatography-tandem mass spectrometry analysis revealed differential accumulation of glycoalkaloids, phenolic acids, flavonoids and their derivatives in the fruits of all genotypes under stress. Overall, the investigated Italian landraces showed a different behaviour compared to the commercial variety UC-82B under moderate salinity stress, showing a tolerable compromise between yield and quality attributes. Our results point to the feasible use of tomato landraces as a target to select interesting genetic traits to improve fruit quality under stress conditions.
Central European Institute of Technology Brno University of Technology Brno Czechia
Department of Agraria University Mediterranea of Reggio Calabria Reggio Calabria Italy
Department of Agriculture Food and Environment University of Pisa Pisa Italy
Department of Plant and Microbial Biology University of Zürich Zürich Switzerland
Institute of Integrative Biology ETH Zürich Zürich Switzerland
Institute of Research on Terrestrial Ecosystems National Research Council Pisa Italy
International Clinical Research Centre St Anne's University Hospital Brno Czechia
Zobrazit více v PubMed
Abenavoli M. R., Longo C., Lupini A., Araniti F., Mercati F., Princi M. P., et al. (2016). Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiol. Biochem. 107, 21–32. 10.1016/j.plaphy.2016.04.021 PubMed DOI
Adams P. (1991). Effects of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool. J. Hort. Sci. 66, 201–207. 10.1080/00221589.1991.11516145 DOI
Adams S. R., Cockshull K. E., Cave C. R. J. (2001). Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 88, 869–877. 10.1006/anbo.2001.1524 DOI
Adato A., Mandel T., Mintz-Oron S., Venger I., Levy D., Yativ M., et al. (2009). Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet. 5 (12), e1000777. 10.1371/journal.pgen.1000777 PubMed DOI PMC
Agong S. G., Schittenhelm S., Friedt W. (1997). Assessment of tolerance to salt stress in Kenyan tomato germplasm. Euphytica 95, 57–66. 10.1023/A:1002933325347 DOI
Asensio E., Sanvicente I., Mallor C., Menal-Puey S. (2019). Spanish traditional tomato: effects of genotype, location and agronomic conditions on the nutritional quality and evaluation of consumer preferences. Food Chem. 270, 452–458. 10.1016/j.foodchem.2018.07.131 PubMed DOI
Atkinson N. J., Dew T. P., Orfila C., Urwin P. E. (2011). Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). J. Agr. Food Chem. 59, 9673–9682. 10.1021/jf202081t PubMed DOI
Baldina S., Picarella M. E., Troise A. D., Pucci A., Ruggieri V., Ferracane R., et al. (2016). Metabolite profiling of Italian tomato landraces with different fruit types. Front. Plant Sci. 7, 664. 10.3389/fpls.2016.00664 PubMed DOI PMC
Balibrea M. E., Cuartero J., Bolarín M. C., Pérez-Alfocea F. (2003). Sucrolytic activities during fruit development of Lycopersicon genotypes differing in tolerance to salinity. Physiol. Plant. 118, 38–46. 10.1034/j.1399-3054.2003.00084.x PubMed DOI
Balint R., Cooper G., Staebell M., Filner P. (1987). N-caffeoyl-4-amino-n-butyric acid, a new flower-specific metabolite in cultured tobacco cells and tobacco plants. J. Biol. Chem. 262, 11026–11031. PubMed
Barbagallo R. N., Chisari M., Branca F., Spagna G. (2008). Pectin methylesterase, polyphenol oxidase and physicochemical properties of typical long-storage cherry tomatoes cultivated under water stress regime. J. Sci. Food Agr. 88, 389–396. 10.1002/jsfa.3098 DOI
Barone D., Cito L., Tommonaro G., Abate A. A., Penon D., De Prisco R., et al. (2018). Antitumoral potential, antioxidant activity and carotenoid content of two Southern Italy tomato cultivars extracts: San Marzano and Corbarino. J. Cell. Physiol. 233, 1266–1277. 10.1002/jcp.25995 PubMed DOI
Beckles D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63 (1), 129–140. 10.1016/j.postharvbio.2011.05.016 DOI
Berni R., Romi M., Parrotta L., Cai G., Cantini C. (2018). Ancient tomato (Solanum lycopersicum L.) varieties of Tuscany have high contents of bioactive compounds. Hortic. 4 (4), 51. 10.3390/horticulturae4040051 DOI
Berni R., Romi M., Cantini C., Hausman J. F., Guerriero G., Cai G. (2019). Functional molecules in locally-adapted crops: the case study of tomatoes, onions, and sweet cherry fruits from Tuscany in Italy. Front. Plant Sci. 9, 1983. 10.3389/fpls.2018.01983 PubMed DOI PMC
Beelders T., De Beer D., Stander M. A., Joubert E. (2014). Comprehensive phenolic profiling of Cyclopia genistoides (L.) Vent. Molecules 19, 11760–11790. 10.3390/molecules190811760 PubMed DOI PMC
Borguini R. G., da Silva Torres E. A. F. (2009). Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int. 25, 313–325. 10.1080/87559120903155859 DOI
Canene-Adams K., Campbell J. K., Zaripheh S., Jeffery E. H., Erdman J. W. (2005). The tomato as a functional food. J. Nutr. 135, 1226–1230. 10.1093/jn/135.5.1226 PubMed DOI
Caprioli G., Cahill M., Logrippo S., James K. (2015). Elucidation of the mass fragmentation pathways of tomatidine and β-1-hydroxytomatine using orbitrap mass spectrometry. Nat. Prod. Commun. 10, 575–576. 10.1177/1934578X1501000409 PubMed DOI
Casals J., Pascual L., Cañizares J., Cebolla-Cornejo J., Casañas F., Nuez F. (2011). The risks of success in quality vegetable markets: possible genetic erosion in Marmande tomatoes (Solanum lycopersicum L.) and consumer dissatisfaction. Sci. Hort. 130, 78–84. 10.1016/j.scienta.2011.06.013 DOI
Casals J., Rull A., Bernal M., González R., del Castillo R. R., Simó J. (2018). Impact of grafting on sensory profile of tomato landraces in conventional and organic management systems. Hort. Environ. Biotechnol. 59, 597–606. 10.1007/s13580-018-0086-z DOI
Caser M., D’Angiolillo F., Chitarra W., Lovisolo C., Ruffoni B., Pistelli L., et al. (2016). Water deficit regimes trigger changes in valuable physiological and phytochemical parameters in Helichrysum petiolare Hilliard & B.L. Ind. Crop. Prod. 83, 680–692. 10.1016/j.indcrop.2015.12.053 DOI
Cataldi T. R. I., Lelario F., Bufo S. A. (2005). Analysis of tomato glycoalkaloids by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19 (21), 3103–3110. 10.1002/rcm.2176 PubMed DOI
Christ B., Hauenstein M., Hörtensteiner S. (2016). A liquid chromatography–mass spectrometry platform for the analysis of phyllobilins, the major degradation products of chlorophyll in Arabidopsis thaliana . Plant J. 88, 505–518. 10.1111/tpj.13253 PubMed DOI
Claussen W., Brückner B., Krumbein A., Lenz F. (2006). Long-term response of tomato plants to changing nutrient concentration in the root environment: the role of proline as an indicator of sensory fruit quality. Plant Sci. 171, 323–331. 10.1016/j.plantsci.2006.04.002 PubMed DOI
Cohen E., Arad S. M., Heimer Y. M., Mizrahi Y. (1982). Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol. 70, 540–543. 10.1104/pp.70.2.540 PubMed DOI PMC
Coyago-Cruz E., Corell M., Stinco C. M., Hernanz D., Moriana A., Meléndez-Martínez A. J. (2017). Effect of regulated deficit irrigation on quality parameters, carotenoids and phenolics of diverse tomato varieties (Solanum lycopersicum L.). Food Res. Int. 96, 72–83. 10.1016/j.foodres.2017.03.026 PubMed DOI
Coyago-Cruz E., Corell M., Moriana A., Mapelli-Brahm P., Hernanz D., Stinco C. M., et al. (2019). Study of commercial quality parameters, sugars, phenolics, carotenoids and plastids in different tomato varieties. Food Chem. 277, 480–489. 10.1016/j.foodchem.2018.10.139 PubMed DOI
Cuartero J., Bolarín M. C., Asíns M. J., Moreno V. (2006). Increasing salt tolerance in the tomato. J. Exp. Bot. 57 (5), 1045–1058. 10.1093/jxb/erj102 PubMed DOI
D’Amico M. L., Izzo R., Tognoni F., Pardossi A., Navari-Izzo F. (2003). Application of diluted sea water to soilless culture of tomato (Lycopersicon esculentum Mill.): effects on plant growth, yield, fruit quality and antioxidant capacity. J. Food Agr. Environ. 1, 112–116.
De Pascale S., Maggio A., Fogliano V., Ambrosino P., Ritieni A. (2001). Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J. Hort. Sci. Biotechnol. 76, 447–453. 10.1080/14620316.2001.11511392 DOI
Dumas Y., Dadomo M., Di Lucca G., Grolier P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agr. 83 (5), 369–382. 10.1002/jsfa.1370 DOI
Feinbaum R. L., Ausubel F. M. (1988). Transcriptional regulation of the Arabidopsis thaliana Chalcone Synthase gene. Mol. Cell. Biol. 8, 1985–1992. 10.1128/MCB.8.5.1985 PubMed DOI PMC
Ferrer J. L., Austin M. B., Stewart C., Noel J. P. (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 46 (3), 356–370. 10.1016/j.plaphy.2007.12.009 PubMed DOI PMC
Figàs M. R., Prohens J., Raigón M. D., Fita A., García-Martínez M. D., Casanova C., et al. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chem. 187, 517–524. 10.1016/j.foodchem.2015.04.083 PubMed DOI
Fleuriet A., Macheix J. J. (1981). Quinyl esters and glucose derivatives of hydroxycinnamic acids during growth and ripening of tomato fruit. Phytochemistry 20, 667–671. 10.1016/0031-9422(81)85153-9 DOI
Friedman M. (2013). Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 61 (40), 9534–9550. 10.1021/jf402654e PubMed DOI
Gaquerel E., Heiling S., Schoettner M., Zurek G., Baldwin I. T. (2010). Development and validation of a liquid chromatography-electrospray ionization-time-of-flight mass spectrometry method for induced changes in Nicotiana attenuata leaves during simulated herbivory. J. Agric. Food Chem. 58, 9418–9427. 10.1021/jf1017737 PubMed DOI
Galmes J., Ochogavia J. M., Gago J., Roldan E. J., Cifre J., Conesa M. A. (2013). Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ. 36, 920–935. 10.1111/pce.12022 PubMed DOI
Gascuel Q., Diretto G., Monforte A. J., Fortes A. M., Granell A. (2017). Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Front. Plant Sci. 8, 652. 10.3389/fpls.2017.00652 PubMed DOI PMC
Gautier H., Diakou-Verdin V., Bénard C., Reich M., Buret M., Bourgaud F., et al. (2008). How does tomato quality (sugar, acid and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agr. Food Chem. 56, 1241–1250. 10.1021/jf072196t PubMed DOI
Gent M. P. N. (2007). Effect of degree and duration of shade on quality of greenhouse tomato. Hort Sci. 42, 514–520. 10.21273/HORTSCI.42.3.514 DOI
Giovannetti M., Avio L., Barale R., Ceccarelli N., Cristofani R., Iezzi A., et al. (2012). Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br. J. Nutr. 107, 242–251. 10.1017/S000711451100290X PubMed DOI
Han P., Wang Z. J., Lavoir A. V., Michel T., Seassau A., Zheng W. Y., et al. (2016). Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects. Sci. Rep. 6, 32403. 10.1038/srep32403 PubMed DOI PMC
Hostettler C., Kölling K., Santelia D., Streb S., Kötting O., Zeeman S. C. (2011). Analysis of starch metabolism in chloroplasts. Methods Mol. Biol. 775, 387–410. 10.1007/978-1-61779-237-3_21 PubMed DOI
Hu W. H., Zhou Y. H., Du Y. S., Xia X. J., Yu J. Q. (2006). Differential response of photosynthesis in greenhouse- and field-ecotypes of tomato to long-term chilling under low light. J. Plant Physiol. 163, 1238–1246. 10.1016/j.jplph.2005.10.006 PubMed DOI
Humphreys J. M., Chapple C. (2002). Rewriting the lignin roadmap. Curr. Opin. Plant Biol. 5 (3), 224–229. 10.1016/S1369-5266(02)00257-1 PubMed DOI
Iijima Y., Nakamura Y., Ogata Y., Tanaka K. I., Sakurai N., Suda K., et al. (2008). Metabolite annotations based on the integration of mass spectral information. Plant J. 54, 949–962. 10.1111/j.1365-313X.2008.03434.x PubMed DOI PMC
Incerti A., Navari-Izzo F., Pardossib A., Izzoa R. (2009). Seasonal variations in polyphenols and lipoic acid in fruits of tomato irrigated with sea water. J. Sci. Food Agr. 89, 1326–1331. 10.1002/jsfa.3589 DOI
Incerti A., Navari-Izzo F., Pardossi A., Mensuali A., Izzo R. (2007). Effect of sea water on biochemical properties of fruit of tomato (Lycopersicon esculentum Mill.) genotypes differing for ethylene production. J. Sci. Food Agr. 87, 2528–2537. 10.1002/jsfa.3020 DOI
Jarquín-Enríquez L., Mercado-Silva E. M., Maldonado J. L., Lopez-Baltazar J. (2013). Lycopene content and colour index of tomatoes are affected by the greenhouse cover. Sci. Hortic. 155, 43–48. 10.1016/j.scienta.2013.03.004 DOI
Jing P., Wang D., Zhu C., Chen J. (2016). Plant physiological, morphological and yield-related responses to night temperature changes across different species and plant functional types. Front. Plant Sci. 7, 1774. 10.3389/fpls.2016.01774 PubMed DOI PMC
Katsumata A., Kimura M., Saigo H., Aburaya K., Nakano M., Ikeda T., et al. (2011). Changes in Esculeoside A content in different regions of the tomato fruit during maturation and heat processing. J. Agr. Food Chem. 59, 4104–4110. 10.1021/jf104025p PubMed DOI
Koh E., Kaffka S., Mitchell A. E. (2013). A long-term comparison of the influence of organic and conventional crop management practices on the content of the glycoalkaloid α-tomatine in tomatoes. J. Sci. Food Agr. 93, 1537–1542. 10.1002/jsfa.5951 PubMed DOI
Kubota C., Kroggel M., Torabi M., Dietrich K. A., Kim H. J., Fonseca J., et al. (2012). Changes in selected quality attributes of greenhouse tomato fruit as affected by pre-and postharvest environmental conditions in year-round production. Hort Sci. 47, 1698–1704. 10.21273/HORTSCI.47.12.1698 DOI
Le S., Josse J., Husson F. (2008). FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25 (1), 1–18. 10.18637/jss.v025.i01 DOI
Le Gall G., Dupont M. S., Mellon F. A., Davis A. L., Collins G. J., Verhoeyen M. E., et al. (2003). Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agr. Food Chem. 51, 2438–2446. 10.1021/jf025995e PubMed DOI
Li L., Yuan H. (2013). Chromoplast biogenesis and carotenoid accumulation. Arch. Biochem. Biophys. 539 (2), 102–109. 10.1016/j.abb.2013.07.002 PubMed DOI
Liu J. H., Honda C., Moriguchi T. (2006). Involvement of polyamine in floral and fruit development. JARQ 40 (1), 51–58. 10.6090/jarq.40.51 DOI
Lupini A., Princi M. P., Araniti F., Miller A. J., Sunseri F., Abenavoli M. R. (2017). Physiological and molecular responses in tomato under different forms of N nutrition. J. Plant Physiol. 216, 17–25. 10.1016/j.jplph.2017.05.013 PubMed DOI
Manaa A., Faurobert M., Valot B., Bouchet J.-P., Grasselly D., Causse M., et al. (2013). Effect of salinity and calcium on tomato fruit proteome. OMICS 17, 338–352. 10.1089/omi.2012.0108 PubMed DOI
Mariz-Ponte N., Martins S., Gonçalves A., Correia C. M., Ribeiro C., Dias M. C., et al. (2019). The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Sci. Hortic. 246, 777–784. 10.1016/j.scienta.2018.11.058 DOI
Martinez V., Mestre T. C., Rubio F., Girones-Vilaplana A., Moreno D. A., Mittler R., et al. (2016). Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front. Plant Sci. 7, 838. 10.3389/fpls.2016.00838 PubMed DOI PMC
Massaretto I. L., Albaladejo I., Purgatto E., Flores F. B., Plasencia F., Egea-Fernández J. M., et al. (2018). Recovering tomato landraces to simultaneously improve fruit yield and nutritional quality against salt stress. Front. Plant Sci. 9, 1778–1778. 10.3389/fpls.2018.01778 PubMed DOI PMC
Minoggio M., Bramati L., Simonetti P., Gardana C., Iemoli L., Santangelo E., et al. (2003). Polyphenol pattern and antioxidant activity of different tomato lines and cultivars. Ann. Nutr. Metab. 47, 64–69. 10.1159/000069277 PubMed DOI
Mintz-Oron S., Mandel T., Rogachev I., Feldberg L., Lotan O., Yativ M., et al. (2008). Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol. 147, 823–851. 10.1104/pp.108.116004 PubMed DOI PMC
Moço S., Bino R. J., Vorst O., Verhoeven H. A., de Groot J., van Beek T. A., et al. (2006). A Liquid Chromatography-Mass Spectrometry-based metabolome database for tomato. Plant Physiol. 141, 1205–1218. 10.1104/pp.106.078428 PubMed DOI PMC
Moles T. M., Pompeiano A., Huarancca Reyes T., Scartazza A., Guglielminetti L. (2016). The efficient physiological strategy of a tomato landrace in response to short-term salinity stress. Plant Physiol. Biochem. 109, 262–272. 10.1016/j.plaphy.2016.10.008 PubMed DOI
Moles T. M., Mariotti L., De Pedro L. F., Guglielminetti L., Picciarelli P., Scartazza A. (2018). Drought induced changes of leaf-to-root relationships in two tomato genotypes. Plant Physiol. Biochem. 128, 24–31. 10.1016/j.plaphy.2018.05.008 PubMed DOI
Ndhlala A. R., Moyo M., Van Staden J. (2010). Natural antioxidants: fascinating or mythical biomolecules? Molecules 15, 6905–6930. 10.3390/molecules15106905 PubMed DOI PMC
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2019). Vegan: Community Ecology Package. R package version 2.5-4.
Park S., Cheng N. H., Pittman J. K., Yoo K. S., Park J., Smith R. H., et al. (2005). Increased calcium levels and prolonged shelf-life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol. 139, 1194–1206. 10.1104/pp.105.066266 PubMed DOI PMC
Patanè C., Scordi D., Testa G., Cosentino S. L. (2016). Physiological screening for drought tolerance in Mediterranean long-storage tomato. Plant Sci. 249, 25–34. 10.1016/j.plantsci.2016.05.006 PubMed DOI
Patanè C., Pellegrino A., Saita A., Siracusa L., Ruberto G., Barbagallo R. (2017). Mediterranean long storage tomato as a source of novel products for the agrifood industry: nutritional and technological traits. LWT - Food Sci. Technol. 85, 445–448. 10.1016/j.lwt.2016.12.011 DOI
Perez-Vizcaino F., Fraga C. G. (2018). Research trends in flavonoids and health. Arch. Biochem. Biophys. 646, 107–112. 10.1016/j.abb.2018.03.022 PubMed DOI
Petersen K. K., Willumsen J., Kaack K. (1998). Composition and taste of tomatoes as affected by increased salinity and different salinity sources. J. Hort. Sci. Biotechnol. 73, 205–215. 10.1080/14620316.1998.11510966 DOI
Pinela J., Barros L., Carvalho A. M., Ferreira I. C. F. R. (2012). Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens. Food Chem. Toxicol. 50, 829–834. 10.1016/j.fct.2011.11.045 PubMed DOI
Plieth C. (2005). Calcium: just another regulator in the machinery of life? Ann. Bot. 96, 1–8. 10.1093/aob/mci144 PubMed DOI PMC
Poiroux-Gonord F., Bidel L. P. R., Fanciullino A. L., Gautier H., Lauri-Lopez F., Urban L. (2010). Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agr. Food Chem. 58, 12065–12082. 10.1021/jf1037745 PubMed DOI
Pompeiano A., Di Patrizio E., Volterrani M., Scartazza A., Guglielminetti L. (2016). Growth responses and physiological traits of seashore paspalum subjected to short-term salinity stress and recovery. Agr. Water Manag. 163, 57–65. 10.1016/j.agwat.2015.09.004 DOI
Pompeiano A., Landi M., Meloni G., Vita F., Guglielminetti L., Guidi L. (2017). Allocation pattern, ion partitioning, and chlorophyll a fluorescence in Arundo donax L. Plant Biosyst. 151 (4), 613–622. 10.1080/11263504.2016.1187680 DOI
R Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rivero R. M., Ruiz J. M., García P. C., López-Lefebre L. R., Sánchez E., Romero L. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160, 315–321. 10.1016/S0168-9452(00)00395-2 PubMed DOI
Ruelas C., Tiznado-Hernández M. E., Sánchez-Estrada A., Robles-Burgueño M. R., Troncoso-Rojas R. (2006). Changes in phenolic acid content during Alternaria alternata infection in tomato fruit. J. Phytopathol. 154, 236–244. 10.1111/j.1439-0434.2006.01090.x DOI
Ruiz J. J., Alonso A., García-Martínez S., Valero M., Blasco P., Ruiz-Bevia F. (2005). Quantitative analysis of flavour volatiles detects differences among closely related traditional cultivars of tomato. J. Sci. Food Agr. 85, 54–60. 10.1002/jsfa.1879 DOI
Sánchez-Rodríguez E., Ruiz J. M., Ferreres F., Moreno D. A. (2012). Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chem. 134, 775–782. 10.1016/j.foodchem.2012.02.180 PubMed DOI
Santa-Cruz A., Martinez-Rodriguez M. M., Perez-Alfocea F., Romero-Aranda R., Bolarin M. C. (2002). The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci. 162, 825–831. 10.1016/S0168-9452(02)00030-4 DOI
Sinesio F., Moneta E., Peparaio M. (2007). Sensory characteristics of traditional field grown tomato genotypes in Southern Italy. J. Food Qual. 30, 878–895. 10.1111/j.1745-4557.2007.00161.x DOI
Siracusa L., Patanè C., Rizzo V., Cosentino S. L., Ruberto G. (2018). Targeted secondary metabolic and physico-chemical traits analysis to assess genetic variability within a germplasm collection of “long storage” tomatoes. Food Chem. 244, 275–283. 10.1016/j.foodchem.2017.10.043 PubMed DOI
Slimestad R., Verheul M. J. (2005). Seasonal variations in the level of plant constituents in greenhouse production of cherry tomatoes. J. Agr. Food Chem. 53, 3114–3119. 10.1021/jf047864e PubMed DOI
Slimestad R., Fossen T., Verheul M. J. (2008). The flavonoids of tomatoes. J. Agr. Food Chem. 56, 2436–2441. 10.1021/jf073434n PubMed DOI
Soetan K. O., Olaiya C. O., Oyewole O. E. (2010). The importance of mineral elements for humans, domestic animals and plants. Afr. J. Food Sci 4, 200–222.
Stewart A. J., Bozonnet S., Mullen W., Jenkins G. I., Lean M. E. J., Crozier A. (2000). Occurrence of flavonols in tomatoes and tomato-based products. J. Agr. Food Chem. 48, 2663–2669. 10.1021/jf000070p PubMed DOI
Taylor M. D., Locascio S. J. (2004). Blossom-end rot: a calcium deficiency. J. Plant Nutr. 27 (1), 123–139. 10.1081/PLN-120027551 DOI
Thalmann M., Pazmino D., Seung D., Horrer D., Nigro A., Meier T., et al. (2016). Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell 28, 1860–1878. 10.1105/tpc.16.00143 PubMed DOI PMC
Toor R., Savage G., Lister C. (2006). Seasonal variations in the antioxidant composition of greenhouse grown tomatoes. J. Food Compos. Anal. 19, 1–10. 10.1016/j.jfca.2004.11.008 DOI
Trudel M. J., Ozbun J. L. (1971). Influence of potassium on carotenoid content of tomato fruit. J. Am. Soc. Hortic. 96, 763–765.
Vallverdú-Queralt A., Medina-Remón A., Martínez-Huélamo M., Jáuregui O., Andres-Lacueva C., Lamuela-Raventos R. M. (2011). Phenolic profile and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. J. Agr. Food Chem. 59, 3994–4001. 10.1021/jf104400g PubMed DOI
Van Der Rest B., Danoun S., Boudet A. M., Rochange S. F. (2006). Down-regulation of Cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J. Exp. Bot. 57, 1399–1411. 10.1093/jxb/erj120 PubMed DOI
Vaníčková L., Břízová R., Pompeiano A., Ekesi S., De Meyer M. (2015). Cuticular hydrocarbons corroborate the distinction between lowland and highland Natal fruit fly (Tephritidae, Ceratitis rosa) populations. ZooKeys 540, 507–524. 10.3897/zookeys.540.9619 PubMed DOI PMC
Whitaker B. D., Stommel J. R. (2003). Distribution of hydroxycinnamic acid conjugates in fruit of commercial eggplant (Solanum melongena L.) cultivars. J. Agr. Food Chem. 51, 3448–3454. 10.1021/jf026250b PubMed DOI
Williams R. J., Spencer J. P. E., Rice-Evans C. (2004). Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36 (7), 838–849. 10.1016/j.freeradbiomed.2004.01.001 PubMed DOI
Wojciechowska E., Weinert C. H., Egert B., Trierweiler B., Schmidt-Heydt M., Horneburg B., et al. (2014). Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. Eur. J. Plant Pathol. 139, 735–747. 10.1007/s10658-014-0428-3 DOI
Wu M., Kubota C. (2008). Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hortic. 116, 122–129. 10.1016/j.scienta.2007.11.014 DOI
Yamamoto T., Yoshimura M., Yamaguchi F., Kouchi T., Tsuji R., Saito M., et al. (2004). Anti-allergic activity of Naringenin Chalcone from a tomato skin extract. Biosci. Biotechnol. Biochem. 68, 1706–1711. 10.1271/bbb.68.1706 PubMed DOI
Zushi K., Matsuzoe N. (2009). Seasonal and cultivar differences in salt-induced changes in antioxidant system in tomato. Sci. Hortic. 120, 181–187. 10.1016/j.scienta.2008.10.005 DOI
Zushi K., Matsuzoe N. (2015). Metabolic profile of organoleptic and health-promoting qualities in two tomato cultivars subjected to salt stress and their interactions using correlation network analysis. Sci. Hortic. 184, 8–17. 10.1016/j.scienta.2014.12.030 DOI