5-Deazaalloxazine as photosensitizer of singlet oxygen and potential redox-sensitive agent
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
OPUS 2017/27/B/ST4/02494
Narodowe Centrum Nauki
CEUS-UNISONO 2020/02/Y/ST4/00042
Narodowe Centrum Nauki
ETIUDA 2013/08/T/ST4/00640
Narodowe Centrum Nauki
21-14200K
Grantová Agentura České Republiky
HOMING POIR.04.04.00-00-441F/17-00
Fundacja na rzecz Nauki Polskiej
POIR.04.02.00-00-C004/19-00
European Regional Development Fund
PubMed
36934363
DOI
10.1007/s43630-023-00401-9
PII: 10.1007/s43630-023-00401-9
Knihovny.cz E-zdroje
- Klíčová slova
- 5-deazaalloxazine, 5-deazaflavin, Alloxazine, Fluorescence-lifetime imaging microscopy (FLIM), Oxidative stress, Red blood cells, Singlet oxygen, Triplet excited state,
- MeSH
- flaviny MeSH
- fotosenzibilizující látky * farmakologie chemie MeSH
- lidé MeSH
- organické látky MeSH
- oxidace-redukce MeSH
- singletový kyslík * chemie MeSH
- voda chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4,6-dinitro-o-cresol MeSH Prohlížeč
- flaviny MeSH
- fotosenzibilizující látky * MeSH
- organické látky MeSH
- singletový kyslík * MeSH
- voda MeSH
Flavins are a unique class of compounds that combine the features of singlet oxygen generators and redox-dependent fluorophores. From a broad family of flavin derivatives, deazaalloxazines are significantly underdeveloped from the point of view of photophysical properties. Herein, we report photophysics of 5-deazaalloxazine (1a) in water, acetonitrile, and some other solvents. In particular, triplet excited states of 1a in water and in acetonitrile were investigated using ultraviolet-visible (UV-Vis) transient absorption spectroscopy. The measured triplet lifetimes for 1a were all on the microsecond time scale (≈ 60 μs) in deoxygenated solutions. The quantum yield of S1 → T1 intersystem crossing for 1a in water was 0.43 based on T1 energy transfer from 1a to indicaxanthin (5) acting as acceptor and on comparative actinometric measurements using benzophenone (6). 1a was an efficient photosensitizer for singlet oxygen in aerated solutions, with quantum yields of singlet oxygen in methanol of about 0.76, compared to acetonitrile ~ 0.74, dichloromethane ~ 0.64 and 1,2-dichloroethane ~ 0.54. Significantly lower singlet oxygen quantum yields were obtained in water and deuterated water (ФΔ ~ 0.42 and 0.44, respectively). Human red blood cells (RBC) were used as a cell model to study the antioxidant capacity in vitro and cytotoxic activity of 1a. Fluorescence-lifetime imaging microscopy (FLIM) data were analyzed by fluorescence lifetime parameters and distribution for different parts of the emission spectrum. Comparison of multidimensional fluorescent properties of RBC under physiological-like and oxidative-stress conditions in the presence and absence of 1a suggests its dual activity as probe and singlet-oxygen generator and opens up a pathway for using FLIM to analyze complex intracellular behavior of flavin-like compounds. These new data on structure-property relationship contribute to the body of information required for a rational design of flavin-based tools for future biological and biochemical applications.
Faculty of Biology Adam Mickiewicz University Uniwersytetu Poznańskiego 6 61 614 Poznań Poland
Faculty of Chemistry Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61 614 Poznań Poland
Faculty of Physics Adam Mickiewicz University Uniwersytetu Poznańskiego 2 61 614 Poznań Poland
Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12 14 61 704 Poznań Poland
Poznań University of Economics and Business Al Niepodległości 10 61 875 Poznań Poland
Zobrazit více v PubMed
Yeow, J., Kaur, A., Anscomb, M. D., & New, E. J. (2014). A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes. Chemical Communications (Cambridge, England), 50, 8181–8184. https://doi.org/10.1039/c4cc03464c PubMed DOI
Kaur, A., Haghighatbin, M. A., Hogan, C. F., & New, E. J. (2015). A FRET-based ratiometric redox probe for detecting oxidative stress by confocal microscopy, FLIM and flow cytometry. Chemical Communications (Cambridge, England), 51, 10510–10513. https://doi.org/10.1039/c5cc03394b PubMed DOI
Kolanowski, J. L., Kaur, A., & New, E. J. (2016). Selective and reversible approaches toward imaging redox signaling using small-molecule probes. Antioxidants and Redox Signaling, 24, 713–730. https://doi.org/10.1089/ars.2015.6588 PubMed DOI
Hong, K. I., Lee, S. M., & Jang, W. D. (2018). Flavin-based light-driven fluorescent probe for the detection of antioxidant amino acids. ChemistryOpen, 7, 57–60. https://doi.org/10.1002/open.201700144 PubMed DOI
Mojr, V., Pitrova, G., Strakova, K., Prukała, D., Brazevic, S., Svobodova, E., Hoskovcova, I., Burdziński, G., Slanina, T., Sikorski, M., & Cibulka, R. (2018). Flavin photocatalysts for visible-light 2+2 cycloadditions: Structure, reactivity and reaction mechanism. ChemCatChem, 10, 849–858. https://doi.org/10.1002/cctc.201701490 DOI
Graml, A., Nevesely, T., Jan Kutta, R., Cibulka, R., & König, B. (2020). Deazaflavin reductive photocatalysis involves excited semiquinone radicals. Nature Communications, 11, 3174. https://doi.org/10.1038/s41467-020-16909-y PubMed DOI PMC
Cardoso, D. R., Libardi, S. H., & Skibsted, L. H. (2012). Riboflavin as a photosensitizer. Effects on human health and food quality. Food & Function, 3, 487–502. https://doi.org/10.1039/c2fo10246c DOI
Sikorska, E., Sikorski, M., Steer, R. P., Wilkinson, F., & Worrall, D. R. (1998). Efficiency of singlet oxygen generation by alloxazines and isoalloxazines. Journal of the Chemical Society, Faraday Transactions, 94, 2347–2353. https://doi.org/10.1039/a802340i DOI
Sikorska, E., Khmelinskii, I., Komasa, A., Koput, J., Ferreira, L. F. V., Herance, J. R., Bourdelande, J. L., Williams, S. L., Worrall, D. R., Insińska-Rak, M., & Sikorski, M. (2005). Spectroscopy and photophysics of flavin related compounds: Riboflavin and iso-(6,7)-riboflavin. Chemical Physics, 314, 239–247. https://doi.org/10.1016/j.chemphys.2005.03.005 DOI
Baier, J., Maisch, T., Maier, M., Engel, E., Landthaler, M., & Baumler, W. (2006). Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophysical Journal, 91, 1452–1459. https://doi.org/10.1529/biophysj.106.082388 PubMed DOI PMC
Engl, R., Kilger, R., Maier, M., Scherer, K., Abels, C., & Baumler, W. (2002). Singlet oxygen generation by 8-methoxypsoralen in deuterium oxide: Relaxation rate constants and dependence of the generation efficacy on the oxygen partial pressure. The Journal of Physical Chemistry B, 106, 5776–5781. https://doi.org/10.1021/jp013727y DOI
Vakrat-Haglili, Y., Weiner, L., Brumfeld, V., Brandis, A., Salomon, Y., McIlroy, B., Wilson, B. C., Pawlak, A., Rozanowska, M., Sarna, T., & Scherz, A. (2005). The microenvironment effect on the generation of reactive oxygen species by Pd-bacteriopheophorbide. Journal of the American Chemical Society, 127, 6487–6497. https://doi.org/10.1021/ja046210j PubMed DOI
Tanielian, C., Schweitzer, C., Mechin, R., & Wolff, C. (2001). Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radical Biology & Medicine, 30, 208–212. https://doi.org/10.1016/s0891-5849(00)00460-3 DOI
Hanson, K. M., & Simon, J. D. (1998). Epidermal trans-urocanic acid and the UV-A-induced photoaging of the skin. Proceedings of the National academy of Sciences of the United States of America, 95, 10576–10578. https://doi.org/10.1073/pnas.95.18.10576 PubMed DOI PMC
Lu, C. Y., Han, Z. H., Liu, G. S., Cai, X. C., Chen, Y. L., & Yao, S. (2001). Photophysical and photochemical processes of riboflavin (vitamin B-2) by means of the transient absorption spectra in aqueous solution. Sci. China, B Chem., 44, 39–48. https://doi.org/10.1007/bf02879734 DOI
Insińska-Rak, M., Sikorska, E., Bourdelande, J. L., Khmelinskii, I. V., Prukała, W., Dobek, K., Karolczak, J., Machado, I. F., Ferreira, L. F. V., Komasa, A., Worrall, D. R., & Sikorski, M. (2006). Spectroscopy and photophysics of flavin-related compounds: 5-deaza-riboflavin. Journal of Molecular Structure, 783, 184–190. https://doi.org/10.1016/j.molstruc.2005.09.005 DOI
Heelis, P. F. (1982). The photophysical and photochemical properties of flavins (isoalloxazines). Chemical Society Reviews, 11, 15–39. https://doi.org/10.1039/cs9821100015 DOI
Salzmann, S., Martinez-Junza, V., Zorn, B., Braslavsky, S. E., Mansurova, M., Marian, C. M., & Gärtner, W. (2009). Photophysical properties of structurally and electronically modified flavin derivatives determined by spectroscopy and theoretical calculations. Journal of Physical Chemistry A, 113, 9365–9375. https://doi.org/10.1021/jp905724b PubMed DOI
Neiss, C., Saalfrank, P., Parac, M., & Grimme, S. (2003). Quantum chemical calculation of excited states of flavin-related molecules. Journal of Physical Chemistry A, 107, 140–147. https://doi.org/10.1021/jp021671h DOI
Sikorski, M., Sikorska, E., Koziołowa, A., Moreno, R. G., Bourdelande, J. L., Steer, R. P., & Wilkinson, F. (2001). Photophysical properties of lumichromes in water. Journal of Photochemistry and Photobiology A: Biology, 60, 114–119. https://doi.org/10.1016/S1011-1344(01)00134-8 DOI
Sikorska, E., Khmelinskii, I. V., Prukała, W., Williams, S. L., Worrall, D. R., Bourdelande, J. L., Bednarek, A., Koput, J., & Sikorski, M. (2004). Spectroscopy and photophysics of 9-methylalloxazine. Experimental and theoretical study. Journal of Molecular Structure, 689, 121–126. https://doi.org/10.1016/j.molstruc.2003.10.28 DOI
Sikorska, E., Khmelinskii, I. V., Bourdelande, J. L., Bednarek, A., Williams, S. L., Patel, M., Worrall, D. R., Koput, J., & Sikorski, M. (2004). Spectroscopy and photophysics of mono methyl-substituted alloxazines. Chemical Physics, 301, 95–103. https://doi.org/10.1016/j.chemphys.2004.03.005 DOI
Grodowski, M. S., Veyret, B., & Weiss, K. (1977). Photochemistry of flavins.2. Photophysical properties of alloxazines and isoalloxaznies. Photochemistry and Photobiology, 26, 341–352. https://doi.org/10.1111/j.1751-1097.1977.tb07495.x DOI
Encinas, M. V., Bertolotti, S. G., & Previtali, C. M. (2002). The interaction of ground and excited states of lumichrome with aliphatic and aromatic amines in methanol. Helvetica Chimica Acta, 85, 1427–1438. https://doi.org/10.1002/1522-2675(200205)85:5%3c1427::AID-HLCA1427%3e3.0.CO;2-A DOI
Li, H., Jiang, Z. Q., Pan, Y., & Yu, S. Q. (2006). Study on electron transfer of fluorescent probe lumichrome and nucleic acid by laser flash photolysis. Research on Chemical Intermediates, 32, 695–708 DOI
Davis, C. A., Erickson, P. R., McNeill, K., & Janssen, E. M. L. (2017). Environmental photochemistry of fenamate NSAIDs and their radical intermediates. Environmental Science. Processes & Impacts, 19, 656–665. https://doi.org/10.1039/c7em00079k DOI
Sikorska, E., Khmelinskii, I. V., Prukała, W., Williams, S. L., Patel, M., Worrall, D. R., Bourdelande, J. L., Koput, J., & Sikorski, M. (2004). Spectroscopy and photophysics of lumiflavins and lumichromes. Journal of Physical Chemistry A, 108, 1501–1508. https://doi.org/10.1021/jp037048u DOI
Sikorski, M., Prukała, D., Insińska-Rak, M., Khmelinskii, I., Worrall, D. R., Williams, S. L., Hernando, J., Bourdelande, J. L., Koput, J., & Sikorska, E. (2008). Spectroscopy and photophysics of dimethyl-substituted alloxazines. Journal of Photochemistry and Photobiology A: Chemistry, 200, 148–160. https://doi.org/10.1016/j.jphotochem.2008.07.006 DOI
Greco, I., Molchanova, N., Holmedal, E., Jenssen, H., Hummel, B. D., Watts, J. L., Håkansson, J., Hansen, P. R., & Svenson, J. (2020). Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. https://doi.org/10.1038/s41598-020-69995-9 PubMed DOI PMC
Farag, M. R., & Alagawany, M. (2018). Erythrocytes as a biological model for screening of xenobiotics toxicity. Chemico-Biological Interactions, 279, 73–83. https://doi.org/10.1016/j.cbi.2017.11.007 PubMed DOI
Mohanty, J. G., Nagababu, E., & Rifkind, J. M. (2014). Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Frontiers in Physiology, 5, 84. https://doi.org/10.3389/fphys.2014.00084 PubMed DOI PMC
Prukała, D., Gierszewski, M., Pędziński, T., & Sikorski, M. (2014). Influence of pH on spectral and photophysical properties of 9-methyl-5-deazaalloxazine and 10-ethyl-5-deaza-isoalloxazine. Journal of Photochemistry and Photobiology A: Chemistry, 275, 12–20. https://doi.org/10.1016/j.jphotochem.2013.10.011 DOI
Wendel, M., Szot, D., Starzak, K., Tuwalska, D., Prukała, D., Pędziński, T., Sikorski, M., Wybraniec, S., & Burdziński, G. (2015). Photophysical properties of indicaxanthin in aqueous and alcoholic solutions. Dyes and Pigments, 113, 634–639. https://doi.org/10.1016/j.dyepig.2014.09.036 DOI
Taylor, E. C., Jr., & Kalenda, N. W. (1956). The synthesis of pyrimido[4,5-b]quinolines. Journal of the American Chemical Society, 78, 5108–5115. https://doi.org/10.1021/ja01600a079 DOI
Kokel, B. (1994). The reaction of N, N-dimethyldichloromethyleniminium chloride (phosgeniminium chloride) with 6-N-arylaminouracils. A new and convenient “one pot” synthesis of l,3-dimethyl-5- dimethylaminopyrimido[4,5-b]quinoline-(1H,3H)-2,4-diones, 1,3-dimethyl-5-chloropyrimido[4,5-b]quinoline-(1H,3H)-2,4-diones and 3-methyl-10-alkyl-5-chloropyrimido[4,5-b]quinoline-(3H,10H)-2,4-diones (3-methyl-10-alkyl-5-chloro-5-deazaflavins). Journal of Heterocyclic Chemistry, 31, 845–855. https://doi.org/10.1002/jhet.5570310427 DOI
Prukała, D., Gierszewski, M., Karolczak, J., & Sikorski, M. (2015). Study of photophysical properties of 5-deazaalloxazine and 1,3-dimethyl-5-deazaalloxazine in dependence of pH using different spectral techniques. Physical Chemistry Chemical Physics: PCCP, 17, 18729–18741. https://doi.org/10.1039/c5cp01566a PubMed DOI
Burdziński, G., Maciejewski, A., Buntinx, G., Poizat, O., & Lefumeux, C. (2004). Ultrafast quenching of the excited S DOI
Schmidt, R., Tanielian, C., Dunsbach, R., & Wolff, C. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O DOI
Mrówczyńska, L., & Hägerstrand, H. (2009). Platelet-activating factor interaction with the human erythrocyte membrane. Journal of Biochemical Toxicology, 23, 345–348. https://doi.org/10.1002/jbt.20297 DOI
Sikorski, M., Khmelinskii, I., & Sikorska, E. (2021). Spectral Properties of Flavins. In R. Cibulka & M. Fraaije (Eds.), Flavin-Based Catalysis (pp. 67–96). Weinheim, Germany: Wiley-VCH. DOI
Salzmann, S., & Marian, C. M. (2009). The photophysics of alloxazine: A quantum chemical investigation in vacuum and solution. Photochemical & Photobiological Sciences, 8, 1655–1666. https://doi.org/10.1039/b9pp00022d DOI
Moyon, N. S., & Mitra, S. (2011). Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study. Journal of Physical Chemistry A, 115, 2456–2464. https://doi.org/10.1021/jp1102687 PubMed DOI
Sikorska, E., Szymusiak, H., Khmelinskii, I. V., Koziołowa, A., Spanget-Larsen, J., & Sikorski, M. (2003). Spectroscopy and photophysics of alloxazines studied in their ground and first excited singlet states. Journal of Photochemistry and Photobiology A: Chemistry, 158, 45–53. https://doi.org/10.1016/s1010-6030(03)00104-7 DOI
Sikorska, E., Khmelinskii, I. V., Nowacka, G., Koput, J., & Sikorski, M. (2005). Spectroscopy and photophysics of cyanoalloxazines. Theoretical study. Journal of Molecular Structure: THEOCHEM, 722, 51–56. https://doi.org/10.1016/j.theochem.2004.11.058 DOI
Chang, X. P., Xie, X. Y., Lin, S. Y., & Cui, G. L. (2016). QM/MM Study on mechanistic photophysics of alloxazine chromophore in aqueous solution. Journal of Physical Chemistry A, 120, 6129–6136. https://doi.org/10.1021/acs.jpca.6b02669 PubMed DOI
Prukała, D., Taczkowska, M., Gierszewski, M., Pędziński, T., & Sikorski, M. (2014). Spectroscopy and photophysics of monomethyl-substituted derivatives of 5-deazaalloxazine and 10-ethyl-5-deaza-isoalloxazine. Journal of Fluorescence, 24, 505–521. https://doi.org/10.1007/s10895-013-1320-9 PubMed DOI
Prukała, D., Khmelinskii, I., Koput, J., Gierszewski, M., Pędziński, T., & Sikorski, M. (2014). Photophysics, excited-state double-proton transfer and hydrogen-bonding properties of 5-deazaalloxazines. Photochemistry and Photobiology, 90, 972–988. https://doi.org/10.1111/php.12289 PubMed DOI
Quaranta, M., Murkovic, M., & Klimant, I. (2013). A new method to measure oxygen solubility in organic solvents through optical oxygen sensing. The Analyst, 138, 6243–6245. https://doi.org/10.1039/c3an36782g PubMed DOI
Sato, T., Hamada, Y., Sumikawa, M., Araki, S., & Yamamoto, H. (2014). Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen. Industrial and Engineering Chemistry Research, 53, 19331–19337. https://doi.org/10.1021/ie502386t DOI
Carmichael, I., & Hug, G. L. (1986). Triplet-triplet absorption-spectra of organic-molecules in condensed phases. Journal of Physical and Chemical Reference Data, 15, 1–250. https://doi.org/10.1063/1.555770 DOI
Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum yields for the photosensitized formation of the lowest electronically excited singlet-state of molecular-oxygen in solution. Journal of Physical and Chemical Reference Data, 22, 113–262. https://doi.org/10.1063/1.555934 DOI
A facile three-component route to powerful 5-aryldeazaalloxazine photocatalysts