5-Deazaalloxazine as photosensitizer of singlet oxygen and potential redox-sensitive agent

. 2023 Jul ; 22 (7) : 1655-1671. [epub] 20230319

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36934363

Grantová podpora
OPUS 2017/27/B/ST4/02494 Narodowe Centrum Nauki
CEUS-UNISONO 2020/02/Y/ST4/00042 Narodowe Centrum Nauki
ETIUDA 2013/08/T/ST4/00640 Narodowe Centrum Nauki
21-14200K Grantová Agentura České Republiky
HOMING POIR.04.04.00-00-441F/17-00 Fundacja na rzecz Nauki Polskiej
POIR.04.02.00-00-C004/19-00 European Regional Development Fund

Odkazy

PubMed 36934363
DOI 10.1007/s43630-023-00401-9
PII: 10.1007/s43630-023-00401-9
Knihovny.cz E-zdroje

Flavins are a unique class of compounds that combine the features of singlet oxygen generators and redox-dependent fluorophores. From a broad family of flavin derivatives, deazaalloxazines are significantly underdeveloped from the point of view of photophysical properties. Herein, we report photophysics of 5-deazaalloxazine (1a) in water, acetonitrile, and some other solvents. In particular, triplet excited states of 1a in water and in acetonitrile were investigated using ultraviolet-visible (UV-Vis) transient absorption spectroscopy. The measured triplet lifetimes for 1a were all on the microsecond time scale (≈ 60 μs) in deoxygenated solutions. The quantum yield of S1 → T1 intersystem crossing for 1a in water was 0.43 based on T1 energy transfer from 1a to indicaxanthin (5) acting as acceptor and on comparative actinometric measurements using benzophenone (6). 1a was an efficient photosensitizer for singlet oxygen in aerated solutions, with quantum yields of singlet oxygen in methanol of about 0.76, compared to acetonitrile ~ 0.74, dichloromethane ~ 0.64 and 1,2-dichloroethane ~ 0.54. Significantly lower singlet oxygen quantum yields were obtained in water and deuterated water (ФΔ ~ 0.42 and 0.44, respectively). Human red blood cells (RBC) were used as a cell model to study the antioxidant capacity in vitro and cytotoxic activity of 1a. Fluorescence-lifetime imaging microscopy (FLIM) data were analyzed by fluorescence lifetime parameters and distribution for different parts of the emission spectrum. Comparison of multidimensional fluorescent properties of RBC under physiological-like and oxidative-stress conditions in the presence and absence of 1a suggests its dual activity as probe and singlet-oxygen generator and opens up a pathway for using FLIM to analyze complex intracellular behavior of flavin-like compounds. These new data on structure-property relationship contribute to the body of information required for a rational design of flavin-based tools for future biological and biochemical applications.

Zobrazit více v PubMed

Yeow, J., Kaur, A., Anscomb, M. D., & New, E. J. (2014). A novel flavin derivative reveals the impact of glucose on oxidative stress in adipocytes. Chemical Communications (Cambridge, England), 50, 8181–8184. https://doi.org/10.1039/c4cc03464c PubMed DOI

Kaur, A., Haghighatbin, M. A., Hogan, C. F., & New, E. J. (2015). A FRET-based ratiometric redox probe for detecting oxidative stress by confocal microscopy, FLIM and flow cytometry. Chemical Communications (Cambridge, England), 51, 10510–10513. https://doi.org/10.1039/c5cc03394b PubMed DOI

Kolanowski, J. L., Kaur, A., & New, E. J. (2016). Selective and reversible approaches toward imaging redox signaling using small-molecule probes. Antioxidants and Redox Signaling, 24, 713–730. https://doi.org/10.1089/ars.2015.6588 PubMed DOI

Hong, K. I., Lee, S. M., & Jang, W. D. (2018). Flavin-based light-driven fluorescent probe for the detection of antioxidant amino acids. ChemistryOpen, 7, 57–60. https://doi.org/10.1002/open.201700144 PubMed DOI

Mojr, V., Pitrova, G., Strakova, K., Prukała, D., Brazevic, S., Svobodova, E., Hoskovcova, I., Burdziński, G., Slanina, T., Sikorski, M., & Cibulka, R. (2018). Flavin photocatalysts for visible-light 2+2 cycloadditions: Structure, reactivity and reaction mechanism. ChemCatChem, 10, 849–858. https://doi.org/10.1002/cctc.201701490 DOI

Graml, A., Nevesely, T., Jan Kutta, R., Cibulka, R., & König, B. (2020). Deazaflavin reductive photocatalysis involves excited semiquinone radicals. Nature Communications, 11, 3174. https://doi.org/10.1038/s41467-020-16909-y PubMed DOI PMC

Cardoso, D. R., Libardi, S. H., & Skibsted, L. H. (2012). Riboflavin as a photosensitizer. Effects on human health and food quality. Food & Function, 3, 487–502. https://doi.org/10.1039/c2fo10246c DOI

Sikorska, E., Sikorski, M., Steer, R. P., Wilkinson, F., & Worrall, D. R. (1998). Efficiency of singlet oxygen generation by alloxazines and isoalloxazines. Journal of the Chemical Society, Faraday Transactions, 94, 2347–2353. https://doi.org/10.1039/a802340i DOI

Sikorska, E., Khmelinskii, I., Komasa, A., Koput, J., Ferreira, L. F. V., Herance, J. R., Bourdelande, J. L., Williams, S. L., Worrall, D. R., Insińska-Rak, M., & Sikorski, M. (2005). Spectroscopy and photophysics of flavin related compounds: Riboflavin and iso-(6,7)-riboflavin. Chemical Physics, 314, 239–247. https://doi.org/10.1016/j.chemphys.2005.03.005 DOI

Baier, J., Maisch, T., Maier, M., Engel, E., Landthaler, M., & Baumler, W. (2006). Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophysical Journal, 91, 1452–1459. https://doi.org/10.1529/biophysj.106.082388 PubMed DOI PMC

Engl, R., Kilger, R., Maier, M., Scherer, K., Abels, C., & Baumler, W. (2002). Singlet oxygen generation by 8-methoxypsoralen in deuterium oxide: Relaxation rate constants and dependence of the generation efficacy on the oxygen partial pressure. The Journal of Physical Chemistry B, 106, 5776–5781. https://doi.org/10.1021/jp013727y DOI

Vakrat-Haglili, Y., Weiner, L., Brumfeld, V., Brandis, A., Salomon, Y., McIlroy, B., Wilson, B. C., Pawlak, A., Rozanowska, M., Sarna, T., & Scherz, A. (2005). The microenvironment effect on the generation of reactive oxygen species by Pd-bacteriopheophorbide. Journal of the American Chemical Society, 127, 6487–6497. https://doi.org/10.1021/ja046210j PubMed DOI

Tanielian, C., Schweitzer, C., Mechin, R., & Wolff, C. (2001). Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radical Biology & Medicine, 30, 208–212. https://doi.org/10.1016/s0891-5849(00)00460-3 DOI

Hanson, K. M., & Simon, J. D. (1998). Epidermal trans-urocanic acid and the UV-A-induced photoaging of the skin. Proceedings of the National academy of Sciences of the United States of America, 95, 10576–10578. https://doi.org/10.1073/pnas.95.18.10576 PubMed DOI PMC

Lu, C. Y., Han, Z. H., Liu, G. S., Cai, X. C., Chen, Y. L., & Yao, S. (2001). Photophysical and photochemical processes of riboflavin (vitamin B-2) by means of the transient absorption spectra in aqueous solution. Sci. China, B Chem., 44, 39–48. https://doi.org/10.1007/bf02879734 DOI

Insińska-Rak, M., Sikorska, E., Bourdelande, J. L., Khmelinskii, I. V., Prukała, W., Dobek, K., Karolczak, J., Machado, I. F., Ferreira, L. F. V., Komasa, A., Worrall, D. R., & Sikorski, M. (2006). Spectroscopy and photophysics of flavin-related compounds: 5-deaza-riboflavin. Journal of Molecular Structure, 783, 184–190. https://doi.org/10.1016/j.molstruc.2005.09.005 DOI

Heelis, P. F. (1982). The photophysical and photochemical properties of flavins (isoalloxazines). Chemical Society Reviews, 11, 15–39. https://doi.org/10.1039/cs9821100015 DOI

Salzmann, S., Martinez-Junza, V., Zorn, B., Braslavsky, S. E., Mansurova, M., Marian, C. M., & Gärtner, W. (2009). Photophysical properties of structurally and electronically modified flavin derivatives determined by spectroscopy and theoretical calculations. Journal of Physical Chemistry A, 113, 9365–9375. https://doi.org/10.1021/jp905724b PubMed DOI

Neiss, C., Saalfrank, P., Parac, M., & Grimme, S. (2003). Quantum chemical calculation of excited states of flavin-related molecules. Journal of Physical Chemistry A, 107, 140–147. https://doi.org/10.1021/jp021671h DOI

Sikorski, M., Sikorska, E., Koziołowa, A., Moreno, R. G., Bourdelande, J. L., Steer, R. P., & Wilkinson, F. (2001). Photophysical properties of lumichromes in water. Journal of Photochemistry and Photobiology A: Biology, 60, 114–119. https://doi.org/10.1016/S1011-1344(01)00134-8 DOI

Sikorska, E., Khmelinskii, I. V., Prukała, W., Williams, S. L., Worrall, D. R., Bourdelande, J. L., Bednarek, A., Koput, J., & Sikorski, M. (2004). Spectroscopy and photophysics of 9-methylalloxazine. Experimental and theoretical study. Journal of Molecular Structure, 689, 121–126. https://doi.org/10.1016/j.molstruc.2003.10.28 DOI

Sikorska, E., Khmelinskii, I. V., Bourdelande, J. L., Bednarek, A., Williams, S. L., Patel, M., Worrall, D. R., Koput, J., & Sikorski, M. (2004). Spectroscopy and photophysics of mono methyl-substituted alloxazines. Chemical Physics, 301, 95–103. https://doi.org/10.1016/j.chemphys.2004.03.005 DOI

Grodowski, M. S., Veyret, B., & Weiss, K. (1977). Photochemistry of flavins.2. Photophysical properties of alloxazines and isoalloxaznies. Photochemistry and Photobiology, 26, 341–352. https://doi.org/10.1111/j.1751-1097.1977.tb07495.x DOI

Encinas, M. V., Bertolotti, S. G., & Previtali, C. M. (2002). The interaction of ground and excited states of lumichrome with aliphatic and aromatic amines in methanol. Helvetica Chimica Acta, 85, 1427–1438. https://doi.org/10.1002/1522-2675(200205)85:5%3c1427::AID-HLCA1427%3e3.0.CO;2-A DOI

Li, H., Jiang, Z. Q., Pan, Y., & Yu, S. Q. (2006). Study on electron transfer of fluorescent probe lumichrome and nucleic acid by laser flash photolysis. Research on Chemical Intermediates, 32, 695–708 DOI

Davis, C. A., Erickson, P. R., McNeill, K., & Janssen, E. M. L. (2017). Environmental photochemistry of fenamate NSAIDs and their radical intermediates. Environmental Science. Processes & Impacts, 19, 656–665. https://doi.org/10.1039/c7em00079k DOI

Sikorska, E., Khmelinskii, I. V., Prukała, W., Williams, S. L., Patel, M., Worrall, D. R., Bourdelande, J. L., Koput, J., & Sikorski, M. (2004). Spectroscopy and photophysics of lumiflavins and lumichromes. Journal of Physical Chemistry A, 108, 1501–1508. https://doi.org/10.1021/jp037048u DOI

Sikorski, M., Prukała, D., Insińska-Rak, M., Khmelinskii, I., Worrall, D. R., Williams, S. L., Hernando, J., Bourdelande, J. L., Koput, J., & Sikorska, E. (2008). Spectroscopy and photophysics of dimethyl-substituted alloxazines. Journal of Photochemistry and Photobiology A: Chemistry, 200, 148–160. https://doi.org/10.1016/j.jphotochem.2008.07.006 DOI

Greco, I., Molchanova, N., Holmedal, E., Jenssen, H., Hummel, B. D., Watts, J. L., Håkansson, J., Hansen, P. R., & Svenson, J. (2020). Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. https://doi.org/10.1038/s41598-020-69995-9 PubMed DOI PMC

Farag, M. R., & Alagawany, M. (2018). Erythrocytes as a biological model for screening of xenobiotics toxicity. Chemico-Biological Interactions, 279, 73–83. https://doi.org/10.1016/j.cbi.2017.11.007 PubMed DOI

Mohanty, J. G., Nagababu, E., & Rifkind, J. M. (2014). Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Frontiers in Physiology, 5, 84. https://doi.org/10.3389/fphys.2014.00084 PubMed DOI PMC

Prukała, D., Gierszewski, M., Pędziński, T., & Sikorski, M. (2014). Influence of pH on spectral and photophysical properties of 9-methyl-5-deazaalloxazine and 10-ethyl-5-deaza-isoalloxazine. Journal of Photochemistry and Photobiology A: Chemistry, 275, 12–20. https://doi.org/10.1016/j.jphotochem.2013.10.011 DOI

Wendel, M., Szot, D., Starzak, K., Tuwalska, D., Prukała, D., Pędziński, T., Sikorski, M., Wybraniec, S., & Burdziński, G. (2015). Photophysical properties of indicaxanthin in aqueous and alcoholic solutions. Dyes and Pigments, 113, 634–639. https://doi.org/10.1016/j.dyepig.2014.09.036 DOI

Taylor, E. C., Jr., & Kalenda, N. W. (1956). The synthesis of pyrimido[4,5-b]quinolines. Journal of the American Chemical Society, 78, 5108–5115. https://doi.org/10.1021/ja01600a079 DOI

Kokel, B. (1994). The reaction of N, N-dimethyldichloromethyleniminium chloride (phosgeniminium chloride) with 6-N-arylaminouracils. A new and convenient “one pot” synthesis of l,3-dimethyl-5- dimethylaminopyrimido[4,5-b]quinoline-(1H,3H)-2,4-diones, 1,3-dimethyl-5-chloropyrimido[4,5-b]quinoline-(1H,3H)-2,4-diones and 3-methyl-10-alkyl-5-chloropyrimido[4,5-b]quinoline-(3H,10H)-2,4-diones (3-methyl-10-alkyl-5-chloro-5-deazaflavins). Journal of Heterocyclic Chemistry, 31, 845–855. https://doi.org/10.1002/jhet.5570310427 DOI

Prukała, D., Gierszewski, M., Karolczak, J., & Sikorski, M. (2015). Study of photophysical properties of 5-deazaalloxazine and 1,3-dimethyl-5-deazaalloxazine in dependence of pH using different spectral techniques. Physical Chemistry Chemical Physics: PCCP, 17, 18729–18741. https://doi.org/10.1039/c5cp01566a PubMed DOI

Burdziński, G., Maciejewski, A., Buntinx, G., Poizat, O., & Lefumeux, C. (2004). Ultrafast quenching of the excited S DOI

Schmidt, R., Tanielian, C., Dunsbach, R., & Wolff, C. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O DOI

Mrówczyńska, L., & Hägerstrand, H. (2009). Platelet-activating factor interaction with the human erythrocyte membrane. Journal of Biochemical Toxicology, 23, 345–348. https://doi.org/10.1002/jbt.20297 DOI

Sikorski, M., Khmelinskii, I., & Sikorska, E. (2021). Spectral Properties of Flavins. In R. Cibulka & M. Fraaije (Eds.), Flavin-Based Catalysis (pp. 67–96). Weinheim, Germany: Wiley-VCH. DOI

Salzmann, S., & Marian, C. M. (2009). The photophysics of alloxazine: A quantum chemical investigation in vacuum and solution. Photochemical & Photobiological Sciences, 8, 1655–1666. https://doi.org/10.1039/b9pp00022d DOI

Moyon, N. S., & Mitra, S. (2011). Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study. Journal of Physical Chemistry A, 115, 2456–2464. https://doi.org/10.1021/jp1102687 PubMed DOI

Sikorska, E., Szymusiak, H., Khmelinskii, I. V., Koziołowa, A., Spanget-Larsen, J., & Sikorski, M. (2003). Spectroscopy and photophysics of alloxazines studied in their ground and first excited singlet states. Journal of Photochemistry and Photobiology A: Chemistry, 158, 45–53. https://doi.org/10.1016/s1010-6030(03)00104-7 DOI

Sikorska, E., Khmelinskii, I. V., Nowacka, G., Koput, J., & Sikorski, M. (2005). Spectroscopy and photophysics of cyanoalloxazines. Theoretical study. Journal of Molecular Structure: THEOCHEM, 722, 51–56. https://doi.org/10.1016/j.theochem.2004.11.058 DOI

Chang, X. P., Xie, X. Y., Lin, S. Y., & Cui, G. L. (2016). QM/MM Study on mechanistic photophysics of alloxazine chromophore in aqueous solution. Journal of Physical Chemistry A, 120, 6129–6136. https://doi.org/10.1021/acs.jpca.6b02669 PubMed DOI

Prukała, D., Taczkowska, M., Gierszewski, M., Pędziński, T., & Sikorski, M. (2014). Spectroscopy and photophysics of monomethyl-substituted derivatives of 5-deazaalloxazine and 10-ethyl-5-deaza-isoalloxazine. Journal of Fluorescence, 24, 505–521. https://doi.org/10.1007/s10895-013-1320-9 PubMed DOI

Prukała, D., Khmelinskii, I., Koput, J., Gierszewski, M., Pędziński, T., & Sikorski, M. (2014). Photophysics, excited-state double-proton transfer and hydrogen-bonding properties of 5-deazaalloxazines. Photochemistry and Photobiology, 90, 972–988. https://doi.org/10.1111/php.12289 PubMed DOI

Quaranta, M., Murkovic, M., & Klimant, I. (2013). A new method to measure oxygen solubility in organic solvents through optical oxygen sensing. The Analyst, 138, 6243–6245. https://doi.org/10.1039/c3an36782g PubMed DOI

Sato, T., Hamada, Y., Sumikawa, M., Araki, S., & Yamamoto, H. (2014). Solubility of oxygen in organic solvents and calculation of the Hansen solubility parameters of oxygen. Industrial and Engineering Chemistry Research, 53, 19331–19337. https://doi.org/10.1021/ie502386t DOI

Carmichael, I., & Hug, G. L. (1986). Triplet-triplet absorption-spectra of organic-molecules in condensed phases. Journal of Physical and Chemical Reference Data, 15, 1–250. https://doi.org/10.1063/1.555770 DOI

Wilkinson, F., Helman, W. P., & Ross, A. B. (1993). Quantum yields for the photosensitized formation of the lowest electronically excited singlet-state of molecular-oxygen in solution. Journal of Physical and Chemical Reference Data, 22, 113–262. https://doi.org/10.1063/1.555934 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...