Deazaflavin reductive photocatalysis involves excited semiquinone radicals

. 2020 Jun 23 ; 11 (1) : 3174. [epub] 20200623

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32576821
Odkazy

PubMed 32576821
PubMed Central PMC7311442
DOI 10.1038/s41467-020-16909-y
PII: 10.1038/s41467-020-16909-y
Knihovny.cz E-zdroje

Flavin-mediated photocatalytic oxidations are established in synthetic chemistry. In contrast, their use in reductive chemistry is rare. Deazaflavins with a much lower reduction potential are even better suited for reductive chemistry rendering also deazaflavin semiquinones as strong reductants. However, no direct evidence exists for the involvement of these radical species in reductive processes. Here, we synthesise deazaflavins with different substituents at C5 and demonstrate their photocatalytic activity in the dehalogenation of p-halogenanisoles with best performance under basic conditions. Mechanistic investigations reveal a consecutive photo-induced electron transfer via the semiquinone form of the deazaflavin as part of a triplet-correlated radical pair after electron transfer from a sacrificial electron donor to the triplet state. A second electron transfer from the excited semiquinone to p-halogenanisoles triggers the final product formation. This study provides first evidence that the reductive power of excited deazaflavin semiquinones can be used in photocatalytic reductive chemistry.

Zobrazit více v PubMed

Walsh CT, Wencewicz TA. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 2013;30:175–200. PubMed PMC

Joosten V, Van Berkel WJH. Flavoenzymes. Curr. Opin. Chem. Biol. 2007;11:195–202. PubMed

Greening C, et al. Physiology, biochemistry, and applications of F420 and FO-dependent redox reactions. Microbiol. Mol. Biol. Rev. 2016;80:451–493. PubMed PMC

Walsh C. Naturally occurring 5-deazaflavin coenzymes: biological redox roles. Acc. Chem. Res. 1986;19:216–221.

Hemmerich P, Massey V, Fenner H. Flavin and 5-deazaflavin: a chemical evaluation of ‘modified’ flavoproteins with respect to the mechanisms of redox biocatalysis. FEBS Lett. 1977;84:5–21. PubMed

Megerle U, et al. Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds. Phys. Chem. Chem. Phys. 2011;13:8869–8880. PubMed

Kutta RJ, Archipowa N, Scrutton NS. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster. Phys. Chem. Chem. Phys. 2018;20:28767–28776. PubMed PMC

Kutta RJ, Archipowa N, Johannissen LO, Jones AR, Scrutton NS. Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 2017;7:44906. PubMed PMC

Massey V. The chemical and biological versatility of riboflavin. Biochem. Soc. Trans. 2000;28:283–296. PubMed

Holtmann D, Hollmann F. The oxygen dilemma: a severe challenge for the application of monooxygenases? ChemBioChem. 2016;17:1391–1398. PubMed PMC

Insińska-Rak M, Sikorski M. Riboflavin interactions with oxygen—a survey from the photochemical perspective. Chem. Eur. J. 2014;20:15280–15291. PubMed

Gelalcha FG. Heterocyclic hydroperoxides in selective oxidations. Chem. Rev. 2007;107:3338–3361. PubMed

Gadda G. Oxygen activation in flavoprotein oxidases: the importance of being positive. Biochemistry. 2012;51:2662–2669. PubMed

Huijbers MME, Montersino S, Westphal AH, Tischler D, van Berkel WJH. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 2014;544:2–17. PubMed

Torres Pazmiño DE, Winkler M, Glieder A, Fraaije MW. Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J. Biotechnol. 2010;146:9–24. PubMed

Zilly FE, Taglieber A, Schulz F, Hollmann F, Reetz MT. Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem. Commun. 2009;46:7152–7154. PubMed

Su Q, Boucher PA, Rokita SE. Conversion of a dehalogenase into a nitroreductase by swapping its flavin cofactor with a 5-deazaflavin analogue. Angew. Chem. Int. Ed. 2017;56:10862–10866. PubMed

Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT. Light-driven biocatalytic oxidation and reduction reactions: scope and limitations. ChemBioChem. 2008;9:565–572. PubMed

Duchstein H-J, Fenner H, Hemmerich P, Knappe W-R. (Photo)chemistry of 5-deazaflavin. Eur. J. Biochem. 1979;95:167–181. PubMed

Schmermund L, et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 2019;9:4115–4144.

Iwata T, et al. Hydrogen bonding environments in the photocycle process around the flavin chromophore of the AppA-BLUF domain. J. Am. Chem. Soc. 2018;140:11982–11991. PubMed

Silva, E. & Edwards, A. M. (eds) Flavins: Photochemistry and Photobiology (RSC Publishing, 2006).

Sancar A. Mechanisms of DNA repair by photolyase and excision nuclease (Nobel Lecture) Angew. Chem. Int. Ed. 2016;55:8502–8527. PubMed

Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 2003;103:2203–2238. PubMed

Lee J, Müller F, Visser AJWG. The sensitized bioluminescence mechanism of bacterial luciferase. Photochem. Photobiol. 2019;95:679–704. PubMed

Conrad KS, Manahan CC, Crane BR. Photochemistry of flavoprotein light sensors. Nat. Chem. Biol. 2014;10:801. PubMed PMC

Zollitsch TM, et al. Magnetically sensitive radical photochemistry of non-natural flavoproteins. J. Am. Chem. Soc. 2018;140:8705–8713. PubMed

Cashmore AR, Jarillo JA, Wu Y-J, Liu D. Cryptochromes: blue light receptors for plants and animals. Science. 1999;284:760–765. PubMed

Kiontke S, Gnau P, Haselsberger R, Batschauer A, Essen L-O. Structural and evolutionary aspects of antenna chromophore usage by class II photolyases. J. Biol. Chem. 2014;289:19659–19669. PubMed PMC

Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 2018;57:7958–7985. PubMed

König B, Kümmel S, Svobodová E, Cibulka R. Flavin photocatalysis. Phys. Sci. Rev. 2018;3:1–17.

Metternich, J. B., Mudd, R. J. & Gilmour, R. Science of Synthesis: Photocatalysis in Organic Synthesis, Vol. 1 (Thieme, 2018).

Zelenka J, Cibulka R, Roithová J. Flavinium catalysed photooxidation: detection and characterization of elusive peroxyflavinium intermediates. Angew. Chem. Int. Ed. 2019;58:15412–15420. PubMed PMC

Ramirez NP, König B, Gonzalez-Gomez JC. Decarboxylative cyanation of aliphatic carboxylic acids via visible-light flavin photocatalysis. Org. Lett. 2019;21:1368–1373. PubMed

März M, et al. Azodicarboxylate-free esterification with triphenylphosphine mediated by flavin and visible light: method development and stereoselectivity control. Org. Biomol. Chem. 2018;16:6809–6817. PubMed

Mühldorf B, Wolf R. C-H photooxygenation of alkyl benzenes catalyzed by riboflavin tetraacetate and a non-heme iron catalyst. Angew. Chem. Int. Ed. 2016;55:427–430. PubMed

Hering T, Mühldorf B, Wolf R, König B. Halogenase-inspired oxidative chlorination using flavin photocatalysis. Angew. Chem. Int. Ed. 2016;55:5342–5345. PubMed PMC

Hartman T, Cibulka R. Photocatalytic systems with flavinium salts: from photolyase models to synthetic tool for cyclobutane ring opening. Org. Lett. 2016;18:3710–3713. PubMed

Mühldorf B, Wolf R. Photocatalytic benzylic C-H bond oxidation with a flavin scandium complex. Chem. Commun. 2015;51:8425–8428. PubMed

Mojr V, et al. Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chem. Commun. 2015;51:12036–12039. PubMed

Feldmeier C, Bartling H, Magerl K, Gschwind RM. LED-illuminated NMR studies of flavin-catalyzed photooxidations reveal solvent control of the electron-transfer mechanism. Angew. Chem. Int. Ed. 2015;54:1347–1351. PubMed

Metternich JB, Gilmour R. A bio-inspired, catalytic E → Z isomerization of activated olefins. J. Am. Chem. Soc. 2015;137:11254–11257. PubMed

Zelenka J, et al. Combining flavin photocatalysis and organocatalysis: metal-free aerobic oxidation of unactivated benzylic substrates. Org. Lett. 2019;21:114–119. PubMed

Zhang W, Carpenter KL, Lin S. Electrochemistry broadens the scope of flavin photocatalysis: photoelectrocatalytic oxidation of unactivated alcohols. Angew. Chem. Int. Ed. 2020;59:409–417. PubMed PMC

Zhou F, Li R, Wang X, Du S, An Z. Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase. Angew. Chem. Int. Ed. 2019;58:9479–9484. PubMed

Link PAJ, van der Plas HC, Müller F. Photoreduction of 5-deazaflavins [1,3,9-triaza-anthracene-2(3H),4(10H)-diones] J. Chem. Soc. Chem. Commun. 1986;17:1385–1387.

van Schie MMCH, et al. Deazaflavins as photocatalysts for the direct reductive regeneration of flavoenzymes. Mol. Catal. 2018;452:277–283.

Goldberg M, Pecht I, Kramer HEA, Traber R, Hemmerich P. Structure and properties of 5-deazaflavin radicals as compared to natural flavosemiquinones. Biochim. Biophys. Acta. 1981;673:570–593. PubMed

Shi F, et al. A facile and efficient synthesis of novel pyrimido[5,4-b][4,7]phenanthroline-9,11(7H,8H,10H,12H)-dione derivativesviamicrowave-assisted multicomponent reactions. J. Heterocycl. Chem. 2009;46:563–566.

Khalafi-Nezhad A, Sarikhani S, Shahidzadeh ES, Panahi F. l-Proline-promoted three-component reaction of anilines, aldehydes and barbituric acids/malononitrile: regioselective synthesis of 5-arylpyrimido[4,5-b]quinoline-diones and 2-amino-4-arylquinoline-3-carbonitriles in water. Green Chem. 2012;14:2876–2884.

Edmondson DE, Barman B, Tollin G. Importance of the N-5 position in flavine coenzymes. Properties of free and protein-bound 5-deaza analogs. Biochemistry. 1972;11:1133–1138. PubMed

Neumeier M, et al. Dichromatic photocatalytic substitutions of aryl halides with a small organic dye. Chem. Eur. J. 2018;24:105–108. PubMed

Bardagi JI, Ghosh I, Schmalzbauer M, Ghosh T, König B. Anthraquinones as photoredox catalysts for the reductive activation of aryl halides. Eur. J. Org. Chem. 2018;1:34–40.

Ghosh I, König B. Chromoselctive photocatalysis: controlled bond activation through light-color regulation of redox potentials. Angew. Chem. Int. Ed. 2016;55:7676–7679. PubMed

Kim H, Kim H, Lambert TH, Lin S. Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potentials. J. Am. Chem. Soc. 2020;142:2087–2092. PubMed PMC

Cowper NGW, Chernowsky CP, Williams OP, Wickens ZK. Potent reductants via electron-primed photoredox catalysis: unlocking aryl chlorides for radical coupling. J. Am. Chem. Soc. 2020;142:2093–2099. PubMed PMC

Ghosh I, Ghosh T, Bardagi JI, König B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science. 2014;346:725–728. PubMed

Meyer AU, Slanina T, Heckel A, König B. Lanthanide ions coupled with photoinduced electron transfer generate strong reduction potentials from visible light. Chem. Eur. J. 2017;23:7900–7904. PubMed

Kerzig C, Guo X, Wenger OS. Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. J. Am. Chem. Soc. 2019;141:2122–2127. PubMed

MacKenzie IA, et al. Discovery and characterization of an acridine radical photoreductant. Nature. 2020;580:76–80. PubMed PMC

Cibulka R. Strong chemical reducing agents produced by light. Nature. 2020;580:31–32. PubMed

Kutta, R. J. Blitzlichtphotolyse - Untersuchung zu LOV-Domänen und Photochromen Systemen. Dissertation, Naturwissenschaftliche Fakultät IV -Chemie und Pharmazie- der Universität Regensburg (2012).

Kutta RJ, Langenbacher T, Kensy U, Dick B. Setup and performance of a streak camera apparatus for transient absorption measurements in the ns to ms range. Appl. Phys. B. 2013;111:203–216.

Baudisch, B. Time Resolved Broadband Spectroscopy from UV to NIR. Dissertation, Ludwig-Maximilians-Universität München (2018).

Lanzl K, Sanden-Flohe MV, Kutta RJ, Dick B. Photoreaction of mutated LOV photoreceptor domains from Chlamydomonas reinhardtii with aliphatic mercaptans: implications for the mechanism of wild type LOV. Phys. Chem. Chem. Phys. 2010;12:6594–6604. PubMed

Granovsky, A. A. Firefly version 8. http://classic.chem.msu.su/gran/firefly/index.html (1997).

Schmidt MW, et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993;14:1347–1363.

Neese F. The ORCA program system. WIREs Comput. Mol. Sci. 2012;2:73–78.

Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018;8:e1327.

Granovsky AA. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J. Chem. Phys. 2011;134:214113. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...