Deazaflavin reductive photocatalysis involves excited semiquinone radicals
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32576821
PubMed Central
PMC7311442
DOI
10.1038/s41467-020-16909-y
PII: 10.1038/s41467-020-16909-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Flavin-mediated photocatalytic oxidations are established in synthetic chemistry. In contrast, their use in reductive chemistry is rare. Deazaflavins with a much lower reduction potential are even better suited for reductive chemistry rendering also deazaflavin semiquinones as strong reductants. However, no direct evidence exists for the involvement of these radical species in reductive processes. Here, we synthesise deazaflavins with different substituents at C5 and demonstrate their photocatalytic activity in the dehalogenation of p-halogenanisoles with best performance under basic conditions. Mechanistic investigations reveal a consecutive photo-induced electron transfer via the semiquinone form of the deazaflavin as part of a triplet-correlated radical pair after electron transfer from a sacrificial electron donor to the triplet state. A second electron transfer from the excited semiquinone to p-halogenanisoles triggers the final product formation. This study provides first evidence that the reductive power of excited deazaflavin semiquinones can be used in photocatalytic reductive chemistry.
Institute of Organic Chemistry University of Regensburg 93040 Regensburg Germany
Institute of Physical and Theoretical Chemistry University of Regensburg 93040 Regensburg Germany
Zobrazit více v PubMed
Walsh CT, Wencewicz TA. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 2013;30:175–200. PubMed PMC
Joosten V, Van Berkel WJH. Flavoenzymes. Curr. Opin. Chem. Biol. 2007;11:195–202. PubMed
Greening C, et al. Physiology, biochemistry, and applications of F420 and FO-dependent redox reactions. Microbiol. Mol. Biol. Rev. 2016;80:451–493. PubMed PMC
Walsh C. Naturally occurring 5-deazaflavin coenzymes: biological redox roles. Acc. Chem. Res. 1986;19:216–221.
Hemmerich P, Massey V, Fenner H. Flavin and 5-deazaflavin: a chemical evaluation of ‘modified’ flavoproteins with respect to the mechanisms of redox biocatalysis. FEBS Lett. 1977;84:5–21. PubMed
Megerle U, et al. Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds. Phys. Chem. Chem. Phys. 2011;13:8869–8880. PubMed
Kutta RJ, Archipowa N, Scrutton NS. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster. Phys. Chem. Chem. Phys. 2018;20:28767–28776. PubMed PMC
Kutta RJ, Archipowa N, Johannissen LO, Jones AR, Scrutton NS. Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 2017;7:44906. PubMed PMC
Massey V. The chemical and biological versatility of riboflavin. Biochem. Soc. Trans. 2000;28:283–296. PubMed
Holtmann D, Hollmann F. The oxygen dilemma: a severe challenge for the application of monooxygenases? ChemBioChem. 2016;17:1391–1398. PubMed PMC
Insińska-Rak M, Sikorski M. Riboflavin interactions with oxygen—a survey from the photochemical perspective. Chem. Eur. J. 2014;20:15280–15291. PubMed
Gelalcha FG. Heterocyclic hydroperoxides in selective oxidations. Chem. Rev. 2007;107:3338–3361. PubMed
Gadda G. Oxygen activation in flavoprotein oxidases: the importance of being positive. Biochemistry. 2012;51:2662–2669. PubMed
Huijbers MME, Montersino S, Westphal AH, Tischler D, van Berkel WJH. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 2014;544:2–17. PubMed
Torres Pazmiño DE, Winkler M, Glieder A, Fraaije MW. Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J. Biotechnol. 2010;146:9–24. PubMed
Zilly FE, Taglieber A, Schulz F, Hollmann F, Reetz MT. Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem. Commun. 2009;46:7152–7154. PubMed
Su Q, Boucher PA, Rokita SE. Conversion of a dehalogenase into a nitroreductase by swapping its flavin cofactor with a 5-deazaflavin analogue. Angew. Chem. Int. Ed. 2017;56:10862–10866. PubMed
Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT. Light-driven biocatalytic oxidation and reduction reactions: scope and limitations. ChemBioChem. 2008;9:565–572. PubMed
Duchstein H-J, Fenner H, Hemmerich P, Knappe W-R. (Photo)chemistry of 5-deazaflavin. Eur. J. Biochem. 1979;95:167–181. PubMed
Schmermund L, et al. Photo-biocatalysis: biotransformations in the presence of light. ACS Catal. 2019;9:4115–4144.
Iwata T, et al. Hydrogen bonding environments in the photocycle process around the flavin chromophore of the AppA-BLUF domain. J. Am. Chem. Soc. 2018;140:11982–11991. PubMed
Silva, E. & Edwards, A. M. (eds) Flavins: Photochemistry and Photobiology (RSC Publishing, 2006).
Sancar A. Mechanisms of DNA repair by photolyase and excision nuclease (Nobel Lecture) Angew. Chem. Int. Ed. 2016;55:8502–8527. PubMed
Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 2003;103:2203–2238. PubMed
Lee J, Müller F, Visser AJWG. The sensitized bioluminescence mechanism of bacterial luciferase. Photochem. Photobiol. 2019;95:679–704. PubMed
Conrad KS, Manahan CC, Crane BR. Photochemistry of flavoprotein light sensors. Nat. Chem. Biol. 2014;10:801. PubMed PMC
Zollitsch TM, et al. Magnetically sensitive radical photochemistry of non-natural flavoproteins. J. Am. Chem. Soc. 2018;140:8705–8713. PubMed
Cashmore AR, Jarillo JA, Wu Y-J, Liu D. Cryptochromes: blue light receptors for plants and animals. Science. 1999;284:760–765. PubMed
Kiontke S, Gnau P, Haselsberger R, Batschauer A, Essen L-O. Structural and evolutionary aspects of antenna chromophore usage by class II photolyases. J. Biol. Chem. 2014;289:19659–19669. PubMed PMC
Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew. Chem. Int. Ed. 2018;57:7958–7985. PubMed
König B, Kümmel S, Svobodová E, Cibulka R. Flavin photocatalysis. Phys. Sci. Rev. 2018;3:1–17.
Metternich, J. B., Mudd, R. J. & Gilmour, R. Science of Synthesis: Photocatalysis in Organic Synthesis, Vol. 1 (Thieme, 2018).
Zelenka J, Cibulka R, Roithová J. Flavinium catalysed photooxidation: detection and characterization of elusive peroxyflavinium intermediates. Angew. Chem. Int. Ed. 2019;58:15412–15420. PubMed PMC
Ramirez NP, König B, Gonzalez-Gomez JC. Decarboxylative cyanation of aliphatic carboxylic acids via visible-light flavin photocatalysis. Org. Lett. 2019;21:1368–1373. PubMed
März M, et al. Azodicarboxylate-free esterification with triphenylphosphine mediated by flavin and visible light: method development and stereoselectivity control. Org. Biomol. Chem. 2018;16:6809–6817. PubMed
Mühldorf B, Wolf R. C-H photooxygenation of alkyl benzenes catalyzed by riboflavin tetraacetate and a non-heme iron catalyst. Angew. Chem. Int. Ed. 2016;55:427–430. PubMed
Hering T, Mühldorf B, Wolf R, König B. Halogenase-inspired oxidative chlorination using flavin photocatalysis. Angew. Chem. Int. Ed. 2016;55:5342–5345. PubMed PMC
Hartman T, Cibulka R. Photocatalytic systems with flavinium salts: from photolyase models to synthetic tool for cyclobutane ring opening. Org. Lett. 2016;18:3710–3713. PubMed
Mühldorf B, Wolf R. Photocatalytic benzylic C-H bond oxidation with a flavin scandium complex. Chem. Commun. 2015;51:8425–8428. PubMed
Mojr V, et al. Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chem. Commun. 2015;51:12036–12039. PubMed
Feldmeier C, Bartling H, Magerl K, Gschwind RM. LED-illuminated NMR studies of flavin-catalyzed photooxidations reveal solvent control of the electron-transfer mechanism. Angew. Chem. Int. Ed. 2015;54:1347–1351. PubMed
Metternich JB, Gilmour R. A bio-inspired, catalytic E → Z isomerization of activated olefins. J. Am. Chem. Soc. 2015;137:11254–11257. PubMed
Zelenka J, et al. Combining flavin photocatalysis and organocatalysis: metal-free aerobic oxidation of unactivated benzylic substrates. Org. Lett. 2019;21:114–119. PubMed
Zhang W, Carpenter KL, Lin S. Electrochemistry broadens the scope of flavin photocatalysis: photoelectrocatalytic oxidation of unactivated alcohols. Angew. Chem. Int. Ed. 2020;59:409–417. PubMed PMC
Zhou F, Li R, Wang X, Du S, An Z. Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase. Angew. Chem. Int. Ed. 2019;58:9479–9484. PubMed
Link PAJ, van der Plas HC, Müller F. Photoreduction of 5-deazaflavins [1,3,9-triaza-anthracene-2(3H),4(10H)-diones] J. Chem. Soc. Chem. Commun. 1986;17:1385–1387.
van Schie MMCH, et al. Deazaflavins as photocatalysts for the direct reductive regeneration of flavoenzymes. Mol. Catal. 2018;452:277–283.
Goldberg M, Pecht I, Kramer HEA, Traber R, Hemmerich P. Structure and properties of 5-deazaflavin radicals as compared to natural flavosemiquinones. Biochim. Biophys. Acta. 1981;673:570–593. PubMed
Shi F, et al. A facile and efficient synthesis of novel pyrimido[5,4-b][4,7]phenanthroline-9,11(7H,8H,10H,12H)-dione derivativesviamicrowave-assisted multicomponent reactions. J. Heterocycl. Chem. 2009;46:563–566.
Khalafi-Nezhad A, Sarikhani S, Shahidzadeh ES, Panahi F. l-Proline-promoted three-component reaction of anilines, aldehydes and barbituric acids/malononitrile: regioselective synthesis of 5-arylpyrimido[4,5-b]quinoline-diones and 2-amino-4-arylquinoline-3-carbonitriles in water. Green Chem. 2012;14:2876–2884.
Edmondson DE, Barman B, Tollin G. Importance of the N-5 position in flavine coenzymes. Properties of free and protein-bound 5-deaza analogs. Biochemistry. 1972;11:1133–1138. PubMed
Neumeier M, et al. Dichromatic photocatalytic substitutions of aryl halides with a small organic dye. Chem. Eur. J. 2018;24:105–108. PubMed
Bardagi JI, Ghosh I, Schmalzbauer M, Ghosh T, König B. Anthraquinones as photoredox catalysts for the reductive activation of aryl halides. Eur. J. Org. Chem. 2018;1:34–40.
Ghosh I, König B. Chromoselctive photocatalysis: controlled bond activation through light-color regulation of redox potentials. Angew. Chem. Int. Ed. 2016;55:7676–7679. PubMed
Kim H, Kim H, Lambert TH, Lin S. Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potentials. J. Am. Chem. Soc. 2020;142:2087–2092. PubMed PMC
Cowper NGW, Chernowsky CP, Williams OP, Wickens ZK. Potent reductants via electron-primed photoredox catalysis: unlocking aryl chlorides for radical coupling. J. Am. Chem. Soc. 2020;142:2093–2099. PubMed PMC
Ghosh I, Ghosh T, Bardagi JI, König B. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science. 2014;346:725–728. PubMed
Meyer AU, Slanina T, Heckel A, König B. Lanthanide ions coupled with photoinduced electron transfer generate strong reduction potentials from visible light. Chem. Eur. J. 2017;23:7900–7904. PubMed
Kerzig C, Guo X, Wenger OS. Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis. J. Am. Chem. Soc. 2019;141:2122–2127. PubMed
MacKenzie IA, et al. Discovery and characterization of an acridine radical photoreductant. Nature. 2020;580:76–80. PubMed PMC
Cibulka R. Strong chemical reducing agents produced by light. Nature. 2020;580:31–32. PubMed
Kutta, R. J. Blitzlichtphotolyse - Untersuchung zu LOV-Domänen und Photochromen Systemen. Dissertation, Naturwissenschaftliche Fakultät IV -Chemie und Pharmazie- der Universität Regensburg (2012).
Kutta RJ, Langenbacher T, Kensy U, Dick B. Setup and performance of a streak camera apparatus for transient absorption measurements in the ns to ms range. Appl. Phys. B. 2013;111:203–216.
Baudisch, B. Time Resolved Broadband Spectroscopy from UV to NIR. Dissertation, Ludwig-Maximilians-Universität München (2018).
Lanzl K, Sanden-Flohe MV, Kutta RJ, Dick B. Photoreaction of mutated LOV photoreceptor domains from Chlamydomonas reinhardtii with aliphatic mercaptans: implications for the mechanism of wild type LOV. Phys. Chem. Chem. Phys. 2010;12:6594–6604. PubMed
Granovsky, A. A. Firefly version 8. http://classic.chem.msu.su/gran/firefly/index.html (1997).
Schmidt MW, et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993;14:1347–1363.
Neese F. The ORCA program system. WIREs Comput. Mol. Sci. 2012;2:73–78.
Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018;8:e1327.
Granovsky AA. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory. J. Chem. Phys. 2011;134:214113. PubMed
A facile three-component route to powerful 5-aryldeazaalloxazine photocatalysts
5-Deazaalloxazine as photosensitizer of singlet oxygen and potential redox-sensitive agent