Introduction of flavin anions into photoredox catalysis: acid-base equilibria of lumichrome allow photoreductions with an anion of an elusive 10-unsubstituted isoalloxazine

. 2025 May 15 ; () : . [epub] 20250515

Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40406213

Flavins have been established as effective catalysts in oxidative photoredox catalysis. Conversely, their use in reductive photocatalysis remains limited, mainly due to the relatively low stability of the transient flavin radicals (semiquinones), which are used in photoreductions. The fully reduced forms of flavins are also disadvantaged in photocatalysis because they absorb light in the UV rather than in the visible region. In this work, we present a new approach for reductive flavin photocatalysis that utilises a flavin (isoalloxazine) anion derived from the elusive 10-unsubstituted 3,7,8-trimethylisoalloxazine, an unstable tautomer of 3-methyllumichrome. We found the conditions under which this isoalloxazine anion is formed by in situ deprotonation/isomerisation from the readily available 3-methyllumichrome and we subsequently used it as a photoredox catalyst in the reductive dehalogenation of activated bromoarenes and their C-P coupling reaction with trimethyl phosphite to form an arylphosphonate. Steady-state and transient absorption spectroscopy, NMR and cyclic voltammetry investigations, together with quantum chemical calculations, showed that the anion of oxidised isoalloxazine has several advantages, compared to other forms of flavins used in photoreductions, such as high stability, even in the presence of oxygen, an absorption maximum in the visible region, thereby allowing the use of excitation light between 470 and 505 nm, and a relatively long-lived singlet excited-state.

Zobrazit více v PubMed

Pimviriyakul P. and Chaiyen P., in The Enzymes, ed. P. Chaiyen and F. Tamanoi, Academic Press, 2020, pp. 1–36

Drenth J. and Fraaije M. W., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 29–65

Walsh C. T. Wencewicz T. A. Nat. Prod. Rep. 2013;30:175–200. PubMed PMC

Ahmad I. and Vaid F. H. M., in Flavins, ed. E. Silva and A. M. Edwards, Royal Society of Chemistry, 2006, pp. 13–40

Lopez L. Fasano C. Perrella G. Facella P. Genes. 2021;12:672. PubMed PMC

Brodl E. Winkler A. Macheroux P. Comput. Struct. Biotechnol. J. 2018;16:551–564. PubMed PMC

Christie J. M. Murphy A. S. Am. J. Bot. 2013;100:35–46. PubMed

Sancar A. Angew. Chem., Int. Ed. 2016;55:8502–8527. PubMed

Sorigué D. Légeret B. Cuiné S. Blangy S. Moulin S. Billon E. Richaud P. Brugière S. Couté Y. Nurizzo D. Müller P. Brettel K. Pignol D. Arnoux P. Li-Beisson Y. Peltier G. Beisson F. Science. 2017;357:903–907. PubMed

Grosheva D. and Hyster T. K., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 291–313

Fu H. Hyster T. K. Acc. Chem. Res. 2024;57:1446–1457. PubMed PMC

Simić S. Jakštaitė M. Huck W. T. S. Winkler C. K. Kroutil W. ACS Catal. 2022;12:14040–14049. PubMed PMC

Emmanuel M. A. Bender S. G. Bilodeau C. Carceller J. M. DeHovitz J. S. Fu H. Liu Y. Nicholls B. T. Ouyang Y. Page C. G. Qiao T. Raps F. C. Sorigué D. R. Sun S.-Z. Turek-Herman J. Ye Y. Rivas-Souchet A. Cao J. Hyster T. K. Chem. Rev. 2023;123:5459–5520. PubMed PMC

Harrison W. Huang X. Zhao H. Acc. Chem. Res. 2022;55:1087–1096. PubMed

Alphand V. van Berkel W. J. H. Jurkaš V. Kara S. Kourist R. Kroutil W. Mascia F. Nowaczyk M. M. Paul C. E. Schmidt S. Spasic J. Tamagnini P. Winkler C. K. ChemPhotoChem. 2023;7:e202200325.

Dong J. Fernández-Fueyo E. Hollmann F. Paul C. E. Pesic M. Schmidt S. Wang Y. Younes S. Zhang W. Angew. Chem., Int. Ed. 2018;57:9238–9261. PubMed PMC

Srinivasan S. J. Cleary S. E. Ramirez M. Reeve H. Paul C. Vincent K. A. Angew. Chem., Int. Ed. 2021;60:13824–13828. PubMed PMC

Svobodová E. and Cibulka R., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 265–291

König B. Kümmel S. Svobodová E. Cibulka R. Phys. Sci. Rev. 2018;3:20170168. doi: 10.1515/psr-2017-0168. DOI

Sideri I. K. Voutyritsa E. Kokotos C. G. Org. Biomol. Chem. 2018;16:4596–4614. PubMed

Rehpenn A. Walter A. Storch G. Synthesis. 2021;53:2583–2593.

Cheng B. and König B., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 245–264

Langschwager T. Storch G. Angew. Chem., Int. Ed. 2024;64:e202414679. PubMed

Walter A. Eisenreich W. Storch G. Angew. Chem., Int. Ed. 2023;62:e202310634. PubMed

Shiogai Y. Oka M. Miyake H. Iida H. Org. Biomol. Chem. 2024;22:4450–4454. PubMed

Shen D. Zhong F. Li L. Zhang H. Ren T. Sun C. Wang B. Guo M. Chao M. Fukuzumi S. Org. Chem. Front. 2023;10:2653–2662.

Immel J. R. Alghafli B. M. Rodríguez Ugalde A. A. Bloom S. Org. Lett. 2023;25:3818–3822. PubMed PMC

Bera N. Lenka B. S. König B. Sarkar D. J. Org. Chem. 2023;88:7977–7987. PubMed

Trenker S. Grunenberg L. Banerjee T. Savasci G. Poller L. M. Muggli K. I. M. Haase F. Ochsenfeld C. Lotsch B. V. Chem. Sci. 2021;12:15143–15150. PubMed PMC

Pokluda A. Anwar Z. Boguschová V. Anusiewicz I. Skurski P. Sikorski M. Cibulka R. Adv. Synth. Catal. 2021;363:4371–4379.

Obertík R. Ludvíková L. Chudoba J. Cibulka R. ChemCatChem. 2025;17:e202401795.

Foja R. Walter A. Jandl C. Thyrhaug E. Hauer J. Storch G. J. Am. Chem. Soc. 2022;144:4721–4726. PubMed

Pavlovska T. Weisheitelová I. Pramthaisong C. Sikorski M. Jahn U. Cibulka R. Adv. Synth. Catal. 2023;365:4662–4671.

Pavlovska T. Král Lesný D. Svobodová E. Hoskovcová I. Archipowa N. Kutta R. J. Cibulka R. Chem.–Eur. J. 2022;28:e202200768. PubMed PMC

Obertík R. Chudoba J. Šturala J. Tarábek J. Ludvíková L. Slanina T. König B. Cibulka R. Chem.–Eur. J. 2022;28:e202202487. PubMed

Graml A. Neveselý T. Kutta R. J. Cibulka R. König B. Nat. Commun. 2020;11:3174. PubMed PMC

Kao Y.-T. Saxena C. He T.-F. Guo L. Wang L. Sancar A. Zhong D. J. Am. Chem. Soc. 2008:13132–13139. PubMed PMC

Su D. Kabir M. P. Orozco-Gonzalez Y. Gozem S. Gadda G. ChemBioChem. 2019;20:1614. PubMed

Kabir M. P. Orozco-Gonzalez Y. Gozem S. Phys. Chem. Chem. Phys. 2019;21:16526–16537. PubMed

Huang X. Wang B. Wang Y. Jiang G. Feng J. Zhao H. Nature. 2020;584:69–74. PubMed

Page C. G. Cao J. Oblinsky D. G. MacMillan S. N. Dahagam S. Lloyd R. M. Charnock S. J. Scholes G. D. Hyster T. K. J. Am. Chem. Soc. 2023;147:11866–11874. PubMed PMC

Sandoval B. A. Clayman P. D. Oblinsky D. G. Oh S. Nakano Y. Bird M. Scholes G. D. Hyster T. K. J. Am. Chem. Soc. 2021;143:1735–1739. PubMed

Biegasiewicz K. F. Cooper S. J. Gao X. Oblinsky D. G. Kim J. H. Garfinkle S. E. Joyce L. A. Sandoval B. A. Scholes G. D. Hyster T. K. Science. 2019;364:1166–1169. PubMed PMC

Bartolomei B. Gentile G. Rosso C. Filippini G. Prato M. Chem.–Eur. J. 2021;27:16062–16070. PubMed

Wu S. Schiel F. Melchiorre P. Angew. Chem., Int. Ed. 2023;62:e202306364. PubMed

Schmalzbauer M. Marcon M. König B. Angew. Chem., Int. Ed. 2021;60:6270–6292. PubMed PMC

Sheldrick A. Müller D. Günther A. Nieto P. Dopfer O. Phys. Chem. Chem. Phys. 2018;20:7407–7414. PubMed

Song P.-S. Sun M. Koziolowa A. Koziol J. J. Am. Chem. Soc. 1974;96:4319–4323.

Koziołowa A. Photochem. Photobiol. 1979;29:459–471.

Mal M. Mandal D. J. Photochem. Photobiol., A. 2021;404:112888.

Prukała D. Khmelinskii I. Koput J. Gierszewski M. Pędziński T. Sikorski M. Photochem. Photobiol. 2014;90:972–988. PubMed

Sikorska E. Khmelinskii I. Hoffmann M. Machado I. F. Ferreira L. F. V. Dobek K. Karolczak J. Krawczyk A. Insińska-Rak M. Sikorski M. J. Phys. Chem. A. 2005;109:11707–11714. PubMed

Miskolczy Z. Biczók L. Görner H. J. Photochem. Photobiol., A. 2009;207:47–51.

Prukała D. Sikorska E. Koput J. Khmelinskii I. Karolczak J. Gierszewski M. Sikorski M. J. Phys. Chem. A. 2012;116:7474–7490. PubMed

Tyagi A. Penzkofer A. Photochem. Photobiol. 2011;87:524–533. PubMed

Penzkofer A. J. Photochem. Photobiol., A. 2016;314:114–124.

Barišić D. Tomišić V. Bregović N. Anal. Chim. Acta. 2019;1046:77–92. PubMed

Müller F. Dudley K. H. Helv. Chim. Acta. 1971;54:1487–1497. PubMed

Kuhn R. Moruzzi G. Ber. Dtsch. Chem. Ges. 1934;67:888–891.

Sikorska E. Khmelinskii I. V. Prukała W. Williams S. L. Patel M. Worrall D. R. Bourdelande J. L. Koput J. Sikorski M. J. Phys. Chem. A. 2004;108:1501–1508.

Magdesieva T. V. Kukhareva I. I. Artamkina G. A. Butin K. P. Beletskaya I. P. J. Organomet. Chem. 1994;468:213–221.

Májek M. Filace F. Jacobi von Wangelin A. Chem.–Eur. J. 2015;21:4518–4522. PubMed

Till N. A. Tian L. Dong Z. Scholes G. D. MacMillan D. W. C. J. Am. Chem. Soc. 2020;142:15830–15841. PubMed

Neumeier M. Sampedro D. Májek M. de la Peña O’Shea V. A. Wangelin A. J. v. Pérez-Ruiz R. Chem.–Eur. J. 2018;24:105–108. PubMed

Enemærke R. J. Christensen T. B. Jensen H. Daasbjerg K. J. Chem. Soc., Perkin Trans. 2. 2001:1620–1630.

Wang C. Li H. Bürgin T. H. Wenger O. S. Nat. Chem. 2024;16:1151–1159. PubMed PMC

Rehpenn A. Hindelang S. Truong K.-N. Pöthig A. Storch G. Angew. Chem., Int. Ed. 2024;63:e202318590. PubMed

Gary S. Woolley J. Goia S. Bloom S. Chem. Sci. 2024;15:11444–11454. PubMed PMC

Das D. Miller A.-F. Chem. Sci. 2024;15:7610–7622. PubMed PMC

Worner J. Panter S. Illarionov B. Bacher A. Fischer M. Weber S. Angew. Chem., Int. Ed. 2023;62:e202309334. PubMed

Romero N. A. Nicewicz D. A. Chem. Rev. 2016;116:10075–10166. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...