Introduction of flavin anions into photoredox catalysis: acid-base equilibria of lumichrome allow photoreductions with an anion of an elusive 10-unsubstituted isoalloxazine
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40406213
PubMed Central
PMC12094105
DOI
10.1039/d5sc01630d
PII: d5sc01630d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Flavins have been established as effective catalysts in oxidative photoredox catalysis. Conversely, their use in reductive photocatalysis remains limited, mainly due to the relatively low stability of the transient flavin radicals (semiquinones), which are used in photoreductions. The fully reduced forms of flavins are also disadvantaged in photocatalysis because they absorb light in the UV rather than in the visible region. In this work, we present a new approach for reductive flavin photocatalysis that utilises a flavin (isoalloxazine) anion derived from the elusive 10-unsubstituted 3,7,8-trimethylisoalloxazine, an unstable tautomer of 3-methyllumichrome. We found the conditions under which this isoalloxazine anion is formed by in situ deprotonation/isomerisation from the readily available 3-methyllumichrome and we subsequently used it as a photoredox catalyst in the reductive dehalogenation of activated bromoarenes and their C-P coupling reaction with trimethyl phosphite to form an arylphosphonate. Steady-state and transient absorption spectroscopy, NMR and cyclic voltammetry investigations, together with quantum chemical calculations, showed that the anion of oxidised isoalloxazine has several advantages, compared to other forms of flavins used in photoreductions, such as high stability, even in the presence of oxygen, an absorption maximum in the visible region, thereby allowing the use of excitation light between 470 and 505 nm, and a relatively long-lived singlet excited-state.
Central Laboratories University of Chemistry and Technology Prague 16628 Prague Czech Republic
Faculty of Chemistry Adam Mickiewicz University 61 614 Poznań Poland
Faculty of Physics and Astronomy Adam Mickiewicz University 61 614 Poznań Poland
Zobrazit více v PubMed
Pimviriyakul P. and Chaiyen P., in The Enzymes, ed. P. Chaiyen and F. Tamanoi, Academic Press, 2020, pp. 1–36
Drenth J. and Fraaije M. W., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 29–65
Walsh C. T. Wencewicz T. A. Nat. Prod. Rep. 2013;30:175–200. PubMed PMC
Ahmad I. and Vaid F. H. M., in Flavins, ed. E. Silva and A. M. Edwards, Royal Society of Chemistry, 2006, pp. 13–40
Lopez L. Fasano C. Perrella G. Facella P. Genes. 2021;12:672. PubMed PMC
Brodl E. Winkler A. Macheroux P. Comput. Struct. Biotechnol. J. 2018;16:551–564. PubMed PMC
Christie J. M. Murphy A. S. Am. J. Bot. 2013;100:35–46. PubMed
Sancar A. Angew. Chem., Int. Ed. 2016;55:8502–8527. PubMed
Sorigué D. Légeret B. Cuiné S. Blangy S. Moulin S. Billon E. Richaud P. Brugière S. Couté Y. Nurizzo D. Müller P. Brettel K. Pignol D. Arnoux P. Li-Beisson Y. Peltier G. Beisson F. Science. 2017;357:903–907. PubMed
Grosheva D. and Hyster T. K., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 291–313
Fu H. Hyster T. K. Acc. Chem. Res. 2024;57:1446–1457. PubMed PMC
Simić S. Jakštaitė M. Huck W. T. S. Winkler C. K. Kroutil W. ACS Catal. 2022;12:14040–14049. PubMed PMC
Emmanuel M. A. Bender S. G. Bilodeau C. Carceller J. M. DeHovitz J. S. Fu H. Liu Y. Nicholls B. T. Ouyang Y. Page C. G. Qiao T. Raps F. C. Sorigué D. R. Sun S.-Z. Turek-Herman J. Ye Y. Rivas-Souchet A. Cao J. Hyster T. K. Chem. Rev. 2023;123:5459–5520. PubMed PMC
Harrison W. Huang X. Zhao H. Acc. Chem. Res. 2022;55:1087–1096. PubMed
Alphand V. van Berkel W. J. H. Jurkaš V. Kara S. Kourist R. Kroutil W. Mascia F. Nowaczyk M. M. Paul C. E. Schmidt S. Spasic J. Tamagnini P. Winkler C. K. ChemPhotoChem. 2023;7:e202200325.
Dong J. Fernández-Fueyo E. Hollmann F. Paul C. E. Pesic M. Schmidt S. Wang Y. Younes S. Zhang W. Angew. Chem., Int. Ed. 2018;57:9238–9261. PubMed PMC
Srinivasan S. J. Cleary S. E. Ramirez M. Reeve H. Paul C. Vincent K. A. Angew. Chem., Int. Ed. 2021;60:13824–13828. PubMed PMC
Svobodová E. and Cibulka R., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 265–291
König B. Kümmel S. Svobodová E. Cibulka R. Phys. Sci. Rev. 2018;3:20170168. doi: 10.1515/psr-2017-0168. DOI
Sideri I. K. Voutyritsa E. Kokotos C. G. Org. Biomol. Chem. 2018;16:4596–4614. PubMed
Rehpenn A. Walter A. Storch G. Synthesis. 2021;53:2583–2593.
Cheng B. and König B., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 245–264
Langschwager T. Storch G. Angew. Chem., Int. Ed. 2024;64:e202414679. PubMed
Walter A. Eisenreich W. Storch G. Angew. Chem., Int. Ed. 2023;62:e202310634. PubMed
Shiogai Y. Oka M. Miyake H. Iida H. Org. Biomol. Chem. 2024;22:4450–4454. PubMed
Shen D. Zhong F. Li L. Zhang H. Ren T. Sun C. Wang B. Guo M. Chao M. Fukuzumi S. Org. Chem. Front. 2023;10:2653–2662.
Immel J. R. Alghafli B. M. Rodríguez Ugalde A. A. Bloom S. Org. Lett. 2023;25:3818–3822. PubMed PMC
Bera N. Lenka B. S. König B. Sarkar D. J. Org. Chem. 2023;88:7977–7987. PubMed
Trenker S. Grunenberg L. Banerjee T. Savasci G. Poller L. M. Muggli K. I. M. Haase F. Ochsenfeld C. Lotsch B. V. Chem. Sci. 2021;12:15143–15150. PubMed PMC
Pokluda A. Anwar Z. Boguschová V. Anusiewicz I. Skurski P. Sikorski M. Cibulka R. Adv. Synth. Catal. 2021;363:4371–4379.
Obertík R. Ludvíková L. Chudoba J. Cibulka R. ChemCatChem. 2025;17:e202401795.
Foja R. Walter A. Jandl C. Thyrhaug E. Hauer J. Storch G. J. Am. Chem. Soc. 2022;144:4721–4726. PubMed
Pavlovska T. Weisheitelová I. Pramthaisong C. Sikorski M. Jahn U. Cibulka R. Adv. Synth. Catal. 2023;365:4662–4671.
Pavlovska T. Král Lesný D. Svobodová E. Hoskovcová I. Archipowa N. Kutta R. J. Cibulka R. Chem.–Eur. J. 2022;28:e202200768. PubMed PMC
Obertík R. Chudoba J. Šturala J. Tarábek J. Ludvíková L. Slanina T. König B. Cibulka R. Chem.–Eur. J. 2022;28:e202202487. PubMed
Graml A. Neveselý T. Kutta R. J. Cibulka R. König B. Nat. Commun. 2020;11:3174. PubMed PMC
Kao Y.-T. Saxena C. He T.-F. Guo L. Wang L. Sancar A. Zhong D. J. Am. Chem. Soc. 2008:13132–13139. PubMed PMC
Su D. Kabir M. P. Orozco-Gonzalez Y. Gozem S. Gadda G. ChemBioChem. 2019;20:1614. PubMed
Kabir M. P. Orozco-Gonzalez Y. Gozem S. Phys. Chem. Chem. Phys. 2019;21:16526–16537. PubMed
Huang X. Wang B. Wang Y. Jiang G. Feng J. Zhao H. Nature. 2020;584:69–74. PubMed
Page C. G. Cao J. Oblinsky D. G. MacMillan S. N. Dahagam S. Lloyd R. M. Charnock S. J. Scholes G. D. Hyster T. K. J. Am. Chem. Soc. 2023;147:11866–11874. PubMed PMC
Sandoval B. A. Clayman P. D. Oblinsky D. G. Oh S. Nakano Y. Bird M. Scholes G. D. Hyster T. K. J. Am. Chem. Soc. 2021;143:1735–1739. PubMed
Biegasiewicz K. F. Cooper S. J. Gao X. Oblinsky D. G. Kim J. H. Garfinkle S. E. Joyce L. A. Sandoval B. A. Scholes G. D. Hyster T. K. Science. 2019;364:1166–1169. PubMed PMC
Bartolomei B. Gentile G. Rosso C. Filippini G. Prato M. Chem.–Eur. J. 2021;27:16062–16070. PubMed
Wu S. Schiel F. Melchiorre P. Angew. Chem., Int. Ed. 2023;62:e202306364. PubMed
Schmalzbauer M. Marcon M. König B. Angew. Chem., Int. Ed. 2021;60:6270–6292. PubMed PMC
Sheldrick A. Müller D. Günther A. Nieto P. Dopfer O. Phys. Chem. Chem. Phys. 2018;20:7407–7414. PubMed
Song P.-S. Sun M. Koziolowa A. Koziol J. J. Am. Chem. Soc. 1974;96:4319–4323.
Koziołowa A. Photochem. Photobiol. 1979;29:459–471.
Mal M. Mandal D. J. Photochem. Photobiol., A. 2021;404:112888.
Prukała D. Khmelinskii I. Koput J. Gierszewski M. Pędziński T. Sikorski M. Photochem. Photobiol. 2014;90:972–988. PubMed
Sikorska E. Khmelinskii I. Hoffmann M. Machado I. F. Ferreira L. F. V. Dobek K. Karolczak J. Krawczyk A. Insińska-Rak M. Sikorski M. J. Phys. Chem. A. 2005;109:11707–11714. PubMed
Miskolczy Z. Biczók L. Görner H. J. Photochem. Photobiol., A. 2009;207:47–51.
Prukała D. Sikorska E. Koput J. Khmelinskii I. Karolczak J. Gierszewski M. Sikorski M. J. Phys. Chem. A. 2012;116:7474–7490. PubMed
Tyagi A. Penzkofer A. Photochem. Photobiol. 2011;87:524–533. PubMed
Penzkofer A. J. Photochem. Photobiol., A. 2016;314:114–124.
Barišić D. Tomišić V. Bregović N. Anal. Chim. Acta. 2019;1046:77–92. PubMed
Müller F. Dudley K. H. Helv. Chim. Acta. 1971;54:1487–1497. PubMed
Kuhn R. Moruzzi G. Ber. Dtsch. Chem. Ges. 1934;67:888–891.
Sikorska E. Khmelinskii I. V. Prukała W. Williams S. L. Patel M. Worrall D. R. Bourdelande J. L. Koput J. Sikorski M. J. Phys. Chem. A. 2004;108:1501–1508.
Magdesieva T. V. Kukhareva I. I. Artamkina G. A. Butin K. P. Beletskaya I. P. J. Organomet. Chem. 1994;468:213–221.
Májek M. Filace F. Jacobi von Wangelin A. Chem.–Eur. J. 2015;21:4518–4522. PubMed
Till N. A. Tian L. Dong Z. Scholes G. D. MacMillan D. W. C. J. Am. Chem. Soc. 2020;142:15830–15841. PubMed
Neumeier M. Sampedro D. Májek M. de la Peña O’Shea V. A. Wangelin A. J. v. Pérez-Ruiz R. Chem.–Eur. J. 2018;24:105–108. PubMed
Enemærke R. J. Christensen T. B. Jensen H. Daasbjerg K. J. Chem. Soc., Perkin Trans. 2. 2001:1620–1630.
Wang C. Li H. Bürgin T. H. Wenger O. S. Nat. Chem. 2024;16:1151–1159. PubMed PMC
Rehpenn A. Hindelang S. Truong K.-N. Pöthig A. Storch G. Angew. Chem., Int. Ed. 2024;63:e202318590. PubMed
Gary S. Woolley J. Goia S. Bloom S. Chem. Sci. 2024;15:11444–11454. PubMed PMC
Das D. Miller A.-F. Chem. Sci. 2024;15:7610–7622. PubMed PMC
Worner J. Panter S. Illarionov B. Bacher A. Fischer M. Weber S. Angew. Chem., Int. Ed. 2023;62:e202309334. PubMed
Romero N. A. Nicewicz D. A. Chem. Rev. 2016;116:10075–10166. PubMed