Introduction of flavin anions into photoredox catalysis: acid-base equilibria of lumichrome allow photoreductions with an anion of an elusive 10-unsubstituted isoalloxazine
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
40406213
PubMed Central
PMC12094105
DOI
10.1039/d5sc01630d
PII: d5sc01630d
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Flavins have been established as effective catalysts in oxidative photoredox catalysis. Conversely, their use in reductive photocatalysis remains limited, mainly due to the relatively low stability of the transient flavin radicals (semiquinones), which are used in photoreductions. The fully reduced forms of flavins are also disadvantaged in photocatalysis because they absorb light in the UV rather than in the visible region. In this work, we present a new approach for reductive flavin photocatalysis that utilises a flavin (isoalloxazine) anion derived from the elusive 10-unsubstituted 3,7,8-trimethylisoalloxazine, an unstable tautomer of 3-methyllumichrome. We found the conditions under which this isoalloxazine anion is formed by in situ deprotonation/isomerisation from the readily available 3-methyllumichrome and we subsequently used it as a photoredox catalyst in the reductive dehalogenation of activated bromoarenes and their C-P coupling reaction with trimethyl phosphite to form an arylphosphonate. Steady-state and transient absorption spectroscopy, NMR and cyclic voltammetry investigations, together with quantum chemical calculations, showed that the anion of oxidised isoalloxazine has several advantages, compared to other forms of flavins used in photoreductions, such as high stability, even in the presence of oxygen, an absorption maximum in the visible region, thereby allowing the use of excitation light between 470 and 505 nm, and a relatively long-lived singlet excited-state.
Central Laboratories University of Chemistry and Technology Prague 16628 Prague Czech Republic
Faculty of Chemistry Adam Mickiewicz University 61 614 Poznań Poland
Faculty of Physics and Astronomy Adam Mickiewicz University 61 614 Poznań Poland
See more in PubMed
Pimviriyakul P. and Chaiyen P., in The Enzymes, ed. P. Chaiyen and F. Tamanoi, Academic Press, 2020, pp. 1–36
Drenth J. and Fraaije M. W., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 29–65
Walsh C. T. Wencewicz T. A. Nat. Prod. Rep. 2013;30:175–200. doi: 10.1039/C2NP20069D. PubMed DOI PMC
Ahmad I. and Vaid F. H. M., in Flavins, ed. E. Silva and A. M. Edwards, Royal Society of Chemistry, 2006, pp. 13–40
Lopez L. Fasano C. Perrella G. Facella P. Genes. 2021;12:672. doi: 10.3390/genes12050672. PubMed DOI PMC
Brodl E. Winkler A. Macheroux P. Comput. Struct. Biotechnol. J. 2018;16:551–564. doi: 10.1016/j.csbj.2018.11.003. PubMed DOI PMC
Christie J. M. Murphy A. S. Am. J. Bot. 2013;100:35–46. doi: 10.3732/ajb.1200340. PubMed DOI
Sancar A. Angew. Chem., Int. Ed. 2016;55:8502–8527. doi: 10.1002/anie.201601524. PubMed DOI
Sorigué D. Légeret B. Cuiné S. Blangy S. Moulin S. Billon E. Richaud P. Brugière S. Couté Y. Nurizzo D. Müller P. Brettel K. Pignol D. Arnoux P. Li-Beisson Y. Peltier G. Beisson F. Science. 2017;357:903–907. doi: 10.1126/science.aan6349. PubMed DOI
Grosheva D. and Hyster T. K., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 291–313
Fu H. Hyster T. K. Acc. Chem. Res. 2024;57:1446–1457. doi: 10.1021/acs.accounts.4c00129. PubMed DOI PMC
Simić S. Jakštaitė M. Huck W. T. S. Winkler C. K. Kroutil W. ACS Catal. 2022;12:14040–14049. doi: 10.1021/acscatal.2c04444. PubMed DOI PMC
Emmanuel M. A. Bender S. G. Bilodeau C. Carceller J. M. DeHovitz J. S. Fu H. Liu Y. Nicholls B. T. Ouyang Y. Page C. G. Qiao T. Raps F. C. Sorigué D. R. Sun S.-Z. Turek-Herman J. Ye Y. Rivas-Souchet A. Cao J. Hyster T. K. Chem. Rev. 2023;123:5459–5520. doi: 10.1021/acs.chemrev.2c00767. PubMed DOI PMC
Harrison W. Huang X. Zhao H. Acc. Chem. Res. 2022;55:1087–1096. doi: 10.1021/acs.accounts.1c00719. PubMed DOI
Alphand V. van Berkel W. J. H. Jurkaš V. Kara S. Kourist R. Kroutil W. Mascia F. Nowaczyk M. M. Paul C. E. Schmidt S. Spasic J. Tamagnini P. Winkler C. K. ChemPhotoChem. 2023;7:e202200325. doi: 10.1002/cptc.202200325. DOI
Dong J. Fernández-Fueyo E. Hollmann F. Paul C. E. Pesic M. Schmidt S. Wang Y. Younes S. Zhang W. Angew. Chem., Int. Ed. 2018;57:9238–9261. doi: 10.1002/anie.201800343. PubMed DOI PMC
Srinivasan S. J. Cleary S. E. Ramirez M. Reeve H. Paul C. Vincent K. A. Angew. Chem., Int. Ed. 2021;60:13824–13828. doi: 10.1002/anie.202101186. PubMed DOI PMC
Svobodová E. and Cibulka R., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 265–291
König B. Kümmel S. Svobodová E. Cibulka R. Phys. Sci. Rev. 2018;3:20170168. doi: 10.1515/psr-2017-0168. DOI
Sideri I. K. Voutyritsa E. Kokotos C. G. Org. Biomol. Chem. 2018;16:4596–4614. doi: 10.1039/C8OB00725J. PubMed DOI
Rehpenn A. Walter A. Storch G. Synthesis. 2021;53:2583–2593. doi: 10.1055/a-1458-2419. DOI
Cheng B. and König B., in Flavin-Based Catalysis, ed. R. Cibulka and M. Fraaije, Wiley, 2021, pp. 245–264
Langschwager T. Storch G. Angew. Chem., Int. Ed. 2024;64:e202414679. doi: 10.1002/anie.202414679. PubMed DOI
Walter A. Eisenreich W. Storch G. Angew. Chem., Int. Ed. 2023;62:e202310634. doi: 10.1002/anie.202310634. PubMed DOI
Shiogai Y. Oka M. Miyake H. Iida H. Org. Biomol. Chem. 2024;22:4450–4454. doi: 10.1039/D4OB00360H. PubMed DOI
Shen D. Zhong F. Li L. Zhang H. Ren T. Sun C. Wang B. Guo M. Chao M. Fukuzumi S. Org. Chem. Front. 2023;10:2653–2662. doi: 10.1039/D3QO00375B. DOI
Immel J. R. Alghafli B. M. Rodríguez Ugalde A. A. Bloom S. Org. Lett. 2023;25:3818–3822. doi: 10.1021/acs.orglett.3c01398. PubMed DOI PMC
Bera N. Lenka B. S. König B. Sarkar D. J. Org. Chem. 2023;88:7977–7987. doi: 10.1021/acs.joc.2c03037. PubMed DOI
Trenker S. Grunenberg L. Banerjee T. Savasci G. Poller L. M. Muggli K. I. M. Haase F. Ochsenfeld C. Lotsch B. V. Chem. Sci. 2021;12:15143–15150. doi: 10.1039/D1SC04143F. PubMed DOI PMC
Pokluda A. Anwar Z. Boguschová V. Anusiewicz I. Skurski P. Sikorski M. Cibulka R. Adv. Synth. Catal. 2021;363:4371–4379. doi: 10.1002/adsc.202100024. DOI
Obertík R. Ludvíková L. Chudoba J. Cibulka R. ChemCatChem. 2025;17:e202401795. doi: 10.1002/cctc.202401795. DOI
Foja R. Walter A. Jandl C. Thyrhaug E. Hauer J. Storch G. J. Am. Chem. Soc. 2022;144:4721–4726. doi: 10.1021/jacs.1c13285. PubMed DOI
Pavlovska T. Weisheitelová I. Pramthaisong C. Sikorski M. Jahn U. Cibulka R. Adv. Synth. Catal. 2023;365:4662–4671. doi: 10.1002/adsc.202300843. DOI
Pavlovska T. Král Lesný D. Svobodová E. Hoskovcová I. Archipowa N. Kutta R. J. Cibulka R. Chem.–Eur. J. 2022;28:e202200768. doi: 10.1002/chem.202200768. PubMed DOI PMC
Obertík R. Chudoba J. Šturala J. Tarábek J. Ludvíková L. Slanina T. König B. Cibulka R. Chem.–Eur. J. 2022;28:e202202487. doi: 10.1002/chem.202202487. PubMed DOI
Graml A. Neveselý T. Kutta R. J. Cibulka R. König B. Nat. Commun. 2020;11:3174. doi: 10.1038/s41467-020-16909-y. PubMed DOI PMC
Kao Y.-T. Saxena C. He T.-F. Guo L. Wang L. Sancar A. Zhong D. J. Am. Chem. Soc. 2008:13132–13139. doi: 10.1021/ja8045469. PubMed DOI PMC
Su D. Kabir M. P. Orozco-Gonzalez Y. Gozem S. Gadda G. ChemBioChem. 2019;20:1614. doi: 10.1002/cbic.201900373. PubMed DOI
Kabir M. P. Orozco-Gonzalez Y. Gozem S. Phys. Chem. Chem. Phys. 2019;21:16526–16537. doi: 10.1039/C9CP02230A. PubMed DOI
Huang X. Wang B. Wang Y. Jiang G. Feng J. Zhao H. Nature. 2020;584:69–74. doi: 10.1038/s41586-020-2406-6. PubMed DOI
Page C. G. Cao J. Oblinsky D. G. MacMillan S. N. Dahagam S. Lloyd R. M. Charnock S. J. Scholes G. D. Hyster T. K. J. Am. Chem. Soc. 2023;147:11866–11874. doi: 10.1021/jacs.3c03607. PubMed DOI PMC
Sandoval B. A. Clayman P. D. Oblinsky D. G. Oh S. Nakano Y. Bird M. Scholes G. D. Hyster T. K. J. Am. Chem. Soc. 2021;143:1735–1739. doi: 10.1021/jacs.0c11494. PubMed DOI
Biegasiewicz K. F. Cooper S. J. Gao X. Oblinsky D. G. Kim J. H. Garfinkle S. E. Joyce L. A. Sandoval B. A. Scholes G. D. Hyster T. K. Science. 2019;364:1166–1169. doi: 10.1126/science.aaw1143. PubMed DOI PMC
Bartolomei B. Gentile G. Rosso C. Filippini G. Prato M. Chem.–Eur. J. 2021;27:16062–16070. doi: 10.1002/chem.202102276. PubMed DOI
Wu S. Schiel F. Melchiorre P. Angew. Chem., Int. Ed. 2023;62:e202306364. doi: 10.1002/anie.202306364. PubMed DOI
Schmalzbauer M. Marcon M. König B. Angew. Chem., Int. Ed. 2021;60:6270–6292. doi: 10.1002/anie.202009288. PubMed DOI PMC
Sheldrick A. Müller D. Günther A. Nieto P. Dopfer O. Phys. Chem. Chem. Phys. 2018;20:7407–7414. doi: 10.1039/C8CP00590G. PubMed DOI
Song P.-S. Sun M. Koziolowa A. Koziol J. J. Am. Chem. Soc. 1974;96:4319–4323. doi: 10.1021/ja00820a045. DOI
Koziołowa A. Photochem. Photobiol. 1979;29:459–471. doi: 10.1111/j.1751-1097.1979.tb07076.x. DOI
Mal M. Mandal D. J. Photochem. Photobiol., A. 2021;404:112888. doi: 10.1016/j.jphotochem.2020.112888. DOI
Prukała D. Khmelinskii I. Koput J. Gierszewski M. Pędziński T. Sikorski M. Photochem. Photobiol. 2014;90:972–988. doi: 10.1111/php.12289. PubMed DOI
Sikorska E. Khmelinskii I. Hoffmann M. Machado I. F. Ferreira L. F. V. Dobek K. Karolczak J. Krawczyk A. Insińska-Rak M. Sikorski M. J. Phys. Chem. A. 2005;109:11707–11714. doi: 10.1021/jp053951d. PubMed DOI
Miskolczy Z. Biczók L. Görner H. J. Photochem. Photobiol., A. 2009;207:47–51. doi: 10.1016/j.jphotochem.2008.12.012. DOI
Prukała D. Sikorska E. Koput J. Khmelinskii I. Karolczak J. Gierszewski M. Sikorski M. J. Phys. Chem. A. 2012;116:7474–7490. doi: 10.1021/jp300522h. PubMed DOI
Tyagi A. Penzkofer A. Photochem. Photobiol. 2011;87:524–533. doi: 10.1111/j.1751-1097.2010.00836.x. PubMed DOI
Penzkofer A. J. Photochem. Photobiol., A. 2016;314:114–124. doi: 10.1016/j.jphotochem.2015.08.011. DOI
Barišić D. Tomišić V. Bregović N. Anal. Chim. Acta. 2019;1046:77–92. doi: 10.1016/j.aca.2018.09.026. PubMed DOI
Müller F. Dudley K. H. Helv. Chim. Acta. 1971;54:1487–1497. doi: 10.1002/hlca.19710540534. PubMed DOI
Kuhn R. Moruzzi G. Ber. Dtsch. Chem. Ges. 1934;67:888–891. doi: 10.1002/cber.19340670539. DOI
Sikorska E. Khmelinskii I. V. Prukała W. Williams S. L. Patel M. Worrall D. R. Bourdelande J. L. Koput J. Sikorski M. J. Phys. Chem. A. 2004;108:1501–1508. doi: 10.1021/jp037048u. DOI
Magdesieva T. V. Kukhareva I. I. Artamkina G. A. Butin K. P. Beletskaya I. P. J. Organomet. Chem. 1994;468:213–221. doi: 10.1016/0022-328X(94)80052-9. DOI
Májek M. Filace F. Jacobi von Wangelin A. Chem.–Eur. J. 2015;21:4518–4522. doi: 10.1002/chem.201406461. PubMed DOI
Till N. A. Tian L. Dong Z. Scholes G. D. MacMillan D. W. C. J. Am. Chem. Soc. 2020;142:15830–15841. doi: 10.1021/jacs.0c05901. PubMed DOI
Neumeier M. Sampedro D. Májek M. de la Peña O’Shea V. A. Wangelin A. J. v. Pérez-Ruiz R. Chem.–Eur. J. 2018;24:105–108. doi: 10.1002/chem.201705326. PubMed DOI
Enemærke R. J. Christensen T. B. Jensen H. Daasbjerg K. J. Chem. Soc., Perkin Trans. 2. 2001:1620–1630. doi: 10.1039/B102835A. DOI
Wang C. Li H. Bürgin T. H. Wenger O. S. Nat. Chem. 2024;16:1151–1159. doi: 10.1038/s41557-024-01482-4. PubMed DOI PMC
Rehpenn A. Hindelang S. Truong K.-N. Pöthig A. Storch G. Angew. Chem., Int. Ed. 2024;63:e202318590. doi: 10.1002/anie.202318590. PubMed DOI
Gary S. Woolley J. Goia S. Bloom S. Chem. Sci. 2024;15:11444–11454. doi: 10.1039/D4SC03054K. PubMed DOI PMC
Das D. Miller A.-F. Chem. Sci. 2024;15:7610–7622. doi: 10.1039/D4SC01642D. PubMed DOI PMC
Worner J. Panter S. Illarionov B. Bacher A. Fischer M. Weber S. Angew. Chem., Int. Ed. 2023;62:e202309334. doi: 10.1002/anie.202309334. PubMed DOI
Romero N. A. Nicewicz D. A. Chem. Rev. 2016;116:10075–10166. doi: 10.1021/acs.chemrev.6b00057. PubMed DOI