Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-09064S
Grantová Agentura České Republiky
PubMed
35538649
PubMed Central
PMC9541856
DOI
10.1002/chem.202200768
Knihovny.cz E-zdroje
- Klíčová slova
- electron transfer, heavy atom effect, photocatalysis, reduction chemistry, spin-correlation,
- MeSH
- elektrony * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.
Zobrazit více v PubMed
Crisenza G. E. M., Melchiorre P., Nat. Commun. 2020, 11, 803; PubMed PMC
Bach T., Angew. Chem. Int. Ed. 2015, 54, 11294–11295; PubMed
Angew. Chem. 2015, 127, 11448–11449;
König B., Eur. J. Org. Chem. 2017, 2017, 1979–1981;
Pitre S. P., Overman L. E., Chem. Rev. 2022, 122, 1717–1751. PubMed
Lee Y., Kwon M. S., Eur. J. Org. Chem. 2020, 2020, 6028–6043;
Petzold D., Giedyk M., Chatterjee A., König B., Eur. J. Org. Chem. 2020, 2020, 1193–1244;
Marzo L., Pagire S. K., Reiser O., König B., Angew. Chem. Int. Ed. 2018, 57, 10034–10072; PubMed
Angew. Chem. 2018, 130, 10188–10228;
Shaw M. H., Twilton J., MacMillan D. W. C., J. Org. Chem. 2016, 81, 6898–6926; PubMed PMC
McAtee R. C., McClain E. J., Stephenson C. R. J., Trends Chem. 2019, 1, 111–125; PubMed PMC
Douglas J. J., Sevrin M. J., Stephenson C. R. J., Org. Process Res. Dev. 2016, 20, 1134–1147.
Romero N. A., Nicewicz D. A., Chem. Rev. 2016, 116, 10075–10166; PubMed
Buzzetti L., Crisenza G. E. M., Melchiorre P., Angew. Chem. Int. Ed. 2019, 58, 3730–3747; PubMed
Angew. Chem. 2019, 131, 3768–3786;
Capaldo L., Ravelli D., Eur. J. Org. Chem. 2020, 2020, 2783–2806;
Ravelli D., Protti S., Fagnoni M., Chem. Rev. 2016, 116, 9850–9913. PubMed
Majek M., Jacobi von Wangelin A., Acc. Chem. Res. 2016, 49, 2316–2327; PubMed
Ghosh I., Marzo L., Das A., Shaikh R., König B., Acc. Chem. Res. 2016, 49, 1566–1577; PubMed
Neumeier M., Sampedro D., Májek M., d. l. P. O′Shea V. A., v. Wangelin A. J., Pérez-Ruiz R., Chem. Eur. J. 2018, 24, 105–108. PubMed
Kalyani D., McMurtrey K. B., Neufeldt S. R., Sanford M. S., J. Am. Chem. Soc. 2011, 133, 18566–18569; PubMed PMC
Hari D. P., Schroll P., König B., J. Am. Chem. Soc. 2012, 134, 2958–2961; PubMed
Nguyen J. D., D′Amato E. M., Narayanam J. M. R., Stephenson C. R. J., Nat. Chem. 2012, 4, 854–859. PubMed
Du Y., Pearson R. M., Lim C. H., Sartor S. M., Ryan M. D., Yang H., Damrauer N. H., Miyake G. M., Chem. Eur. J. 2017, 23, 10962–10968; PubMed PMC
Marin M., Miranda M. A., Marin M. L., Catal. Sci. Technol. 2017, 7, 4852–4858.
Poelma S. O., Burnett G. L., Discekici E. H., Mattson K. M., Treat N. J., Luo Y., Hudson Z. M., Shankel S. L., Clark P. G., Kramer J. W., Hawker C. J., Read de Alaniz J., J. Org. Chem. 2016, 81, 7155–7160; PubMed
Discekici E. H., Treat N. J., Poelma S. O., Mattson K. M., Hudson Z. M., Luo Y., Hawker C. J., de Alaniz J. R., Chem. Commun. 2015, 51, 11705–11708; PubMed
Noto N., Tanaka Y., Koike T., Akita M., ACS Catal. 2018, 8, 9408–9419;
McCarthy B. G., Pearson R. M., Lim C.-H., Sartor S. M., Damrauer N. H., Miyake G. M., J. Am. Chem. Soc. 2018, 140, 5088–5101. PubMed PMC
Shon J.-H., Kim D., Rathnayake M. D., Sittel S., Weaver J. D., Teets T. S., Chem. Sci. 2021, 11, 4069–4078. PubMed PMC
Cibulka R., Nature 2020, 580, 31–32; PubMed
Tay N. E. S., Lehnherr D., Rovis T., Chem. Rev. 2022, 122, 2487–2649; PubMed PMC
Liu J., Lu L., Wood D., Lin S., ACS Cent. Sci. 2020, 6, 1317–1340. PubMed PMC
Ghosh I., Ghosh T., Bardagi J. I., König B., Science 2014, 346, 725–728. PubMed
Ghosh I., König B., Angew. Chem. Int. Ed. 2016, 55, 7676–7679; PubMed
Angew. Chem. 2016, 128, 7806–7810; PubMed
Marzo L., Ghosh I., Esteban F., König B., ACS Catal. 2016, 6, 6780–6784;
Bardagi J. I., Ghosh I., Schmalzbauer M., Ghosh T., König B., Eur. J. Org. Chem. 2018, 2018, 34–40.
MacKenzie I. A., Wang L., Onuska N. P. R., Williams O. F., Begam K., Moran A. M., Dunietz B. D., Nicewicz D. A., Nature 2020, 580, 76–80. PubMed PMC
Xu J., Cao J., Wu X., Wang H., Yang X., Tang X., Toh R. W., Zhou R., Yeow E. K. L., Wu J., J. Am. Chem. Soc. 2021, 143, 13266–13273; PubMed
Chmiel A. F., Williams O. P., Chernowsky C. P., Yeung C. S., Wickens Z. K., J. Am. Chem. Soc. 2021, 143, 10882–10889. PubMed
Cowper N. G. W., Chernowsky C. P., Williams O. P., Wickens Z. K., J. Am. Chem. Soc. 2020, 142, 2093–2099. PubMed PMC
Kim H., Kim H., Lambert T. H., Lin S., J. Am. Chem. Soc. 2020, 142, 2087–2092. PubMed PMC
Cole J. P., Chen D.-F., Kudisch M., Pearson R. M., Lim C.-H., Miyake G. M., J. Am. Chem. Soc. 2020, 142, 13573–13581. PubMed PMC
Glaser F., Larsen C. B., Kerzig C., Wenger O. S., Photochem. Photobiol. Sci. 2020, 19, 1035–1041. PubMed
J. B. Metternig, R. J. Mudd, G. R., in Photocatalysis in Organic Synthesis, 2019 ed. (Ed.: B. König), Georg Thieme Verlag, Stuttgart, 2019, pp. 391–404;
B. König, S. Kümmel, E. Svobodová, R. Cibulka, in Phys. Sci. Rev., Vol. 3, 2018;
Sideri I. K., Voutyritsa E., Kokotos C. G., Org. Biomol. Chem. 2018, 16, 4596–4614; PubMed
Srivastava V., Singh P. K., Srivastava A., Singh P. P., RSC Adv. 2021, 11, 14251–14259;
Rehpenn A., Walter A., Storch G., Synthesis 2021, 53, 2583–2593.
Pokluda A., Anwar Z., Boguschová V., Anusiewicz I., Skurski P., Sikorski M., Cibulka R., Adv. Synth. Catal. 2021, 363, 4371–4379;
Hartman T., Reisnerová M., Chudoba J., Svobodová E., Archipowa N., Kutta R. J., Cibulka R., ChemPlusChem 2021, 86, 373–386; PubMed
Răsădean D.-M., Machida T., Sada K., Pudney C. R., Pantoş G. D., Tetrahedron 2021, 131925;
Tolba A. H., Krupička M., Chudoba J., Cibulka R., Org. Lett. 2021, 23, 6825–6830; PubMed
Guo H., Xia H., Ma X., Chen K., Dang C., Zhao J., Dick B., ACS Omega 2020, 5, 10586–10595; PubMed PMC
Tolba A. H., Vávra F., Chudoba J., Cibulka R., Eur. J. Org. Chem. 2020, 2020, 1579–1585;
Thapa P., Hazoor S., Chouhan B., Vuong T. T., Foss F. W., J. Org. Chem. 2020, 85, 9096–9105; PubMed
Ramirez N. P., Lana-Villarreal T., Gonzalez-Gomez J. C., Eur. J. Org. Chem. 2020, 2020, 1539–1550;
Bouchet L. M., Heredia A. A., Argüello J. E., Schmidt L. C., Org. Lett. 2020, 22, 610–614; PubMed
Zelenka J., Svobodová E., Tarábek J., Hoskovcová I., Boguschová V., Bailly S., Sikorski M., Roithová J., Cibulka R., Org. Lett. 2019, 21, 114–119; PubMed
Ramirez N. P., König B., Gonzalez-Gomez J. C., Org. Lett. 2019, 21, 1368–1373; PubMed
Tagami T., Arakawa Y., Minagawa K., Imada Y., Org. Lett. 2019, 21, 6978–6982; PubMed
März M., Kohout M., Neveselý T., Chudoba J., Prukała D., Niziński S., Sikorski M., Burdziński G., Cibulka R., Org. Biomol. Chem. 2018, 16, 6809–6817; PubMed
Neveselý T., Svobodová E., Chudoba J., Sikorski M., Cibulka R., Adv. Synth. Catal. 2016, 358, 1654–1663;
Metternich J. B., Gilmour R., J. Am. Chem. Soc. 2016, 138, 1040–1045. PubMed
Martinez-Haya R., Miranda M. A., Marin M. L., Eur. J. Org. Chem. 2017, 2017, 2164–2169;
Foja R., Walter A., Jandl C., Thyrhaug E., Hauer J., Storch G., J. Am. Chem. Soc. 2022, 144, 4721–4726. PubMed
It should be noted that some photoenzymatic systems involving flavoenzymes could be used in photoreductions, see:
Sandoval B. A., Clayman P. D., Oblinsky D. G., Oh S., Nakano Y., Bird M., Scholes G. D., Hyster T. K., J. Am. Chem. Soc. 2021, 143, 1735–1739; PubMed
Biegasiewicz K. F., Cooper S. J., Gao X., Oblinsky D. G., Kim J. H., Garfinkle S. E., Joyce L. A., Sandoval B. A., Scholes G. D., Hyster T. K., Science 2019, 364, 1166–1169; PubMed PMC
Nicholls B. T., Oblinsky D. G., Kurtoic S. I., Grosheva D., Ye Y., Scholes G. D., Hyster T. K., Angew. Chem. Int. Ed. 2022, 61, e202113842; PubMed
Angew. Chem. 2022, 134, e202113842. PubMed
Greening C., Ahmed F. H., Mohamed A. E., Lee B. M., Pandey G., Warden A. C., Scott C., Oakeshott J. G., Taylor M. C., Jackson C. J., Microbiol. Mol. Biol. Rev. 2016, 80, 451–493; PubMed PMC
Walsh C., Acc. Chem. Res. 1986, 19, 216–221;
Goldberg M., Pecht I., Kramer H. E. A., Traber R., Hemmerich P., Biochim. Biophys. Acta Gen. Subj. 1981, 673, 570–593; PubMed
Hemmerich P., Massey V., Fenner H., FEBS Lett. 1977, 84, 5–21. PubMed
Graml A., Neveselý T., Kutta R. J., Cibulka R., König B., Nat. Commun. 2020, 11, 3174. PubMed PMC
Kundu K. K., Rakshit A. K., Das M. N., Electrochim. Acta 1972, 17, 1921–1937.
O′Brien D. E., Weinslock L. T., Cheng C. C., J. Heterocycl. Chem. 1970, 7, 99–105;
Yoneda F., Sakuma Y., Mizumoto S., Ito R., J. Chem. Soc. Perkin Trans. 1 1976, 1805–1808; PubMed
Yoneda F., Asano T., Tsukuda K., Koshiro A., Heterocycles 1979, 12, 691–694;
Hossain M. S., Le C. Q., Joseph E., Nguyen T. Q., Johnson-Winters K., Foss F. W., Org. Biomol. Chem. 2015, 13, 5082–5085. PubMed
Franco C., Olmsted J. I., Talanta 1990, 37, 905–909. PubMed
Megerle U., Wenninger M., Kutta R.-J., Lechner R., König B., Dick B., Riedle E., Phys. Chem. Chem. Phys. 2011, 13, 8869–8880. PubMed
A facile three-component route to powerful 5-aryldeazaalloxazine photocatalysts