Tuning Deazaflavins Towards Highly Potent Reducing Photocatalysts Guided by Mechanistic Understanding - Enhancement of the Key Step by the Internal Heavy Atom Effect

. 2022 Aug 16 ; 28 (46) : e202200768. [epub] 20220624

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35538649

Grantová podpora
19-09064S Grantová Agentura České Republiky

Deazaflavins are well suited for reductive chemistry acting via a consecutive photo-induced electron transfer, in which their triplet state and semiquinone - the latter is formed from the former after electron transfer from a sacrificial electron donor - are key intermediates. Guided by mechanistic investigations aiming to increase intersystem crossing by the internal heavy atom effect and optimising the concentration conditions to avoid unproductive excited singlet reactions, we synthesised 5-aryldeazaflavins with Br or Cl substituents on different structural positions via a three-component reaction. Bromination of the deazaisoalloxazine core leads to almost 100 % triplet yield but causes photo-instability and enhances unproductive side reactions. Bromine on the 5-phenyl group in ortho position does not affect the photostability, increases the triplet yield, and allows its efficient usage in the photocatalytic dehalogenation of bromo- and chloroarenes with electron-donating methoxy and alkyl groups even under aerobic conditions. Reductive powers comparable to lithium are achieved.

Zobrazit více v PubMed

Crisenza G. E. M., Melchiorre P., Nat. Commun. 2020, 11, 803; PubMed PMC

Bach T., Angew. Chem. Int. Ed. 2015, 54, 11294–11295; PubMed

Angew. Chem. 2015, 127, 11448–11449;

König B., Eur. J. Org. Chem. 2017, 2017, 1979–1981;

Pitre S. P., Overman L. E., Chem. Rev. 2022, 122, 1717–1751. PubMed

Lee Y., Kwon M. S., Eur. J. Org. Chem. 2020, 2020, 6028–6043;

Petzold D., Giedyk M., Chatterjee A., König B., Eur. J. Org. Chem. 2020, 2020, 1193–1244;

Marzo L., Pagire S. K., Reiser O., König B., Angew. Chem. Int. Ed. 2018, 57, 10034–10072; PubMed

Angew. Chem. 2018, 130, 10188–10228;

Shaw M. H., Twilton J., MacMillan D. W. C., J. Org. Chem. 2016, 81, 6898–6926; PubMed PMC

McAtee R. C., McClain E. J., Stephenson C. R. J., Trends Chem. 2019, 1, 111–125; PubMed PMC

Douglas J. J., Sevrin M. J., Stephenson C. R. J., Org. Process Res. Dev. 2016, 20, 1134–1147.

Romero N. A., Nicewicz D. A., Chem. Rev. 2016, 116, 10075–10166; PubMed

Buzzetti L., Crisenza G. E. M., Melchiorre P., Angew. Chem. Int. Ed. 2019, 58, 3730–3747; PubMed

Angew. Chem. 2019, 131, 3768–3786;

Capaldo L., Ravelli D., Eur. J. Org. Chem. 2020, 2020, 2783–2806;

Ravelli D., Protti S., Fagnoni M., Chem. Rev. 2016, 116, 9850–9913. PubMed

Majek M., Jacobi von Wangelin A., Acc. Chem. Res. 2016, 49, 2316–2327; PubMed

Ghosh I., Marzo L., Das A., Shaikh R., König B., Acc. Chem. Res. 2016, 49, 1566–1577; PubMed

Neumeier M., Sampedro D., Májek M., d. l. P. O′Shea V. A., v. Wangelin A. J., Pérez-Ruiz R., Chem. Eur. J. 2018, 24, 105–108. PubMed

Kalyani D., McMurtrey K. B., Neufeldt S. R., Sanford M. S., J. Am. Chem. Soc. 2011, 133, 18566–18569; PubMed PMC

Hari D. P., Schroll P., König B., J. Am. Chem. Soc. 2012, 134, 2958–2961; PubMed

Nguyen J. D., D′Amato E. M., Narayanam J. M. R., Stephenson C. R. J., Nat. Chem. 2012, 4, 854–859. PubMed

Du Y., Pearson R. M., Lim C. H., Sartor S. M., Ryan M. D., Yang H., Damrauer N. H., Miyake G. M., Chem. Eur. J. 2017, 23, 10962–10968; PubMed PMC

Marin M., Miranda M. A., Marin M. L., Catal. Sci. Technol. 2017, 7, 4852–4858.

Poelma S. O., Burnett G. L., Discekici E. H., Mattson K. M., Treat N. J., Luo Y., Hudson Z. M., Shankel S. L., Clark P. G., Kramer J. W., Hawker C. J., Read de Alaniz J., J. Org. Chem. 2016, 81, 7155–7160; PubMed

Discekici E. H., Treat N. J., Poelma S. O., Mattson K. M., Hudson Z. M., Luo Y., Hawker C. J., de Alaniz J. R., Chem. Commun. 2015, 51, 11705–11708; PubMed

Noto N., Tanaka Y., Koike T., Akita M., ACS Catal. 2018, 8, 9408–9419;

McCarthy B. G., Pearson R. M., Lim C.-H., Sartor S. M., Damrauer N. H., Miyake G. M., J. Am. Chem. Soc. 2018, 140, 5088–5101. PubMed PMC

Shon J.-H., Kim D., Rathnayake M. D., Sittel S., Weaver J. D., Teets T. S., Chem. Sci. 2021, 11, 4069–4078. PubMed PMC

Cibulka R., Nature 2020, 580, 31–32; PubMed

Tay N. E. S., Lehnherr D., Rovis T., Chem. Rev. 2022, 122, 2487–2649; PubMed PMC

Liu J., Lu L., Wood D., Lin S., ACS Cent. Sci. 2020, 6, 1317–1340. PubMed PMC

Ghosh I., Ghosh T., Bardagi J. I., König B., Science 2014, 346, 725–728. PubMed

Ghosh I., König B., Angew. Chem. Int. Ed. 2016, 55, 7676–7679; PubMed

Angew. Chem. 2016, 128, 7806–7810; PubMed

Marzo L., Ghosh I., Esteban F., König B., ACS Catal. 2016, 6, 6780–6784;

Bardagi J. I., Ghosh I., Schmalzbauer M., Ghosh T., König B., Eur. J. Org. Chem. 2018, 2018, 34–40.

MacKenzie I. A., Wang L., Onuska N. P. R., Williams O. F., Begam K., Moran A. M., Dunietz B. D., Nicewicz D. A., Nature 2020, 580, 76–80. PubMed PMC

Xu J., Cao J., Wu X., Wang H., Yang X., Tang X., Toh R. W., Zhou R., Yeow E. K. L., Wu J., J. Am. Chem. Soc. 2021, 143, 13266–13273; PubMed

Chmiel A. F., Williams O. P., Chernowsky C. P., Yeung C. S., Wickens Z. K., J. Am. Chem. Soc. 2021, 143, 10882–10889. PubMed

Cowper N. G. W., Chernowsky C. P., Williams O. P., Wickens Z. K., J. Am. Chem. Soc. 2020, 142, 2093–2099. PubMed PMC

Kim H., Kim H., Lambert T. H., Lin S., J. Am. Chem. Soc. 2020, 142, 2087–2092. PubMed PMC

Cole J. P., Chen D.-F., Kudisch M., Pearson R. M., Lim C.-H., Miyake G. M., J. Am. Chem. Soc. 2020, 142, 13573–13581. PubMed PMC

Glaser F., Larsen C. B., Kerzig C., Wenger O. S., Photochem. Photobiol. Sci. 2020, 19, 1035–1041. PubMed

J. B. Metternig, R. J. Mudd, G. R., in Photocatalysis in Organic Synthesis, 2019 ed. (Ed.: B. König), Georg Thieme Verlag, Stuttgart, 2019, pp. 391–404;

B. König, S. Kümmel, E. Svobodová, R. Cibulka, in Phys. Sci. Rev., Vol. 3, 2018;

Sideri I. K., Voutyritsa E., Kokotos C. G., Org. Biomol. Chem. 2018, 16, 4596–4614; PubMed

Srivastava V., Singh P. K., Srivastava A., Singh P. P., RSC Adv. 2021, 11, 14251–14259;

Rehpenn A., Walter A., Storch G., Synthesis 2021, 53, 2583–2593.

Pokluda A., Anwar Z., Boguschová V., Anusiewicz I., Skurski P., Sikorski M., Cibulka R., Adv. Synth. Catal. 2021, 363, 4371–4379;

Hartman T., Reisnerová M., Chudoba J., Svobodová E., Archipowa N., Kutta R. J., Cibulka R., ChemPlusChem 2021, 86, 373–386; PubMed

Răsădean D.-M., Machida T., Sada K., Pudney C. R., Pantoş G. D., Tetrahedron 2021, 131925;

Tolba A. H., Krupička M., Chudoba J., Cibulka R., Org. Lett. 2021, 23, 6825–6830; PubMed

Guo H., Xia H., Ma X., Chen K., Dang C., Zhao J., Dick B., ACS Omega 2020, 5, 10586–10595; PubMed PMC

Tolba A. H., Vávra F., Chudoba J., Cibulka R., Eur. J. Org. Chem. 2020, 2020, 1579–1585;

Thapa P., Hazoor S., Chouhan B., Vuong T. T., Foss F. W., J. Org. Chem. 2020, 85, 9096–9105; PubMed

Ramirez N. P., Lana-Villarreal T., Gonzalez-Gomez J. C., Eur. J. Org. Chem. 2020, 2020, 1539–1550;

Bouchet L. M., Heredia A. A., Argüello J. E., Schmidt L. C., Org. Lett. 2020, 22, 610–614; PubMed

Zelenka J., Svobodová E., Tarábek J., Hoskovcová I., Boguschová V., Bailly S., Sikorski M., Roithová J., Cibulka R., Org. Lett. 2019, 21, 114–119; PubMed

Ramirez N. P., König B., Gonzalez-Gomez J. C., Org. Lett. 2019, 21, 1368–1373; PubMed

Tagami T., Arakawa Y., Minagawa K., Imada Y., Org. Lett. 2019, 21, 6978–6982; PubMed

März M., Kohout M., Neveselý T., Chudoba J., Prukała D., Niziński S., Sikorski M., Burdziński G., Cibulka R., Org. Biomol. Chem. 2018, 16, 6809–6817; PubMed

Neveselý T., Svobodová E., Chudoba J., Sikorski M., Cibulka R., Adv. Synth. Catal. 2016, 358, 1654–1663;

Metternich J. B., Gilmour R., J. Am. Chem. Soc. 2016, 138, 1040–1045. PubMed

Martinez-Haya R., Miranda M. A., Marin M. L., Eur. J. Org. Chem. 2017, 2017, 2164–2169;

Foja R., Walter A., Jandl C., Thyrhaug E., Hauer J., Storch G., J. Am. Chem. Soc. 2022, 144, 4721–4726. PubMed

It should be noted that some photoenzymatic systems involving flavoenzymes could be used in photoreductions, see:

Sandoval B. A., Clayman P. D., Oblinsky D. G., Oh S., Nakano Y., Bird M., Scholes G. D., Hyster T. K., J. Am. Chem. Soc. 2021, 143, 1735–1739; PubMed

Biegasiewicz K. F., Cooper S. J., Gao X., Oblinsky D. G., Kim J. H., Garfinkle S. E., Joyce L. A., Sandoval B. A., Scholes G. D., Hyster T. K., Science 2019, 364, 1166–1169; PubMed PMC

Nicholls B. T., Oblinsky D. G., Kurtoic S. I., Grosheva D., Ye Y., Scholes G. D., Hyster T. K., Angew. Chem. Int. Ed. 2022, 61, e202113842; PubMed

Angew. Chem. 2022, 134, e202113842. PubMed

Greening C., Ahmed F. H., Mohamed A. E., Lee B. M., Pandey G., Warden A. C., Scott C., Oakeshott J. G., Taylor M. C., Jackson C. J., Microbiol. Mol. Biol. Rev. 2016, 80, 451–493; PubMed PMC

Walsh C., Acc. Chem. Res. 1986, 19, 216–221;

Goldberg M., Pecht I., Kramer H. E. A., Traber R., Hemmerich P., Biochim. Biophys. Acta Gen. Subj. 1981, 673, 570–593; PubMed

Hemmerich P., Massey V., Fenner H., FEBS Lett. 1977, 84, 5–21. PubMed

Graml A., Neveselý T., Kutta R. J., Cibulka R., König B., Nat. Commun. 2020, 11, 3174. PubMed PMC

Kundu K. K., Rakshit A. K., Das M. N., Electrochim. Acta 1972, 17, 1921–1937.

O′Brien D. E., Weinslock L. T., Cheng C. C., J. Heterocycl. Chem. 1970, 7, 99–105;

Yoneda F., Sakuma Y., Mizumoto S., Ito R., J. Chem. Soc. Perkin Trans. 1 1976, 1805–1808; PubMed

Yoneda F., Asano T., Tsukuda K., Koshiro A., Heterocycles 1979, 12, 691–694;

Hossain M. S., Le C. Q., Joseph E., Nguyen T. Q., Johnson-Winters K., Foss F. W., Org. Biomol. Chem. 2015, 13, 5082–5085. PubMed

Franco C., Olmsted J. I., Talanta 1990, 37, 905–909. PubMed

Megerle U., Wenninger M., Kutta R.-J., Lechner R., König B., Dick B., Riedle E., Phys. Chem. Chem. Phys. 2011, 13, 8869–8880. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A facile three-component route to powerful 5-aryldeazaalloxazine photocatalysts

. 2024 ; 20 () : 1831-1838. [epub] 20240731

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...