Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
18-15175S
Czech Science Foundation
KU 3190/1-1
Deutsche Forschungsgemeinschaft
KU 3190/2-1
Deutsche Forschungsgemeinschaft
PubMed
33480471
DOI
10.1002/cplu.202000767
Knihovny.cz E-zdroje
- Klíčová slova
- cyclobutanes, cycloelimination reactions, electron transfer, photocatalysis, time-resolved spectroscopy,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Flavinium salts are frequently used in organocatalysis but their application in photoredox catalysis has not been systematically investigated to date. We synthesized a series of 5-ethyl-1,3-dimethylalloxazinium salts with different substituents in the positions 7 and 8 and investigated their application in light-dependent oxidative cycloelimination of cyclobutanes. Detailed mechanistic investigations with a coumarin dimer as a model substrate reveal that the reaction preferentially occurs via the triplet-born radical pair after electron transfer from the substrate to the triplet state of an alloxazinium salt. The very photostable 7,8-dimethoxy derivative is a superior catalyst with a sufficiently high oxidation power (E*=2.26 V) allowing the conversion of various cyclobutanes (with Eox up to 2.05 V) in high yields. Even compounds such as all-trans dimethyl 3,4-bis(4-methoxyphenyl)cyclobutane-1,2-dicarboxylate can be converted, whose opening requires a high activation energy due to a missing pre-activation caused by bulky adjacent substituents in cis-position.
Zobrazit více v PubMed
A. Sancar, Angew. Chem. Int. Ed. 2016, 55, 8502-8527;
Angew. Chem. 2016, 128, 8643-8670;
A. Sancar, Chem. Rev. 2003, 103, 2203-2238;
K. Brettel, M. Byrdin, Curr. Opin. Struct. Biol. 2010, 20, 693-701.
E. Schaumann, R. Ketcham, Angew. Chem. Int. Ed. 1982, 21, 225-247;
Angew. Chem. 1982, 94, 225-229;
K. Mizuno, C. Pac, CRC Press, 1995, pp. 358-374.
D. Davis, V. P. Vysotskiy, Y. Sajeev, L. S. Cederbaum, Angew. Chem. Int. Ed. 2011, 50, 4119-4122;
Angew. Chem. 2011, 123, 4205-4208;
N. Paul, M. Jiang, N. Bieniek, J. L. P. Lustres, Y. Li, N. Wollscheid, T. Buckup, A. Dreuw, N. Hampp, M. Motzkus, J. Phys. Chem. A 2018, 122, 7587-7597;
K. Shima, J. Kimura, K. Yoshida, M. Yasuda, K. Imada, C. Pac, Bull. Chem. Soc. Jpn. 1989, 62, 1934-1942.
R. B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. 1969, 8, 781-853;
Angew. Chem. 1969, 81, 797-869;
R. Hoffmann, R. B. Woodward, J. Am. Chem. Soc. 1965, 87, 2046-2048.
P. v. R. Schleyer, J. E. Williams, K. R. Blanchard, J. Am. Chem. Soc. 1970, 92, 2377-2386.
J. Liese, N. Hampp, J. Phys. Chem. A 2011, 115, 2927-2932;
C. Pac, Trends Phys. Chem. 1990, 1, 15-31;
M. Yasuda, K. Yoshida, K. Shima, C. Pac, S. Yanagida, Bull. Chem. Soc. Jpn. 1989, 62, 1943-1950.
Z. S. Kean, Z. Niu, G. B. Hewage, A. L. Rheingold, S. L. Craig, J. Am. Chem. Soc. 2013, 135, 13598-13604;
Z. Chen, X. Zhu, J. Yang, J. A. M. Mercer, N. Z. Burns, T. J. Martinez, Y. Xia, Nat. Chem. 2020, Ahead of Print;
M. F. Pill, K. Holz, N. Preusske, F. Berger, H. Clausen-Schaumann, U. Luening, M. K. Beyer, Chem. Eur. J. 2016, 22, 12034-12039;
M. J. Robb, J. S. Moore, J. Am. Chem. Soc. 2015, 137, 10946-10949.
J. D. White, Y. Li, J. Kim, M. Terinek, Org. Lett. 2013, 15, 882-885;
W. Oppolzer, Acc. Chem. Res. 1982, 15, 135-141;
J. D. White, J. Kim, N. E. Drapela, J. Am. Chem. Soc. 2000, 122, 8665-8671;
M. T. Crimmins, J. M. Pace, P. G. Nantermet, A. S. Kim-Meade, J. B. Thomas, S. H. Watterson, A. S. Wagman, J. Am. Chem. Soc. 2000, 122, 8453-8463;
B. A. Boon, A. G. Green, P. Liu, K. N. Houk, C. A. Merlic, J. Org. Chem. 2017, 82, 4613-4624.
C. Pac, T. Ohtsuki, Y. Shiota, S. Yanagida, H. Sakurai, Bull. Chem. Soc. Jpn. 1986, 59, 1133-1139;
C. Pac, Pure Appl. Chem. 1986, 58, 1249-1256;
T. Majima, C. Pac, H. Sakurai, J. Am. Chem. Soc. 1980, 102, 5265-5273;
T. Majima, C. Pac, J. Kubo, H. Sakurai, Tetrahedron Lett. 1980, 21, 377-380.
K. Okada, K. Hisamitsu, T. Mukai, Tetrahedron Lett. 1981, 22, 1251-1254.
M. A. Miranda, M. A. Izquierdo, F. Galindo, J. Org. Chem. 2002, 67, 4138-4142.
K. Miyake, Y. Masaki, I. Miyamoto, S. Yanagida, T. Ohno, A. Yoshimura, C. Pac, Photochem. Photobiol. 1993, 58, 631-636;
C. Pac, K. Miyake, Y. Masaki, S. Yanagida, T. Ohno, A. Yoshimura, J. Am. Chem. Soc. 1992, 114, 10756-10762.
R. Epple, T. Carell, Angew. Chem. Int. Ed. 1998, 37, 938-941;
Angew. Chem. 1998, 110, 986-989.
T. Hartman, R. Cibulka, Org. Lett. 2016, 18, 3710-3713.
J. B. Metternich, R. J. Mudd, R. Gilmour, in Photocatalysis in Organic Synthesis, 2019 ed. (Ed.: B. König), Georg Thieme Verlag, Stuttgart, 2019, pp. 391-404;
B. König, S. Kümmel, E. Svobodová, R. Cibulka, in Physical Sciences Reviews, Vol. 3, 2018;
I. K. Sideri, E. Voutyritsa, C. G. Kokotos, Org. Biomol. Chem. 2018, 16, 4596-4614.
N. P. Ramirez, B. König, J. C. Gonzalez-Gomez, Org. Lett. 2019, 21, 1368-1373;
T. Hering, B. Mühldorf, R. Wolf, B. König, Angew. Chem. Int. Ed. 2016, 55, 5342-5345;
Angew. Chem. 2016, 128, 5428-5431;
L. M. Bouchet, A. A. Heredia, J. E. Argüello, L. C. Schmidt, Org. Lett. 2020, 22, 610-614;
M. März, M. Kohout, T. Neveselý, J. Chudoba, D. Prukała, S. Niziński, M. Sikorski, G. Burdziński, R. Cibulka, Org. Biomol. Chem. 2018, 16, 6809-6817;
T. Neveselý, E. Svobodová, J. Chudoba, M. Sikorski, R. Cibulka, Adv. Synth. Catal. 2016, 358, 1654-1663;
B. Mühldorf, R. Wolf, Angew. Chem. Int. Ed. 2016, 55, 427-430;
Angew. Chem. 2016, 128, 437-441;
J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 2016, 138, 1040-1045;
A. Graml, T. Neveselý, R.-J. Kutta, R. Cibulka, B. König, Nat. Commun. 2020, 11, 3174.
It was shown that the usage of ethylene-bridged flavinium salts allow aerobic photooxidations of benzylic substrates, see:
J. Zelenka, E. Svobodová, J. Tarábek, I. Hoskovcová, V. Boguschová, S. Bailly, M. Sikorski, J. Roithová, R. Cibulka, Org. Lett. 2019, 21, 114-119;
J. Zelenka, R. Cibulka, J. Roithová, Angew. Chem. Int. Ed. 2019, 58, 15412-15420;
A. H. Tolba, F. Vávra, J. Chudoba, R. Cibulka, Eur. J. Org. Chem. 2020, 2020, 1579-1585.
T. Sakai, T. Kumoi, T. Ishikawa, T. Nitta, H. Iida, Org. Biomol. Chem. 2018, 16, 3999-4007;
R. Cibulka, Eur. J. Org. Chem. 2015, 2015, 915-932;
H. Iida, Y. Imada, S. I. Murahashi, Org. Biomol. Chem. 2015, 13, 7599-7613.
W. J. H. Van Berkel, N. M. Kamerbeek, M. W. Fraaije, J. Biotechnol. 2006, 124, 670-689;
F. G. Gelalcha, Chem. Rev. 2007, 107, 3338-3361.
P. Ménová, H. Dvořáková, V. Eigner, J. Ludvík, R. Cibulka, Adv. Synth. Catal. 2013, 355, 3451-3462;
Y. Imada, H. Iida, S. Ono, Y. Masui, S.-I. Murahashi Chem. Asian J. 2006, 1, 136-147;
A. A. Lindén, N. Hermanns, S. Ott, L. Krüger, J.-E. Bäckvall, Chem. Eur. J. 2005, 11, 112-119;
P. Ménová, R. Cibulka, J. Mol. Catal. A 2012, 363-364, 362-370.
U. Megerle, M. Wenninger, R.-J. Kutta, R. Lechner, B. Konig, B. Dick, E. Riedle, Phys. Chem. Chem. Phys. 2011, 13, 8869-8880;
R. J. Kutta, N. Archipowa, N. S. Scrutton, Phys. Chem. Chem. Phys. 2018, 20, 28767-28776.
C. Franco, J. Olmsted, Talanta 1990, 37, 905-909.
Y. Arakawa, T. Oonishi, T. Kohda, K. Minagawa, Y. Imada, ChemSusChem 2016, 9, 2769-2773.
Y. Sakuma, S. Matsumoto, T. Nagamatsu, F. Yoneda, Chem. Pharm. Bull. 1976, 24, 338-341.
V. Mojr, E. Svobodová, K. Straková, T. Neveselý, J. Chudoba, H. Dvořáková, R. Cibulka, Chem. Commun. 2015, 51, 12036-12039;
V. Mojr, G. Pitrová, K. Straková, D. Prukała, S. Brazevic, E. Svobodová, I. Hoskovcová, G. Burdziński, T. Slanina, M. Sikorski, R. Cibulka, ChemCatChem 2018, 10, 849-858;
M. Jirásek, K. Straková, T. Neveselý, E. Svobodová, Z. Rottnerová, R. Cibulka, Eur. J. Org. Chem. 2017, 2017, 2139-2146.
D. Rehm, A. Weller, Ber. Bunseng. Phys. Chem. 1969, 73, 834-839.
N. Yonezawa, T. Yoshida, M. Hasegawa, J. Chem. Soc. Perkin Trans. 1 1983, 1083-1086;
C. Pac, T. Ohtsuki, Y. Shiota, S. Yanagida, H. Sakurai, Bull. Chem. Soc. Jpn. 1986, 59, 1133.
D. D. Perrin, Purification of Laboratory Chemicals, 4th Ed., Elsevier Science Ltd., Oxford, 1996.
H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714-723.
R. J. Kutta, Blitzlichtphotolyse - Untersuchung zu LOV-Domänen und photochromen Systemen, Universität Regensburg 2012.
R.-J. Kutta, T. Langenbacher, U. Kensy, B. Dick, Appl. Phys. B 2013, 111, 203-216;
B. Dick, U. Kensy, R.-J. Kutta, in 15 Transient Absorption, De Gruyter, 2013, p. 295.
B. Baudisch, Time resolved broadband spectroscopy from UV to NIR, Ludwig-Maximilians-Universität München 2018.
K. Lanzl, M. v. Sanden-Flohe, R.-J. Kutta, B. Dick, Phys. Chem. Chem. Phys. 2010, 12, 6594-6604.
A. A. Granovsky, 1997, p. http://classic.chem.msu.su/gran/firefly/index.html.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, Jr., J. Comput. Chem. 1993, 14, 1347-1363.
A. A. Granovsky, J. Chem. Phys. 2011, 134, 214113.
Nature-Inspired Photocatalytic Hydrogen Production with a Flavin Photosensitizer