Nature-Inspired Photocatalytic Hydrogen Production with a Flavin Photosensitizer

. 2024 Feb 06 ; 9 (5) : 5534-5540. [epub] 20240126

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38343969

Green hydrogen, by definition, must be produced with renewable energy sources without using fossil fuels. To transform the energy system, we need a fully sustainable production of green and renewable energy as well as the introduction of such "solar fuels" to tackle the chemical storage aspect of renewable energies. Conventional electrolysis of water splitting into oxygen and hydrogen gases is a clean and nonfossil method, but the use of massive noble-metal electrodes makes it expensive. Direct photocatalytic hydrogen evolution in water is an ideal approach, but an industrial scale is not available yet. In this paper, we intend to introduce flavins as metal-free organic photosensitizers for photoinduced reduction processes. Specifically, a flavin photosensitizer was employed for the photocatalytic evolution of hydrogen gas in aqueous media. The ratio of photosensitizer to cocatalyst concentration has been found to affect the efficiency of the hydrogen evolution reaction. Since flavins are nature-inspired molecules (like vitamin B2) with easily tunable properties through structure modification, this family of compounds opens the door for new possibilities in sustainable green hydrogen production.

Zobrazit více v PubMed

Lam M.; Lee K. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnol. Adv. 2011, 29 (1), 124–141. 10.1016/j.biotechadv.2010.10.001. PubMed DOI

Hydrogen as a Future Energy Carrier; Züttel A., Borgschulte A., Schlapbach L., Eds.; Wiley, 2008.

Ehlers J.; Feidenhans’l A.; Therkildsen K.; Larrazábal G. O. Affordable Green Hydrogen from Alkaline Water Electrolysis: Key Research Needs from an Industrial Perspective. ACS Energy Lett. 2023, 8 (3), 1502–1509. 10.1021/acsenergylett.2c02897. DOI

Deshmukh M.; Park S.; Thorat H.; Bodkhe G.; Ramanavicius A.; Ramanavicius S.; Shirsat M.; Ha T. Advanced energy materials: Current trends and challenges in electro- and photo-catalysts for H2O splitting. J. Ind. Eng. Chem. 2023, 119, 90–111. 10.1016/j.jiec.2022.11.054. DOI

Jose V.; Do V.; Prabhu P.; Peng C.; Chen S.; Zhou Y.; Lin Y.; Lee J. Activating Amorphous Ru Metallenes Through Co Integration for Enhanced Water Electrolysis. Adv. Energy Mater. 2023, 13, 2301119.10.1002/aenm.202301119. DOI

Bozal-Ginesta C.; Durrant J. Artificial photosynthesis – concluding remarks. Faraday Discuss. 2019, 215, 439–451. 10.1039/C9FD00076C. PubMed DOI

Whang D.; Apaydin D. Artificial Photosynthesis: Learning from Nature. ChemPhotoChem 2018, 2 (3), 148–160. 10.1002/cptc.201700163. DOI

Zhang L.; Wang Y. Decoupled Artificial Photosynthesis. Angew. Chem., Int. Ed. 2023, 62 (23), e20221907610.1002/anie.202219076. PubMed DOI

Razeghifard R.Natural and Artificial Photosynthesis: Solar Power as an Energy Source; Wiley, 2013.

Moss B.; Lim K.; Beltram A.; Moniz S.; Tang J.; Fornasiero P.; Barnes P.; Durrant J.; Kafizas A. Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2. Sci. Rep. 2017, 7 (1), 2938.10.1038/s41598-017-03065-5. PubMed DOI PMC

Chen S.; Takata T.; Domen K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2 (10), 17050.10.1038/natrevmats.2017.50. DOI

Jayakumar J.; Chou H. Recent Advances in Visible-Light-Driven Hydrogen Evolution from Water using Polymer Photocatalysts. ChemCatChem 2020, 12 (3), 689–704. 10.1002/cctc.201901725. DOI

Bhanderi D.; Lakhani P.; Modi C. Graphitic carbon nitride (g-C 3 N 4) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review. RSC Sustain. 2024, 10.1039/D3SU00382E. DOI

Dhakshinamoorthy A.; Asiri A.; García H. Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angew. Chem., Int. Ed. 2016, 55 (18), 5414–5445. 10.1002/anie.201505581. PubMed DOI

Lewandowska-Andrałojć A.; Larowska D.; Gacka E.; Pedzinski T.; Marciniak B. How Eosin Y/Graphene Oxide-Based Materials Can Improve Efficiency of Light-Driven Hydrogen Generation: Mechanistic Aspects. J. Phys. Chem. C 2020, 124 (5), 2747–2755. 10.1021/acs.jpcc.9b09573. DOI

Wang L. Recent Advances in Metal-Based Molecular Photosensitizers for Artificial Photosynthesis. Catalysts 2022, 12 (8), 919.10.3390/catal12080919. DOI

Wang M.; Han K.; Zhang S.; Sun L. Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coord. Chem. Rev. 2015, 287, 1–14. 10.1016/j.ccr.2014.12.005. DOI

Mazzeo A.; Santalla S.; Gaviglio C.; Doctorovich F.; Pellegrino J. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorg. Chim. Acta 2021, 517, 119950.10.1016/j.ica.2020.119950. DOI

Kosco J.; Moruzzi F.; Willner B.; McCulloch I. Photocatalysts Based on Organic Semiconductors with Tunable Energy Levels for Solar Fuel Applications. Adv. Energy Mater. 2020, 10 (39), 2001935.10.1002/aenm.202001935. DOI

Yan H.; Wang X.; Yao M.; Yao X. Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2. Prog. Nat. Sci. 2013, 23 (4), 402–407. 10.1016/j.pnsc.2013.06.002. DOI

Alvarez-Martin A.; Trashin S.; Cuykx M.; Covaci A.; De Wael K.; Janssens K. Photodegradation mechanisms and kinetics of Eosin-Y in oxic and anoxic conditions. Dyes Pigm. 2017, 145, 376–384. 10.1016/j.dyepig.2017.06.031. DOI

Zanetti G.; Allverti A.. Ferredoxin: NADP+ Oxidoreductase. In Chemistry and Biochemistry of Flavoenzymes; Müller F., Ed.; CRC Press, 2018, pp 305–316.

Dagley S. Lessons From Biodegradation. Annu. Rev. Microbiol. 1987, 41 (1), 1–24. 10.1146/annurev.mi.41.100187.000245. PubMed DOI

Butler B.; Topham R. Comparison of changes in the uptake and mucosal processing of iron in riboflavin-deficient rats. Biochem. Mol. Biol. Int. 1993, 30 (1), 53–61. PubMed

Srivastava V.; Singh P.; Srivastava A.; Singh P. Synthetic applications of flavin photocatalysis: a review. RSC Adv. 2021, 11 (23), 14251–14259. 10.1039/D1RA00925G. DOI

Flavin-Based Catalysis: Principles and Applications, 1st ed.; Fraaije M., Cibulka R., Eds.; Wiley-VCH: Weinheim, 2021.

Klein R.; Tatischeff I. TAUTOMERISM AND FLUORESCENCE OF LUMAZINE. Photochem. Photobiol. 1987, 45 (1), 55–65. 10.1111/j.1751-1097.1987.tb08405.x. DOI

Richtar J.; Ivanova L.; Whang D.; Yumusak C.; Wielend D.; Weiter M.; Scharber M.; Kovalenko A.; Sariciftci N.; Krajcovic J. Tunable Properties of Nature-Inspired N,N′-Alkylated Riboflavin Semiconductors. Molecules 2020, 26 (1), 27.10.3390/molecules26010027. PubMed DOI PMC

Golczak A.; Insińska-Rak M.; Davoudpour A.; Hama Saeed D.; Ménová P.; Mojr V.; Cibulka R.; Khmelinskii I.; Mrówczyńska L.; Sikorski M. Photophysical properties of alloxazine derivatives with extended aromaticity – Potential redox-sensitive fluorescent probe. Spectrochim. Acta, Part A 2022, 272, 120985.10.1016/j.saa.2022.120985. PubMed DOI

Guo H.; Xia H.; Ma X.; Chen K.; Dang C.; Zhao J.; Dick B. Efficient Photooxidation of Sulfides with Amidated Alloxazines as Heavy-atom-free Photosensitizers. ACS Omega 2020, 5 (18), 10586–10595. 10.1021/acsomega.0c01087. PubMed DOI PMC

Hartman T.; Reisnerová M.; Chudoba J.; Svobodová E.; Archipowa N.; Kutta R.; Cibulka R. Photocatalytic Oxidative [2 + 2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. ChemPlusChem 2021, 86 (3), 373–386. 10.1002/cplu.202000767. PubMed DOI

Richtar J.; Heinrichova P.; Apaydin D.; Schmiedova V.; Yumusak C.; Kovalenko A.; Weiter M.; Sariciftci N.; Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules 2018, 23 (9), 2271.10.3390/molecules23092271. PubMed DOI PMC

Luo G.; Pan Z.; Lin J.; Sun D. Tethered sensitizer–catalyst noble-metal-free molecular devices for solar-driven hydrogen generation. Dalton Trans. 2018, 47 (44), 15633–15645. 10.1039/C8DT02831A. PubMed DOI

Xiao N.; Li S.; Li X.; Ge L.; Gao Y.; Li N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chin. J. Catal. 2020, 41 (4), 642–671. 10.1016/S1872-2067(19)63469-8. DOI

Pellegrin Y.; Odobel F. Sacrificial electron donor reagents for solar fuel production. C. R. Chim. 2017, 20 (3), 283–295. 10.1016/j.crci.2015.11.026. DOI

Lehn J.; Sauvage J. Chemical storage of light energy-catalytic generation of hydrogen by visible-light or sunlight-irradiation of neutral aqueous-solutions. New J. Chem. 1977, 1, 449–451.

Kiwi J.; Grätzel M. Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature 1979, 281, 657–658. 10.1038/281657a0. DOI

Quinson J.; Jensen K. From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Adv. Colloid Interface Sci. 2020, 286, 102300.10.1016/j.cis.2020.102300. PubMed DOI

Artero V.; Fontecave M. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?. Chem. Soc. Rev. 2013, 42 (6), 2338–2356. 10.1039/C2CS35334B. PubMed DOI

Frisch M.; Trucks G.; Schlegel H.; Scuseria G.; Robb M.; Cheeseman J.; Scalmani G.; Barone V.; Petersson G.; Nakatsuji H.; Li X.; Caricato M.; Marenich A.; Bloino J.; Janesko B.; Gomperts R.; Mennucci B.; Hratchian H.; Ortiz J.; Izmaylov A.; Sonnenberg J.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J.; Peralta J.; Ogliaro F.; Bearpark M.; Heyd J.; Brothers E.; Kudin K.; Staroverov V.; Keith T.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J.; Iyengar S.; Tomasi J.; Cossi M.; Millam J.; Klene M.; Adamo C.; Cammi R.; Ochterski J.; Martin R.; Morokuma K.; Farkas O.; Foresman J.; Fox D.. Gaussian 16; Gaussian, Inc., 2016.

Lee C.; Yang W.; Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37 (2), 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Hariharan P.; Pople J. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28 (3), 213–222. 10.1007/BF00533485. DOI

Cagardová D.; Truksa J.; Michalík M.; Richtár J.; Weiter M.; Krajčovič J.; Lukeš V. Spectroscopic behavior of alloxazine-based dyes with extended aromaticity: Theory vs Experiment. Opt. Mater. 2021, 117, 111205.10.1016/j.optmat.2021.111205. DOI

Marenich A.; Cramer C.; Truhlar D. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396. 10.1021/jp810292n. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. 10.1002/jcc.21759. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...