Nature-Inspired Photocatalytic Hydrogen Production with a Flavin Photosensitizer
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38343969
PubMed Central
PMC10851229
DOI
10.1021/acsomega.3c07458
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Green hydrogen, by definition, must be produced with renewable energy sources without using fossil fuels. To transform the energy system, we need a fully sustainable production of green and renewable energy as well as the introduction of such "solar fuels" to tackle the chemical storage aspect of renewable energies. Conventional electrolysis of water splitting into oxygen and hydrogen gases is a clean and nonfossil method, but the use of massive noble-metal electrodes makes it expensive. Direct photocatalytic hydrogen evolution in water is an ideal approach, but an industrial scale is not available yet. In this paper, we intend to introduce flavins as metal-free organic photosensitizers for photoinduced reduction processes. Specifically, a flavin photosensitizer was employed for the photocatalytic evolution of hydrogen gas in aqueous media. The ratio of photosensitizer to cocatalyst concentration has been found to affect the efficiency of the hydrogen evolution reaction. Since flavins are nature-inspired molecules (like vitamin B2) with easily tunable properties through structure modification, this family of compounds opens the door for new possibilities in sustainable green hydrogen production.
Zobrazit více v PubMed
Lam M.; Lee K. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnol. Adv. 2011, 29 (1), 124–141. 10.1016/j.biotechadv.2010.10.001. PubMed DOI
Hydrogen as a Future Energy Carrier; Züttel A., Borgschulte A., Schlapbach L., Eds.; Wiley, 2008.
Ehlers J.; Feidenhans’l A.; Therkildsen K.; Larrazábal G. O. Affordable Green Hydrogen from Alkaline Water Electrolysis: Key Research Needs from an Industrial Perspective. ACS Energy Lett. 2023, 8 (3), 1502–1509. 10.1021/acsenergylett.2c02897. DOI
Deshmukh M.; Park S.; Thorat H.; Bodkhe G.; Ramanavicius A.; Ramanavicius S.; Shirsat M.; Ha T. Advanced energy materials: Current trends and challenges in electro- and photo-catalysts for H2O splitting. J. Ind. Eng. Chem. 2023, 119, 90–111. 10.1016/j.jiec.2022.11.054. DOI
Jose V.; Do V.; Prabhu P.; Peng C.; Chen S.; Zhou Y.; Lin Y.; Lee J. Activating Amorphous Ru Metallenes Through Co Integration for Enhanced Water Electrolysis. Adv. Energy Mater. 2023, 13, 2301119.10.1002/aenm.202301119. DOI
Bozal-Ginesta C.; Durrant J. Artificial photosynthesis – concluding remarks. Faraday Discuss. 2019, 215, 439–451. 10.1039/C9FD00076C. PubMed DOI
Whang D.; Apaydin D. Artificial Photosynthesis: Learning from Nature. ChemPhotoChem 2018, 2 (3), 148–160. 10.1002/cptc.201700163. DOI
Zhang L.; Wang Y. Decoupled Artificial Photosynthesis. Angew. Chem., Int. Ed. 2023, 62 (23), e20221907610.1002/anie.202219076. PubMed DOI
Razeghifard R.Natural and Artificial Photosynthesis: Solar Power as an Energy Source; Wiley, 2013.
Moss B.; Lim K.; Beltram A.; Moniz S.; Tang J.; Fornasiero P.; Barnes P.; Durrant J.; Kafizas A. Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2. Sci. Rep. 2017, 7 (1), 2938.10.1038/s41598-017-03065-5. PubMed DOI PMC
Chen S.; Takata T.; Domen K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2 (10), 17050.10.1038/natrevmats.2017.50. DOI
Jayakumar J.; Chou H. Recent Advances in Visible-Light-Driven Hydrogen Evolution from Water using Polymer Photocatalysts. ChemCatChem 2020, 12 (3), 689–704. 10.1002/cctc.201901725. DOI
Bhanderi D.; Lakhani P.; Modi C. Graphitic carbon nitride (g-C 3 N 4) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review. RSC Sustain. 2024, 10.1039/D3SU00382E. DOI
Dhakshinamoorthy A.; Asiri A.; García H. Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angew. Chem., Int. Ed. 2016, 55 (18), 5414–5445. 10.1002/anie.201505581. PubMed DOI
Lewandowska-Andrałojć A.; Larowska D.; Gacka E.; Pedzinski T.; Marciniak B. How Eosin Y/Graphene Oxide-Based Materials Can Improve Efficiency of Light-Driven Hydrogen Generation: Mechanistic Aspects. J. Phys. Chem. C 2020, 124 (5), 2747–2755. 10.1021/acs.jpcc.9b09573. DOI
Wang L. Recent Advances in Metal-Based Molecular Photosensitizers for Artificial Photosynthesis. Catalysts 2022, 12 (8), 919.10.3390/catal12080919. DOI
Wang M.; Han K.; Zhang S.; Sun L. Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coord. Chem. Rev. 2015, 287, 1–14. 10.1016/j.ccr.2014.12.005. DOI
Mazzeo A.; Santalla S.; Gaviglio C.; Doctorovich F.; Pellegrino J. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts. Inorg. Chim. Acta 2021, 517, 119950.10.1016/j.ica.2020.119950. DOI
Kosco J.; Moruzzi F.; Willner B.; McCulloch I. Photocatalysts Based on Organic Semiconductors with Tunable Energy Levels for Solar Fuel Applications. Adv. Energy Mater. 2020, 10 (39), 2001935.10.1002/aenm.202001935. DOI
Yan H.; Wang X.; Yao M.; Yao X. Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2. Prog. Nat. Sci. 2013, 23 (4), 402–407. 10.1016/j.pnsc.2013.06.002. DOI
Alvarez-Martin A.; Trashin S.; Cuykx M.; Covaci A.; De Wael K.; Janssens K. Photodegradation mechanisms and kinetics of Eosin-Y in oxic and anoxic conditions. Dyes Pigm. 2017, 145, 376–384. 10.1016/j.dyepig.2017.06.031. DOI
Zanetti G.; Allverti A.. Ferredoxin: NADP+ Oxidoreductase. In Chemistry and Biochemistry of Flavoenzymes; Müller F., Ed.; CRC Press, 2018, pp 305–316.
Dagley S. Lessons From Biodegradation. Annu. Rev. Microbiol. 1987, 41 (1), 1–24. 10.1146/annurev.mi.41.100187.000245. PubMed DOI
Butler B.; Topham R. Comparison of changes in the uptake and mucosal processing of iron in riboflavin-deficient rats. Biochem. Mol. Biol. Int. 1993, 30 (1), 53–61. PubMed
Srivastava V.; Singh P.; Srivastava A.; Singh P. Synthetic applications of flavin photocatalysis: a review. RSC Adv. 2021, 11 (23), 14251–14259. 10.1039/D1RA00925G. DOI
Flavin-Based Catalysis: Principles and Applications, 1st ed.; Fraaije M., Cibulka R., Eds.; Wiley-VCH: Weinheim, 2021.
Klein R.; Tatischeff I. TAUTOMERISM AND FLUORESCENCE OF LUMAZINE. Photochem. Photobiol. 1987, 45 (1), 55–65. 10.1111/j.1751-1097.1987.tb08405.x. DOI
Richtar J.; Ivanova L.; Whang D.; Yumusak C.; Wielend D.; Weiter M.; Scharber M.; Kovalenko A.; Sariciftci N.; Krajcovic J. Tunable Properties of Nature-Inspired N,N′-Alkylated Riboflavin Semiconductors. Molecules 2020, 26 (1), 27.10.3390/molecules26010027. PubMed DOI PMC
Golczak A.; Insińska-Rak M.; Davoudpour A.; Hama Saeed D.; Ménová P.; Mojr V.; Cibulka R.; Khmelinskii I.; Mrówczyńska L.; Sikorski M. Photophysical properties of alloxazine derivatives with extended aromaticity – Potential redox-sensitive fluorescent probe. Spectrochim. Acta, Part A 2022, 272, 120985.10.1016/j.saa.2022.120985. PubMed DOI
Guo H.; Xia H.; Ma X.; Chen K.; Dang C.; Zhao J.; Dick B. Efficient Photooxidation of Sulfides with Amidated Alloxazines as Heavy-atom-free Photosensitizers. ACS Omega 2020, 5 (18), 10586–10595. 10.1021/acsomega.0c01087. PubMed DOI PMC
Hartman T.; Reisnerová M.; Chudoba J.; Svobodová E.; Archipowa N.; Kutta R.; Cibulka R. Photocatalytic Oxidative [2 + 2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. ChemPlusChem 2021, 86 (3), 373–386. 10.1002/cplu.202000767. PubMed DOI
Richtar J.; Heinrichova P.; Apaydin D.; Schmiedova V.; Yumusak C.; Kovalenko A.; Weiter M.; Sariciftci N.; Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules 2018, 23 (9), 2271.10.3390/molecules23092271. PubMed DOI PMC
Luo G.; Pan Z.; Lin J.; Sun D. Tethered sensitizer–catalyst noble-metal-free molecular devices for solar-driven hydrogen generation. Dalton Trans. 2018, 47 (44), 15633–15645. 10.1039/C8DT02831A. PubMed DOI
Xiao N.; Li S.; Li X.; Ge L.; Gao Y.; Li N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chin. J. Catal. 2020, 41 (4), 642–671. 10.1016/S1872-2067(19)63469-8. DOI
Pellegrin Y.; Odobel F. Sacrificial electron donor reagents for solar fuel production. C. R. Chim. 2017, 20 (3), 283–295. 10.1016/j.crci.2015.11.026. DOI
Lehn J.; Sauvage J. Chemical storage of light energy-catalytic generation of hydrogen by visible-light or sunlight-irradiation of neutral aqueous-solutions. New J. Chem. 1977, 1, 449–451.
Kiwi J.; Grätzel M. Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature 1979, 281, 657–658. 10.1038/281657a0. DOI
Quinson J.; Jensen K. From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Adv. Colloid Interface Sci. 2020, 286, 102300.10.1016/j.cis.2020.102300. PubMed DOI
Artero V.; Fontecave M. Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis?. Chem. Soc. Rev. 2013, 42 (6), 2338–2356. 10.1039/C2CS35334B. PubMed DOI
Frisch M.; Trucks G.; Schlegel H.; Scuseria G.; Robb M.; Cheeseman J.; Scalmani G.; Barone V.; Petersson G.; Nakatsuji H.; Li X.; Caricato M.; Marenich A.; Bloino J.; Janesko B.; Gomperts R.; Mennucci B.; Hratchian H.; Ortiz J.; Izmaylov A.; Sonnenberg J.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J.; Peralta J.; Ogliaro F.; Bearpark M.; Heyd J.; Brothers E.; Kudin K.; Staroverov V.; Keith T.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J.; Iyengar S.; Tomasi J.; Cossi M.; Millam J.; Klene M.; Adamo C.; Cammi R.; Ochterski J.; Martin R.; Morokuma K.; Farkas O.; Foresman J.; Fox D.. Gaussian 16; Gaussian, Inc., 2016.
Lee C.; Yang W.; Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37 (2), 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Hariharan P.; Pople J. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28 (3), 213–222. 10.1007/BF00533485. DOI
Cagardová D.; Truksa J.; Michalík M.; Richtár J.; Weiter M.; Krajčovič J.; Lukeš V. Spectroscopic behavior of alloxazine-based dyes with extended aromaticity: Theory vs Experiment. Opt. Mater. 2021, 117, 111205.10.1016/j.optmat.2021.111205. DOI
Marenich A.; Cramer C.; Truhlar D. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396. 10.1021/jp810292n. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32 (7), 1456–1465. 10.1002/jcc.21759. PubMed DOI