Tunable Properties of Nature-Inspired N,N'-Alkylated Riboflavin Semiconductors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV20022
Ministerstvo Průmyslu a Obchodu
17-24707S
Grantová Agentura České Republiky
8J20AT025
Ministerstvo Školství, Mládeže a Tělovýchovy
GZ2018-98279-2
European Regional Development Fund
Z222-N19
Austrian Science Fund
PubMed
33374613
PubMed Central
PMC7793104
DOI
10.3390/molecules26010027
PII: molecules26010027
Knihovny.cz E-zdroje
- Klíčová slova
- bio-inspired materials, fused-ring systems, general, materials Science, organic electronics, riboflavin, side-chain engineering, soluble alkylated flavins,
- MeSH
- alkylace MeSH
- alkylační látky chemie MeSH
- polovodiče * MeSH
- riboflavin chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkylační látky MeSH
- riboflavin MeSH
A series of novel soluble nature-inspired flavin derivatives substituted with short butyl and bulky ethyl-adamantyl alkyl groups was prepared via simple and straightforward synthetic approach with moderate to good yields. The comprehensive characterization of the materials, to assess their application potential, has demonstrated that the modification of the conjugated flavin core enables delicate tuning of the absorption and emission properties, optical bandgap, frontier molecular orbital energies, melting points, and thermal stability. Moreover, the thin films prepared thereof exhibit smooth and homogeneous morphology with generally high stability over time.
Zobrazit více v PubMed
Irimia-Vladu M., Glowacki E.D., Sariciftci N.S., Bauer S. Green Materials for Electronics. Wiley-VCH; Weinheim, Germany: 2017. p. 39.
Glowacki E.D., Tangorra R.R., Coskun H., Farka D., Operamolla A., Kanbur Y., Milano F., Giotta L., Farinola G.M., Sariciftci N.S. Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins. J. Mater. Chem. C. 2015;3:6554. doi: 10.1039/C5TC00556F. DOI
Simon D.T., Gabrielsson E.O., Tybrandt K., Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016;116:13009. doi: 10.1021/acs.chemrev.6b00146. PubMed DOI
Barbarella G., Di Maria F. Supramolecular Oligothiophene Microfibers Spontaneously Assembled on Surfaces or Coassembled with Proteins inside Live Cells. Acc. Chem. Res. 2015;48:2230. doi: 10.1021/acs.accounts.5b00241. PubMed DOI
Kanbur Y., Coskun H., Głowacki E.D., Irimia-Vladu M., Sariciftci N.S., Yumusak C. High temperature-stability of organic thin-film transistors based on quinacridone pigments. Org. Electron. 2019;66:53. doi: 10.1016/j.orgel.2018.12.004. DOI
Jürgensen N., Ackermann M., Marszalek T., Zimmermann J., Morfa A.J., Pisula W., Bunz U.H.F., Hinkel F., Hernandez-Sosa G. Solution-Processed Bio-OLEDs with a Vitamin-Derived Riboflavin Tetrabutyrate Emission Layer. ACS Sustain. Chem. Eng. 2017;5:5368. doi: 10.1021/acssuschemeng.7b00675. DOI
Glowacki E.D., Irimia-Vladu M., Kaltenbrunner M., Gasiorowski J., White M.S., Monkowius U., Romanazzi G., Suranna G.P., Mastrorilli P., Sekitani T., et al. Hydrogen-Bonded Semiconducting Pigments for Air-Stable Field-Effect Transistors. Adv. Mater. 2013;25:1563. doi: 10.1002/adma.201204039. PubMed DOI
Glowacki E.D., Apaydin D.H., Bozkurt Z., Monkowius U., Demirak K., Tordin E., Himmelsbach M., Schwarzinger C., Burian M., Lechner R., et al. Air-stable organic semiconductors based on 6,6′-dithienylindigo and polymers thereof. J. Mater. Chem. C. 2014;2:8089. doi: 10.1039/C4TC00651H. DOI
Glowacki E.D., Irimia-Vladu M., Bauer S., Sariciftci N.S. Hydrogen-bonds in molecular solids—from biological systems to organic electronics. J. Mater. Chem. B. 2013;1:3742. doi: 10.1039/c3tb20193g. PubMed DOI
Khan H.U., Roberts M.E., Johnson O., Knoll W., Bao Z. The effect of pH and DNA concentration on organic thin-film transistor biosensors. Org. Electron. 2012;13:519. doi: 10.1016/j.orgel.2011.12.013. DOI
Casalini S., Leonardi F., Cramer T., Biscarini F. Organic field-effect transistor for label-free dopamine sensing. Org. Electron. 2013;14:156. doi: 10.1016/j.orgel.2012.10.027. DOI
Jang M., Kim H., Lee S., Kim H.W., Khedkar J.K., Rhee Y.M., Hwang I., Kim K., Oh J.H. Highly Sensitive and Selective Biosensors Based on Organic Transistors Functionalized with Cucurbit [6] uril Derivatives. Adv. Funct. Mater. 2015;25:4882. doi: 10.1002/adfm.201501587. DOI
Cotrone S., Ambrico M., Toss H., Angione M.D., Magliulo M., Mallardi A., Berggren M., Palazzo G., Horowitz G., Ligonzo T., et al. Phospholipid film in electrolyte-gated organic field-effect transistors. Org. Electron. 2012;13:638. doi: 10.1016/j.orgel.2012.01.002. DOI
Whitesides G.M. Soft Robotics. Angew. Chem. Int. Ed. 2018;57:4258. doi: 10.1002/anie.201800907. PubMed DOI
Fu F., Shang L., Chen Z., Yu Y., Zhao Y. Bioinspired living structural color hydrogels. Sci. Robot. 2018;3:8580. doi: 10.1126/scirobotics.aar8580. PubMed DOI
Tan M.J., Owh C., Chee P.L., Kyaw A.K.K., Kai D., Loh X.J. Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. J. Mater. Chem. 2016;4:5531. doi: 10.1039/C6TC00678G. DOI
Feig V.F., Tran H., Bao Z. Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Cent. Sci. 2018;4:337. doi: 10.1021/acscentsci.7b00595. PubMed DOI PMC
Cao Y., Uhrich K.E. Biodegradable and biocompatible polymers for electronic applications: A review. J. Bioact. Compat. Polym. 2019;34:3. doi: 10.1177/0883911518818075. DOI
Martin D.J., Reardon P.J.T., Moniz S.J.A., Tang J. Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System. J. Am. Chem. Soc. 2014;136:12568. doi: 10.1021/ja506386e. PubMed DOI
Huynh T., Sonar P., Haick H. Advanced Materials for Use in Soft Self-Healing Devices. Adv. Mater. 2017;29:1604973. doi: 10.1002/adma.201604973. PubMed DOI
Silva E., Edwards A.M. Flavins: Photochemistry and Photobiology. RSC Publishing; Cambridge, UK: 2006.
Massey V. The Chemical and Biological Versatility of Riboflavin. Biochem. Soc. Trans. 2000;28:283. doi: 10.1042/bst0280283. PubMed DOI
Zanetti G., Aliverti A. In: Chemistry and Biochemistry of Flavoenzymes, Vol. II. Muller F., editor. CRC Press; Boca Raton, FL, USA: 1991. pp. 305–351.
Joms M.S., Wang B., Jordan S.P. DNA repair catalyzed by Escherichia coli DNA photolyase containing only reduced flavin: Elimination of the enzyme’s second chromophore by reduction with sodium borohydride. Biochemistry. 1987;26:6810. PubMed
Dagley S. Lessons From Biodegradation. Annu. Rev. Microbiol. 1987;41:1. doi: 10.1146/annurev.mi.41.100187.000245. PubMed DOI
Arakaki A.K., Ceccarelli E.A., Carrillo N. Plant-type ferredoxin-NADP+ reductases: A basal structural framework and a multiplicity of functions. FASEB J. 1997;11:133. doi: 10.1096/fasebj.11.2.9039955. PubMed DOI
Hong J., Lee M., Lee B., Seo D.H., Park C.B., Kang K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014;5:5335. doi: 10.1038/ncomms6335. PubMed DOI
Lee M., Hong J., Seo D.H., Dong H.N., Ki T.N., Kang K., Chan B.P. Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound. Angew. Chem. Int. Ed. 2013;52:8322. doi: 10.1002/anie.201301850. PubMed DOI
Orita A., Verde M.G., Sakai M., Meng Y.S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016;7:13230. doi: 10.1038/ncomms13230. PubMed DOI PMC
Yu X., Eymur S., Singh V., Yang B., Tonga M., Bheemaraju A., Cooke G., Subramani C., Venkataraman D., Stanley R.J., et al. Flavin as a photo-active acceptor for efficient energy and charge transfer in a model donor–acceptor system. Phys. Chem. Chem. Phys. 2012;14:6749. doi: 10.1039/c2cp40073a. PubMed DOI
Jortner J., Ratner M.A. Molecular Electronics. Blackwell; Oxford, UK: 1997.
Carter F.L., Siatkowski R.F., Wohltjen J. Molecular Electronic Devices. Elsevier; Amsterdam, The Netherlands: 1988.
Mojr V., Svobodova E., Strakova K., Nevesely T., Chudoba J., Dvorakova H., Cibulka R. Tailoring flavins for visible light photocatalysis: Organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chem. Commun. 2015;51:12036. doi: 10.1039/C5CC01344E. PubMed DOI
Mohammed N., Wiles A.A., Belsley M., Fernandes S.S.M., Cariello M., Rotello V.M., Raposo M.M.M., Cooke G. Synthesis and characterisation of push–pull flavin dyes with efficient second harmonic generation (SHG) properties. RSC Adv. 2017;7:24462. doi: 10.1039/C7RA03400H. DOI
Prongjit M., Sucharitakul J., Palfey B.A., Chaiyen P. Oxidation Mode of Pyranose 2-Oxidase Is Controlled by pH. Biochemistry. 2013;52:1437. doi: 10.1021/bi301442x. PubMed DOI PMC
Nandwana V., Samuel I., Cooke G., Rotello V.M. Aromatic Stacking Interactions in Flavin Model Systems. Acc. Chem. Res. 2013;46:1000. doi: 10.1021/ar300132r. PubMed DOI
Gozem S., Mirzakulova E., Schapiro I., Melaccio F., Glusac K.D., Olivucci M. A Conical Intersection Controls the Deactivation of the Bacterial Luciferase Fluorophore. Angew. Chem. Int. Ed. 2014;53:9870. doi: 10.1002/anie.201404011. PubMed DOI
Szymański M., Maciejewski A., Steer R.P. Photophysics of thione triplets in solution: Factors controlling the rates of radiationless decay. Chem. Phys. 1988;124:143. doi: 10.1016/0301-0104(88)85090-0. DOI
Kiyama T., Simeno F., Murakami M., Yoneda F. Flavin-6-carboxylic acids as novel and simple flavoenzyme models. Nonenzymatic stabilization of the flavin semiquinone radical and the 4a-hydroperoxyflavin by intramolecular hydrogen bonding. J. Am. Chem. Soc. 1992;114:6613.
Zoltowski D., Nash A.I., Gardner K.H. Variations in Protein–Flavin Hydrogen Bonding in a Light, Oxygen, Voltage Domain Produce Non-Arrhenius Kinetics of Adduct Decay. Biochemistry. 2011;50:8771. doi: 10.1021/bi200976a. PubMed DOI PMC
Marian C.M., Nakagawa S., Rai-Constapel V., Karasulu B., Thiel W. Photophysics of Flavin Derivatives Absorbing in the Blue-Green Region: Thioflavins As Potential Cofactors of Photoswitches. J. Phys. Chem. B. 2014;118:1743. doi: 10.1021/jp4098233. PubMed DOI
Richtar J., Heinrichova P., Apaydin D.H., Schmiedova V., Yumusak C., Kovalenko A., Weiter M., Sariciftci N.S., Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules. 2018;23:2271. doi: 10.3390/molecules23092271. PubMed DOI PMC
Mataranga-Popa L.N., Torje I., Ghosh T., Leitl M.J., Spath A., Novianti M.L., Webster R.D., Konig B. Synthesis and electronic properties of π-extended flavins. Org. Biomol. Chem. 2015;13:10198. doi: 10.1039/C5OB01418B. PubMed DOI
Penzkofer A. Absorption Spectroscopic Determination of Solubility of Alloxazine in Aqueous Solutions. J. Anal. Sci. Methods Instrum. 2015;5:13. doi: 10.4236/jasmi.2015.52002. DOI
Giovannitti A., Maria I.P., Hanifi D., Donahue M.J., Bryant D., Barth K.J., Makdah B.E., Savva A., Moia D., Zetek M., et al. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. Chem. Mater. 2018;30:2945. doi: 10.1021/acs.chemmater.8b00321. PubMed DOI PMC
Krajčovič J., Kovalenko A., Heinrichová P., Vala M., Weiter M. Adamantyl side groups boosting the efficiency and thermal stability of organic solid-state fluorescent dyes. J. Lumin. 2016;175:94. doi: 10.1016/j.jlumin.2016.02.019. DOI
Kovalenko A., Yumusak C., Heinrichova P., Stritesky S., Fekete L., Vala M., Weiter M., Sariciftci N.S., Krajcovic J. Adamantane substitutions: A path to high-performing, soluble, versatile and sustainable organic semiconducting materials. J. Mater. Chem. C. 2017;5:4716. doi: 10.1039/C6TC05076J. DOI
Edwards A.M. Structure and general properties of flavins. Methods Mol. Biol. 2014;1146:3. PubMed