Tunable Properties of Nature-Inspired N,N'-Alkylated Riboflavin Semiconductors

. 2020 Dec 23 ; 26 (1) : . [epub] 20201223

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33374613

Grantová podpora
FV20022 Ministerstvo Průmyslu a Obchodu
17-24707S Grantová Agentura České Republiky
8J20AT025 Ministerstvo Školství, Mládeže a Tělovýchovy
GZ2018-98279-2 European Regional Development Fund
Z222-N19 Austrian Science Fund

A series of novel soluble nature-inspired flavin derivatives substituted with short butyl and bulky ethyl-adamantyl alkyl groups was prepared via simple and straightforward synthetic approach with moderate to good yields. The comprehensive characterization of the materials, to assess their application potential, has demonstrated that the modification of the conjugated flavin core enables delicate tuning of the absorption and emission properties, optical bandgap, frontier molecular orbital energies, melting points, and thermal stability. Moreover, the thin films prepared thereof exhibit smooth and homogeneous morphology with generally high stability over time.

Zobrazit více v PubMed

Irimia-Vladu M., Glowacki E.D., Sariciftci N.S., Bauer S. Green Materials for Electronics. Wiley-VCH; Weinheim, Germany: 2017. p. 39.

Glowacki E.D., Tangorra R.R., Coskun H., Farka D., Operamolla A., Kanbur Y., Milano F., Giotta L., Farinola G.M., Sariciftci N.S. Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins. J. Mater. Chem. C. 2015;3:6554. doi: 10.1039/C5TC00556F. DOI

Simon D.T., Gabrielsson E.O., Tybrandt K., Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016;116:13009. doi: 10.1021/acs.chemrev.6b00146. PubMed DOI

Barbarella G., Di Maria F. Supramolecular Oligothiophene Microfibers Spontaneously Assembled on Surfaces or Coassembled with Proteins inside Live Cells. Acc. Chem. Res. 2015;48:2230. doi: 10.1021/acs.accounts.5b00241. PubMed DOI

Kanbur Y., Coskun H., Głowacki E.D., Irimia-Vladu M., Sariciftci N.S., Yumusak C. High temperature-stability of organic thin-film transistors based on quinacridone pigments. Org. Electron. 2019;66:53. doi: 10.1016/j.orgel.2018.12.004. DOI

Jürgensen N., Ackermann M., Marszalek T., Zimmermann J., Morfa A.J., Pisula W., Bunz U.H.F., Hinkel F., Hernandez-Sosa G. Solution-Processed Bio-OLEDs with a Vitamin-Derived Riboflavin Tetrabutyrate Emission Layer. ACS Sustain. Chem. Eng. 2017;5:5368. doi: 10.1021/acssuschemeng.7b00675. DOI

Glowacki E.D., Irimia-Vladu M., Kaltenbrunner M., Gasiorowski J., White M.S., Monkowius U., Romanazzi G., Suranna G.P., Mastrorilli P., Sekitani T., et al. Hydrogen-Bonded Semiconducting Pigments for Air-Stable Field-Effect Transistors. Adv. Mater. 2013;25:1563. doi: 10.1002/adma.201204039. PubMed DOI

Glowacki E.D., Apaydin D.H., Bozkurt Z., Monkowius U., Demirak K., Tordin E., Himmelsbach M., Schwarzinger C., Burian M., Lechner R., et al. Air-stable organic semiconductors based on 6,6′-dithienylindigo and polymers thereof. J. Mater. Chem. C. 2014;2:8089. doi: 10.1039/C4TC00651H. DOI

Glowacki E.D., Irimia-Vladu M., Bauer S., Sariciftci N.S. Hydrogen-bonds in molecular solids—from biological systems to organic electronics. J. Mater. Chem. B. 2013;1:3742. doi: 10.1039/c3tb20193g. PubMed DOI

Khan H.U., Roberts M.E., Johnson O., Knoll W., Bao Z. The effect of pH and DNA concentration on organic thin-film transistor biosensors. Org. Electron. 2012;13:519. doi: 10.1016/j.orgel.2011.12.013. DOI

Casalini S., Leonardi F., Cramer T., Biscarini F. Organic field-effect transistor for label-free dopamine sensing. Org. Electron. 2013;14:156. doi: 10.1016/j.orgel.2012.10.027. DOI

Jang M., Kim H., Lee S., Kim H.W., Khedkar J.K., Rhee Y.M., Hwang I., Kim K., Oh J.H. Highly Sensitive and Selective Biosensors Based on Organic Transistors Functionalized with Cucurbit [6] uril Derivatives. Adv. Funct. Mater. 2015;25:4882. doi: 10.1002/adfm.201501587. DOI

Cotrone S., Ambrico M., Toss H., Angione M.D., Magliulo M., Mallardi A., Berggren M., Palazzo G., Horowitz G., Ligonzo T., et al. Phospholipid film in electrolyte-gated organic field-effect transistors. Org. Electron. 2012;13:638. doi: 10.1016/j.orgel.2012.01.002. DOI

Whitesides G.M. Soft Robotics. Angew. Chem. Int. Ed. 2018;57:4258. doi: 10.1002/anie.201800907. PubMed DOI

Fu F., Shang L., Chen Z., Yu Y., Zhao Y. Bioinspired living structural color hydrogels. Sci. Robot. 2018;3:8580. doi: 10.1126/scirobotics.aar8580. PubMed DOI

Tan M.J., Owh C., Chee P.L., Kyaw A.K.K., Kai D., Loh X.J. Biodegradable electronics: Cornerstone for sustainable electronics and transient applications. J. Mater. Chem. 2016;4:5531. doi: 10.1039/C6TC00678G. DOI

Feig V.F., Tran H., Bao Z. Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Cent. Sci. 2018;4:337. doi: 10.1021/acscentsci.7b00595. PubMed DOI PMC

Cao Y., Uhrich K.E. Biodegradable and biocompatible polymers for electronic applications: A review. J. Bioact. Compat. Polym. 2019;34:3. doi: 10.1177/0883911518818075. DOI

Martin D.J., Reardon P.J.T., Moniz S.J.A., Tang J. Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System. J. Am. Chem. Soc. 2014;136:12568. doi: 10.1021/ja506386e. PubMed DOI

Huynh T., Sonar P., Haick H. Advanced Materials for Use in Soft Self-Healing Devices. Adv. Mater. 2017;29:1604973. doi: 10.1002/adma.201604973. PubMed DOI

Silva E., Edwards A.M. Flavins: Photochemistry and Photobiology. RSC Publishing; Cambridge, UK: 2006.

Massey V. The Chemical and Biological Versatility of Riboflavin. Biochem. Soc. Trans. 2000;28:283. doi: 10.1042/bst0280283. PubMed DOI

Zanetti G., Aliverti A. In: Chemistry and Biochemistry of Flavoenzymes, Vol. II. Muller F., editor. CRC Press; Boca Raton, FL, USA: 1991. pp. 305–351.

Joms M.S., Wang B., Jordan S.P. DNA repair catalyzed by Escherichia coli DNA photolyase containing only reduced flavin: Elimination of the enzyme’s second chromophore by reduction with sodium borohydride. Biochemistry. 1987;26:6810. PubMed

Dagley S. Lessons From Biodegradation. Annu. Rev. Microbiol. 1987;41:1. doi: 10.1146/annurev.mi.41.100187.000245. PubMed DOI

Arakaki A.K., Ceccarelli E.A., Carrillo N. Plant-type ferredoxin-NADP+ reductases: A basal structural framework and a multiplicity of functions. FASEB J. 1997;11:133. doi: 10.1096/fasebj.11.2.9039955. PubMed DOI

Hong J., Lee M., Lee B., Seo D.H., Park C.B., Kang K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014;5:5335. doi: 10.1038/ncomms6335. PubMed DOI

Lee M., Hong J., Seo D.H., Dong H.N., Ki T.N., Kang K., Chan B.P. Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound. Angew. Chem. Int. Ed. 2013;52:8322. doi: 10.1002/anie.201301850. PubMed DOI

Orita A., Verde M.G., Sakai M., Meng Y.S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016;7:13230. doi: 10.1038/ncomms13230. PubMed DOI PMC

Yu X., Eymur S., Singh V., Yang B., Tonga M., Bheemaraju A., Cooke G., Subramani C., Venkataraman D., Stanley R.J., et al. Flavin as a photo-active acceptor for efficient energy and charge transfer in a model donor–acceptor system. Phys. Chem. Chem. Phys. 2012;14:6749. doi: 10.1039/c2cp40073a. PubMed DOI

Jortner J., Ratner M.A. Molecular Electronics. Blackwell; Oxford, UK: 1997.

Carter F.L., Siatkowski R.F., Wohltjen J. Molecular Electronic Devices. Elsevier; Amsterdam, The Netherlands: 1988.

Mojr V., Svobodova E., Strakova K., Nevesely T., Chudoba J., Dvorakova H., Cibulka R. Tailoring flavins for visible light photocatalysis: Organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chem. Commun. 2015;51:12036. doi: 10.1039/C5CC01344E. PubMed DOI

Mohammed N., Wiles A.A., Belsley M., Fernandes S.S.M., Cariello M., Rotello V.M., Raposo M.M.M., Cooke G. Synthesis and characterisation of push–pull flavin dyes with efficient second harmonic generation (SHG) properties. RSC Adv. 2017;7:24462. doi: 10.1039/C7RA03400H. DOI

Prongjit M., Sucharitakul J., Palfey B.A., Chaiyen P. Oxidation Mode of Pyranose 2-Oxidase Is Controlled by pH. Biochemistry. 2013;52:1437. doi: 10.1021/bi301442x. PubMed DOI PMC

Nandwana V., Samuel I., Cooke G., Rotello V.M. Aromatic Stacking Interactions in Flavin Model Systems. Acc. Chem. Res. 2013;46:1000. doi: 10.1021/ar300132r. PubMed DOI

Gozem S., Mirzakulova E., Schapiro I., Melaccio F., Glusac K.D., Olivucci M. A Conical Intersection Controls the Deactivation of the Bacterial Luciferase Fluorophore. Angew. Chem. Int. Ed. 2014;53:9870. doi: 10.1002/anie.201404011. PubMed DOI

Szymański M., Maciejewski A., Steer R.P. Photophysics of thione triplets in solution: Factors controlling the rates of radiationless decay. Chem. Phys. 1988;124:143. doi: 10.1016/0301-0104(88)85090-0. DOI

Kiyama T., Simeno F., Murakami M., Yoneda F. Flavin-6-carboxylic acids as novel and simple flavoenzyme models. Nonenzymatic stabilization of the flavin semiquinone radical and the 4a-hydroperoxyflavin by intramolecular hydrogen bonding. J. Am. Chem. Soc. 1992;114:6613.

Zoltowski D., Nash A.I., Gardner K.H. Variations in Protein–Flavin Hydrogen Bonding in a Light, Oxygen, Voltage Domain Produce Non-Arrhenius Kinetics of Adduct Decay. Biochemistry. 2011;50:8771. doi: 10.1021/bi200976a. PubMed DOI PMC

Marian C.M., Nakagawa S., Rai-Constapel V., Karasulu B., Thiel W. Photophysics of Flavin Derivatives Absorbing in the Blue-Green Region: Thioflavins As Potential Cofactors of Photoswitches. J. Phys. Chem. B. 2014;118:1743. doi: 10.1021/jp4098233. PubMed DOI

Richtar J., Heinrichova P., Apaydin D.H., Schmiedova V., Yumusak C., Kovalenko A., Weiter M., Sariciftci N.S., Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules. 2018;23:2271. doi: 10.3390/molecules23092271. PubMed DOI PMC

Mataranga-Popa L.N., Torje I., Ghosh T., Leitl M.J., Spath A., Novianti M.L., Webster R.D., Konig B. Synthesis and electronic properties of π-extended flavins. Org. Biomol. Chem. 2015;13:10198. doi: 10.1039/C5OB01418B. PubMed DOI

Penzkofer A. Absorption Spectroscopic Determination of Solubility of Alloxazine in Aqueous Solutions. J. Anal. Sci. Methods Instrum. 2015;5:13. doi: 10.4236/jasmi.2015.52002. DOI

Giovannitti A., Maria I.P., Hanifi D., Donahue M.J., Bryant D., Barth K.J., Makdah B.E., Savva A., Moia D., Zetek M., et al. The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. Chem. Mater. 2018;30:2945. doi: 10.1021/acs.chemmater.8b00321. PubMed DOI PMC

Krajčovič J., Kovalenko A., Heinrichová P., Vala M., Weiter M. Adamantyl side groups boosting the efficiency and thermal stability of organic solid-state fluorescent dyes. J. Lumin. 2016;175:94. doi: 10.1016/j.jlumin.2016.02.019. DOI

Kovalenko A., Yumusak C., Heinrichova P., Stritesky S., Fekete L., Vala M., Weiter M., Sariciftci N.S., Krajcovic J. Adamantane substitutions: A path to high-performing, soluble, versatile and sustainable organic semiconducting materials. J. Mater. Chem. C. 2017;5:4716. doi: 10.1039/C6TC05076J. DOI

Edwards A.M. Structure and general properties of flavins. Methods Mol. Biol. 2014;1146:3. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nature-Inspired Photocatalytic Hydrogen Production with a Flavin Photosensitizer

. 2024 Feb 06 ; 9 (5) : 5534-5540. [epub] 20240126

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...