Quinones as Multifunctional Scaffolds for Oxidative, Reductive, and HAT Photocatalysis

. 2025 Apr 04 ; 31 (20) : e202404707. [epub] 20250302

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39961015

Grantová podpora
TRR 325-444632635 Deutsche Forschungsgemeinschaft

Photoredox catalysis, which enables both electron and hydrogen atom transfer, has become a powerful tool for activating chemical bonds and synthesizing complex molecules under mild conditions. Typically, photocatalysts are optimized either for oxidative or reductive reactions within a limited redox window (less than 3.1 V) and for hydrogen atom transfer (HAT) reactions, with few frameworks capable of mediating both pathways for high redox-demanding reactions (covering more than a 5 V redox window) without requiring special conditions. Herein, we report the use of quinones as multifunctional scaffolds in light-driven redox transformations, offering access to a redox window of approximately 5 V using visible light. The quinone scaffold's versatility facilitates a wide range of radical and ionic processes under both oxidative and reductive conditions, in addition to enabling HAT reactions. By keeping the parameters, i. e. the reaction partners, constant, such transformations can be carried out under just two reaction conditions. Oxidative transformations and HAT reactions occur under ambient air, while activation of the chromophore for reductive transformations can be achieved using an inorganic base (Cs2CO3) via a simple acid-base deprotonation event. This dual capability highlights the potential of quinones as scaffolds to extend their utility in photoredox catalysis.

Zobrazit více v PubMed

Yoon T. P., Ischay M. A., Du J. N., Nat. Chem. 2010, 2, 527–532. PubMed

Schultz D. M., Yoon T. P., Science 2014, 343, 985. PubMed PMC

Nicewicz D. A., MacMillan D. W. C., Science 2008, 322, 77–80. PubMed PMC

Narayanam J. M. R., Tucker J. W., Stephenson C. R. J., J. Am. Chem. Soc. 2009, 131, 8756–8757. PubMed

Ghosh I., Marzo L., Das A., Shaikh R., König B., Acc. Chem. Res. 2016, 49, 1566–1577. PubMed

Prier C. K., Rankic D. A., MacMillan D. W. C., Chem. Rev. 2013, 113, 5322–5363. PubMed PMC

Narayanam J. M. R., Stephenson C. R. J., Chem. Soc. Rev. 2011, 40, 102–113. PubMed

Hossain A., Bhattacharyya A., Reiser O., Science 2019, 364, 450. PubMed

Sinha N., Wegeberg C., Häussinger D., Prescimone A., Wenger O. S., Nat. Chem. 2023, 15, 1730–1736. PubMed PMC

Chan A. Y., Ghosh A., Yarranton J. T., Twilton J., Jin J., Arias-Rotondo D. M., Sakai H. A., McCusker J. K., MacMillan D. W. C., Science 2023, 382, 191–197. PubMed PMC

Romero N. A., Nicewicz D. A., Chem. Rev. 2016, 116, 10075–10166. PubMed

Ghosh I., Ghosh T., Bardagi J. I., König B., Science 2014, 346, 725–728. PubMed

Ghosh I., Khamrai J., Savateev A., Shlapakov N., Antonietti M., König B., Science 2019, 365, 360–366. PubMed

Ghosh I., König B., Angew. Chem. Int. Ed. 2016, 55, 7676–7679. PubMed

Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature 2012, 492, 234–238. PubMed

Speckmeier E., Fischer T. G., Zeitler K., J. Am. Chem. Soc. 2018, 140, 15353–15365. PubMed

Hari D. P., König B., Chem. Commun. 2014, 50, 6688–6699. PubMed

MacKenzie I. A., Wang L. F., Onuska N. P. R., Williams O. F., Begam K., Moran A. M., Dunietz B. D., Nicewicz D. A., Nature 2020, 580, 76–80. PubMed PMC

Targos K., Williams O. P., Wickens Z. K., J. Am. Chem. Soc. 2021, 143, 4125–4132. PubMed

Barham J. P., König B., Angew. Chem. Int. Ed. 2020, 59, 11732–11747. PubMed PMC

Tian X. H., Karl T. A., Reiter S., Yakubov S., de Vivie-Riedle R., König B., Barham J. P., Angew. Chem. Int. Ed. 2021, 60, 20817–20825. PubMed PMC

Chernowsky C. P., Chmiel A. F., Wickens Z. K., Angew. Chem. Int. Ed. 2021, 60, 21418–21425. PubMed PMC

Schmalzbauer M., Ghosh I., König B., Faraday Discuss. 2019, 215, 364–378. PubMed

Ghosh I., Phys. Sci. Rev. 2019, 10.1515/psr-2017--0185. DOI

Li H., Wenger O. S., Angew. Chem. Int. Ed. 2022, 61, e202110491. PubMed PMC

Wu S., Schiel F., Melchiorre P., Angew. Chem. Int. Ed. 2023, 62, e202306364. PubMed

Wang S., Wang H., König B., Chem 2021, 7, 1653–1665.

Li H. Y., Tang X. X., Pang J. H., Wu X. Y., Yeow E. K. L., Wu J., Chiba S., J. Am. Chem. Soc. 2021, 143, 481–487. PubMed

Majek M., Filace F., Jacobi von Wangelin A., Beilstein J. Org. Chem. 2014, 10, 981–989. PubMed PMC

Romero N. A., Margrey K. A., Tay N. E., Nicewicz D. A., Science 2015, 349, 1326–1330. PubMed

McManus J. B., Nicewicz D. A., J. Am. Chem. Soc. 2017, 139, 2880–2883. PubMed PMC

Fukuzumi S., Kotani H., Ohkubo K., Ogo S., Tkachenko N. V., Lemmetyinen H., J. Am. Chem. Soc. 2004, 126, 1600–1601. PubMed

Hering T., Slanina T., Hancock A., Wille U., König B., Chem. Commun. 2015, 51, 6568–6571. PubMed

Lechner R., Kümmel S., König B., Photochem. Photobiol. Sci. 2010, 9, 1367–1377. PubMed

Graml A., Nevesely T., Kutta R. J., Cibulka R., König B., Nat. Commun. 2020, 11, 3174. PubMed PMC

Foja R., Walter A., Jandl C., Thyrhaug E., Hauer J., Storch G., J. Am. Chem. Soc. 2022, 144, 4721–4726. PubMed

Tada N., Hattori K., Nobuta T., Miura T., Itoh A., Green Chem. 2011, 13, 1669–1671.

Ohkubo K., Fujimoto A., Fukuzumi S., J. Am. Chem. Soc. 2013, 135, 5368–5371. PubMed

Lerch S., Unkel L. N., Brasholz M., Angew. Chem. Int. Ed. 2014, 53, 6558–6562. PubMed

Lerch S., Unkel L. N., Wienefeld P., Brasholz M., Synlett 2014, 25, 2673–2680.

Kee C. W., Chin K. F., Wong M. W., Tan C. H., Chem. Commun. 2014, 50, 8211–8214. PubMed

Wendlandt A. E., Stahl S. S., Angew. Chem. Int. Ed. 2015, 54, 14638–14658. PubMed PMC

Bardagi J. I., Ghosh I., Schmalzbauer M., Ghosh T., König B., Eur. J. Org. Chem. 2018, 2018, 34–40.

Cervantes-González J., Vosburg D. A., Mora-Rodriguez S. E., Vázquez M. A., Zepeda L. G., Gómez C. V., Lagunas-Rivera S., ChemCatChem 2020, 12, 3811–3827.

Tommasino J. B., Brondex A., Médebielle M., Thomalla M., Langlois B. R., Billard T., Synlett 2002, 10, 1697–1699.

Fujiwara Y., Dixon J. A., O'Hara F., Funder E. D., Dixon D. D., Rodriguez R. A., Baxter R. D., Herlé B., Sach N., Collins M. R., Ishihara Y., Baran P. S., Nature 2012, 492, 95–99. PubMed PMC

Garrido-Castro A. F., Gini A., Maestro M. C., Alemán J., Chem. Commun. 2020, 56, 3769–3772. PubMed

Meanwell N. A., J. Med. Chem. 2011, 54, 2529–2591. PubMed

Vitaku E., Smith D. T., Njardarson J. T., J. Med. Chem. 2014, 57, 10257–10274. PubMed

It should be noted that the thiocyanation reactions can be carried out in the absence of a photocatalyst using a 400 nm light source, but the photochemical reaction using 455 nm LEDs requires the presence of a photocatalyst, cf. compound 2c in the supporting information.

It is worth noting that for certain oxidative transfer reactions anthraquinone has proven to be relatively more effective in some instances, cf. compounds 2a–2i, 2k.

Petzold D., König B., Adv. Synth. Catal. 2018, 360, 626–630. PubMed PMC

Pause L., Robert M., Savéant J. M., J. Am. Chem. Soc. 1999, 121, 7158–7159.

Schmalzbauer M., Svejstrup T. D., Fricke F., Brandt P., Johansson M. J., Bergonzini G., König B., Chem 2020, 6, 2658–2672.

Shimada Y., Hattori K., Tada N., Miura T., Itoh A., Synthesis-Stuttgart 2013, 45, 2684–2688.

Nguyen K., Nguyen V., Tran H., Pham P., RSC Adv. 2023, 13, 7168–7178. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...