Quinones as Multifunctional Scaffolds for Oxidative, Reductive, and HAT Photocatalysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
TRR 325-444632635
Deutsche Forschungsgemeinschaft
PubMed
39961015
PubMed Central
PMC11973854
DOI
10.1002/chem.202404707
Knihovny.cz E-zdroje
- Klíčová slova
- HAT catalysis, Oxidative, Photocatalysis, Quinone, Reductive, large redox window,
- Publikační typ
- časopisecké články MeSH
Photoredox catalysis, which enables both electron and hydrogen atom transfer, has become a powerful tool for activating chemical bonds and synthesizing complex molecules under mild conditions. Typically, photocatalysts are optimized either for oxidative or reductive reactions within a limited redox window (less than 3.1 V) and for hydrogen atom transfer (HAT) reactions, with few frameworks capable of mediating both pathways for high redox-demanding reactions (covering more than a 5 V redox window) without requiring special conditions. Herein, we report the use of quinones as multifunctional scaffolds in light-driven redox transformations, offering access to a redox window of approximately 5 V using visible light. The quinone scaffold's versatility facilitates a wide range of radical and ionic processes under both oxidative and reductive conditions, in addition to enabling HAT reactions. By keeping the parameters, i. e. the reaction partners, constant, such transformations can be carried out under just two reaction conditions. Oxidative transformations and HAT reactions occur under ambient air, while activation of the chromophore for reductive transformations can be achieved using an inorganic base (Cs2CO3) via a simple acid-base deprotonation event. This dual capability highlights the potential of quinones as scaffolds to extend their utility in photoredox catalysis.
Fakultät für Chemie und Pharmazie Universität Regensburg 93053 Regensburg Germany
Institut für Physikalische und Theoretische Chemie Universität Regensburg 93053 Regensburg Germany
Zobrazit více v PubMed
Yoon T. P., Ischay M. A., Du J. N., Nat. Chem. 2010, 2, 527–532. PubMed
Schultz D. M., Yoon T. P., Science 2014, 343, 985. PubMed PMC
Nicewicz D. A., MacMillan D. W. C., Science 2008, 322, 77–80. PubMed PMC
Narayanam J. M. R., Tucker J. W., Stephenson C. R. J., J. Am. Chem. Soc. 2009, 131, 8756–8757. PubMed
Ghosh I., Marzo L., Das A., Shaikh R., König B., Acc. Chem. Res. 2016, 49, 1566–1577. PubMed
Prier C. K., Rankic D. A., MacMillan D. W. C., Chem. Rev. 2013, 113, 5322–5363. PubMed PMC
Narayanam J. M. R., Stephenson C. R. J., Chem. Soc. Rev. 2011, 40, 102–113. PubMed
Hossain A., Bhattacharyya A., Reiser O., Science 2019, 364, 450. PubMed
Sinha N., Wegeberg C., Häussinger D., Prescimone A., Wenger O. S., Nat. Chem. 2023, 15, 1730–1736. PubMed PMC
Chan A. Y., Ghosh A., Yarranton J. T., Twilton J., Jin J., Arias-Rotondo D. M., Sakai H. A., McCusker J. K., MacMillan D. W. C., Science 2023, 382, 191–197. PubMed PMC
Romero N. A., Nicewicz D. A., Chem. Rev. 2016, 116, 10075–10166. PubMed
Ghosh I., Ghosh T., Bardagi J. I., König B., Science 2014, 346, 725–728. PubMed
Ghosh I., Khamrai J., Savateev A., Shlapakov N., Antonietti M., König B., Science 2019, 365, 360–366. PubMed
Ghosh I., König B., Angew. Chem. Int. Ed. 2016, 55, 7676–7679. PubMed
Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C., Nature 2012, 492, 234–238. PubMed
Speckmeier E., Fischer T. G., Zeitler K., J. Am. Chem. Soc. 2018, 140, 15353–15365. PubMed
Hari D. P., König B., Chem. Commun. 2014, 50, 6688–6699. PubMed
MacKenzie I. A., Wang L. F., Onuska N. P. R., Williams O. F., Begam K., Moran A. M., Dunietz B. D., Nicewicz D. A., Nature 2020, 580, 76–80. PubMed PMC
Targos K., Williams O. P., Wickens Z. K., J. Am. Chem. Soc. 2021, 143, 4125–4132. PubMed
Barham J. P., König B., Angew. Chem. Int. Ed. 2020, 59, 11732–11747. PubMed PMC
Tian X. H., Karl T. A., Reiter S., Yakubov S., de Vivie-Riedle R., König B., Barham J. P., Angew. Chem. Int. Ed. 2021, 60, 20817–20825. PubMed PMC
Chernowsky C. P., Chmiel A. F., Wickens Z. K., Angew. Chem. Int. Ed. 2021, 60, 21418–21425. PubMed PMC
Schmalzbauer M., Ghosh I., König B., Faraday Discuss. 2019, 215, 364–378. PubMed
Ghosh I., Phys. Sci. Rev. 2019, 10.1515/psr-2017--0185. DOI
Li H., Wenger O. S., Angew. Chem. Int. Ed. 2022, 61, e202110491. PubMed PMC
Wu S., Schiel F., Melchiorre P., Angew. Chem. Int. Ed. 2023, 62, e202306364. PubMed
Wang S., Wang H., König B., Chem 2021, 7, 1653–1665.
Li H. Y., Tang X. X., Pang J. H., Wu X. Y., Yeow E. K. L., Wu J., Chiba S., J. Am. Chem. Soc. 2021, 143, 481–487. PubMed
Majek M., Filace F., Jacobi von Wangelin A., Beilstein J. Org. Chem. 2014, 10, 981–989. PubMed PMC
Romero N. A., Margrey K. A., Tay N. E., Nicewicz D. A., Science 2015, 349, 1326–1330. PubMed
McManus J. B., Nicewicz D. A., J. Am. Chem. Soc. 2017, 139, 2880–2883. PubMed PMC
Fukuzumi S., Kotani H., Ohkubo K., Ogo S., Tkachenko N. V., Lemmetyinen H., J. Am. Chem. Soc. 2004, 126, 1600–1601. PubMed
Hering T., Slanina T., Hancock A., Wille U., König B., Chem. Commun. 2015, 51, 6568–6571. PubMed
Lechner R., Kümmel S., König B., Photochem. Photobiol. Sci. 2010, 9, 1367–1377. PubMed
Graml A., Nevesely T., Kutta R. J., Cibulka R., König B., Nat. Commun. 2020, 11, 3174. PubMed PMC
Foja R., Walter A., Jandl C., Thyrhaug E., Hauer J., Storch G., J. Am. Chem. Soc. 2022, 144, 4721–4726. PubMed
Tada N., Hattori K., Nobuta T., Miura T., Itoh A., Green Chem. 2011, 13, 1669–1671.
Ohkubo K., Fujimoto A., Fukuzumi S., J. Am. Chem. Soc. 2013, 135, 5368–5371. PubMed
Lerch S., Unkel L. N., Brasholz M., Angew. Chem. Int. Ed. 2014, 53, 6558–6562. PubMed
Lerch S., Unkel L. N., Wienefeld P., Brasholz M., Synlett 2014, 25, 2673–2680.
Kee C. W., Chin K. F., Wong M. W., Tan C. H., Chem. Commun. 2014, 50, 8211–8214. PubMed
Wendlandt A. E., Stahl S. S., Angew. Chem. Int. Ed. 2015, 54, 14638–14658. PubMed PMC
Bardagi J. I., Ghosh I., Schmalzbauer M., Ghosh T., König B., Eur. J. Org. Chem. 2018, 2018, 34–40.
Cervantes-González J., Vosburg D. A., Mora-Rodriguez S. E., Vázquez M. A., Zepeda L. G., Gómez C. V., Lagunas-Rivera S., ChemCatChem 2020, 12, 3811–3827.
Tommasino J. B., Brondex A., Médebielle M., Thomalla M., Langlois B. R., Billard T., Synlett 2002, 10, 1697–1699.
Fujiwara Y., Dixon J. A., O'Hara F., Funder E. D., Dixon D. D., Rodriguez R. A., Baxter R. D., Herlé B., Sach N., Collins M. R., Ishihara Y., Baran P. S., Nature 2012, 492, 95–99. PubMed PMC
Garrido-Castro A. F., Gini A., Maestro M. C., Alemán J., Chem. Commun. 2020, 56, 3769–3772. PubMed
Meanwell N. A., J. Med. Chem. 2011, 54, 2529–2591. PubMed
Vitaku E., Smith D. T., Njardarson J. T., J. Med. Chem. 2014, 57, 10257–10274. PubMed
It should be noted that the thiocyanation reactions can be carried out in the absence of a photocatalyst using a 400 nm light source, but the photochemical reaction using 455 nm LEDs requires the presence of a photocatalyst, cf. compound 2c in the supporting information.
It is worth noting that for certain oxidative transfer reactions anthraquinone has proven to be relatively more effective in some instances, cf. compounds 2a–2i, 2k.
Petzold D., König B., Adv. Synth. Catal. 2018, 360, 626–630. PubMed PMC
Pause L., Robert M., Savéant J. M., J. Am. Chem. Soc. 1999, 121, 7158–7159.
Schmalzbauer M., Svejstrup T. D., Fricke F., Brandt P., Johansson M. J., Bergonzini G., König B., Chem 2020, 6, 2658–2672.
Shimada Y., Hattori K., Tada N., Miura T., Itoh A., Synthesis-Stuttgart 2013, 45, 2684–2688.
Nguyen K., Nguyen V., Tran H., Pham P., RSC Adv. 2023, 13, 7168–7178. PubMed PMC