Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
682275
European Research Council - International
740.018.022
Nederlandse Organisatie voor Wetenschappelijk Onderzoek - International
18-15175S
Czech Science Foundation - International
PubMed
31364790
PubMed Central
PMC6852162
DOI
10.1002/anie.201906293
Knihovny.cz E-zdroje
- Klíčová slova
- flavin, ion spectroscopy, mass spectrometry, peroxy intermediates, photooxidation,
- MeSH
- flaviny chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- katalýza MeSH
- lasery polovodičové * MeSH
- oxidace-redukce MeSH
- peroxid vodíku chemie MeSH
- protony MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- flaviny MeSH
- peroxid vodíku MeSH
- protony MeSH
Flavin-based catalysts are photoactive in the visible range which makes them useful in biology and chemistry. Herein, we present electrospray-ionization mass-spectrometry detection of short-lived intermediates in photooxidation of toluene catalysed by flavinium ions (Fl+ ). Previous studies have shown that photoexcited flavins react with aromates by proton-coupled electron transfer (PCET) on the microsecond time scale. For Fl+ , PCET leads to FlH.+ with the H-atom bound to the N5 position. We show that the reaction continues by coupling between FlH.+ and hydroperoxy or benzylperoxy radicals at the C4a position of FlH.+ . These results demonstrate that the N5-blocking effect reported for alkylated flavins is also active after PCET in these photocatalytic reactions. Structures of all intermediates were fully characterised by isotopic labelling and by photodissociation spectroscopy. These tools provide a new way to study reaction intermediates in the sub-second time range.
Zobrazit více v PubMed
Entsch B., van Berkel W. J., FASEB J. 1995, 9, 476–483; PubMed
Poulsen L. L., Ziegler D. M., J. Biol. Chem. 1979, 254, 6449–6455; PubMed
Ryerson C. C., Ballou D. P., Walsh C., Biochemistry 1982, 21, 2644–2655. PubMed
For reviews see:
Gelalcha F. G., Chem. Rev. 2007, 107, 3338–3361; PubMed
Romero E., Gómez Castellanos J. R., Gadda G., Fraaije M. W., Mattevi A., Chem. Rev. 2018, 118, 1742–1769. PubMed
Visitsatthawong S., Chenprakhon P., Chaiyen P., Surawatanawong P., J. Am. Chem. Soc. 2015, 137, 9363–9374. PubMed
Murahashi S., Oda T., Masui Y., J. Am. Chem. Soc. 1989, 111, 5002–5003;
Chen S., Foss F. W., Org. Lett. 2012, 14, 5150–5153; PubMed
Imada Y., Iida H., Ono S., Murahashi S.-I., J. Am. Chem. Soc. 2003, 125, 2868–2869; PubMed
Imada Y., Iida H., Murahashi S.-I., Naota T., Angew. Chem. Int. Ed. 2005, 44, 1704–1706; PubMed
Angew. Chem. 2005, 117, 1732–1734;
Murray A. T., Matton P., Fairhurst N. W. G., John M. P., Carbery D. R., Org. Lett. 2012, 14, 3656–3659; PubMed
Sakai T., Kumoi T., Ishikawa T., Nitta T., Iida H., Org. Biomol. Chem. 2018, 16, 3999–4007; PubMed
Chevalier Y., Lock Toy Ki Y., le Nouen D., Mahy J.-P., Goddard J.-P., Avenier F., Angew. Chem. Int. Ed. 2018, 57, 16412–16415; PubMed
Angew. Chem. 2018, 130, 16650–16653.
Fukuzumi S., Kuroda S., Tanaka T., J. Am. Chem. Soc. 1985, 107, 3020–3027;
Cibulka R., Vasold R., König B., Chem. Eur. J. 2004, 10, 6223–6231; PubMed
Mühldorf B., Wolf R., Chem. Commun. 2015, 51, 8425–8428; PubMed
Mühldorf B., Wolf R., Angew. Chem. Int. Ed. 2016, 55, 427–430; PubMed
Angew. Chem. 2016, 128, 437–441;
Metternich J. B., Gilmour R., J. Am. Chem. Soc. 2016, 138, 1040–1045; PubMed
Korvinson K. A., Hargenrader G. N., Stevanovic J., Xie Y., Joseph J., Maslak V., Hadad C. M., Glusac K. D., J. Phys. Chem. A 2016, 120, 7294–7300; PubMed
Mühldorf B., Wolf R., ChemCatChem 2017, 9, 920–923;
Tang G., Gong Z., Han W., Sun X., Tetrahedron Lett. 2018, 59, 658–662;
Morack T., Metternich J. B., Gilmour R., Org Lett. 2018, 20, 1316–1319; PubMed
Lesieur M., Genicot C., Pasau P., Org. Lett. 2018, 20, 1987–1990. PubMed
For review see: König B., Kümmel S., Svobodová E., Cibulka R., Phys. Sci. Rev. 2018, 3, DOI 101515/psr-2017-0168.
Megerle U., Wenninger M., Kutta R.-J., Lechner R., König B., Dick B., Riedle E., Phys. Chem. Chem. Phys. 2011, 13, 8869–8880. PubMed
Feldmeier C., Bartling H., Magerl K., Gschwind R. M., Angew. Chem. Int. Ed. 2015, 54, 1347–1351; PubMed
Angew. Chem. 2015, 127, 1363–1367.
Zelenka J., Svobodová E., Tarábek J., Hoskovcová I., Boguschová V., Bailly S., Sikorski M., Roithová J., Cibulka R., Org. Lett. 2019, 21, 114–119. PubMed
Roithová J., Chem. Soc. Rev. 2012, 41, 547–559. PubMed
For related on-line irradiation MS experiments see for example:
Chen S., Wan Q., Badu-Tawiah A. K., Angew. Chem. Int. Ed. 2016, 55, 9345–9349; PubMed
Angew. Chem. 2016, 128, 9491–9495;
Cai Y., Wang J., Zhang Y., Li Z., Hu D., Zheng N., Chen H., J. Am. Chem. Soc. 2017, 139, 12259–12266. PubMed PMC
Oliveira F. F. D., dos Santos M. R., Lalli P. M., Schmidt E. M., Bakuzis P., Lapis A. A. M., Monteiro A. L., Eberlin M. N., Neto B. A. D., J. Org. Chem. 2011, 76, 10140. PubMed
For a historic overview on helium tagging photodissociation spectroscopy, see: Gerlich D., J. Chin. Chem. Soc. 2018, 65, 637–653 and the references therein. Overview of work from other laboratories applying helium tagging spectroscopy can be found in the Supporting Information.
Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230. PubMed
For related photodissociation experiments in this field, see:
Guyon L., Tabarin T., Thuillier B., Antoine R., Broyer M., Boutou V., Wolf J.-P., Dugourd P., J. Chem. Phys. 2008, 128, 075103; PubMed
Zhang T., Papson K., Ochran R., Ridge D. P., J. Phys. Chem. A 2013, 117, 11136–11141; PubMed
Langer J., Günther A., Seidenbecher S., Berden G., Oomens J., Dopfer O., ChemPhysChem 2014, 15, 2550–2562; PubMed
Günther A., Nieto P., Müller D., Sheldrick A., Gerlich D., Dopfer O., J. Mol. Spectrosc. 2017, 332, 8–15;
Stockett M. H., Phys. Chem. Chem. Phys. 2017, 19, 25829–25833; PubMed
Bull J. N., Carrascosa E., Giacomozzi L., Bieske E. J., Stockett M. H., Phys. Chem. Chem. Phys. 2018, 20, 19672–19681; PubMed PMC
Matthews E., Cercola R., Dessent C. E. H., Molecules 2018, 23, 2036; PubMed PMC
Nieto P., Müller D., Sheldrick A., Günther A., Miyazaki M., Dopfer O., Phys. Chem. Chem. Phys. 2018, 20, 22148–22158; PubMed
Sheldrick A., Müller D., Günther A., Nieto P., Dopfer O., Phys. Chem. Chem. Phys. 2018, 20, 7407–7414. PubMed
Jašík J., Gerlich D., Roithová J., J. Phys. Chem. A 2015, 119, 2532–2542. PubMed
Žurek J., Cibulka R., Dvořáková H., Svoboda J., Tetrahedron Lett. 2010, 51, 1083–1086.
Müller F., Brüstlein M., Hemmerich P., Massey V., Walker W. H., Eur. J. Biochem. 1972, 25, 573–580. PubMed
Walker W. H., Hemmerich P., Massey V., Eur. J. Biochem. 1970, 13, 258–266; PubMed
Hemmerich P., Massey V., Weber G., Nature 1967, 213, 728–730. PubMed
Kemal C., Bruice T. C., Proc. Natl. Acad. Sci. USA 1976, 73, 995–999. PubMed PMC
Nanni E. J., Sawyer D. T., Ball S. S., Bruice T. C., J. Am. Chem. Soc. 1981, 103, 2797–2802.
Eberlein G., Bruice T. C., J. Am. Chem. Soc. 1983, 105, 6679–6684.
Massey V., Strickland S., Mayhew S. G., Howell L. G., Engel P. C., Matthews R. G., Schuman M., Sullivan P. A., Biochem. Biophys. Res. Commun. 1969, 36, 891–897; PubMed
Ballou D., Palmer G., Massey V., Biochem. Biophys. Res. Commun. 1969, 36, 898–904. PubMed
Insińska-Rak M., Sikorski M., Chem. Eur. J. 2014, 20, 15280–15291. PubMed
Merenyi G., Lind J., J. Am. Chem. Soc. 1991, 113, 3146–3153;
Orville A. M., Lountos G. T., Finnegan S., Gadda G., Prabhakar R., Biochemistry 2009, 48, 720–728; PubMed PMC
Wongnate T., Surawatanawong P., Visitsatthawong S., Sucharitakul J., Scrutton N. S., Chaiyen P., J. Am. Chem. Soc. 2014, 136, 241–253. PubMed
Roberts D. L., Frerman F. E., Kim J.-J. P., Proc. Natl. Acad. Sci. USA 1996, 93, 14355–14360; PubMed PMC
Fox K. M., Karplus P. A., J. Biol. Chem. 1999, 274, 9357–9362; PubMed
Wijaya I. M. M., Domratcheva T., Iwata T., Getzoff E. D., Kandori H., J. Am. Chem. Soc. 2016, 138, 4368–4376. PubMed
Beaty N. B., Ballou D. P., J. Biol. Chem. 1980, 255, 3817–3819; PubMed
Massey V., Hemmerich P., Biochem. Soc. Trans. 1980, 8, 246–257; PubMed
Arakawa Y., Yamanomoto K., Kita H., Minagawa K., Tanaka M., Haraguchi N., Itsuno S., Imada Y., Chem. Sci. 2017, 8, 5468–5475. PubMed PMC
“Interaction of the Gold(I) Cation Au(PMe3)+ with Unsaturated Hydrocarbons”: Jašíková L., Roithová J., Organometallics 2012, 31, 1935–1942.
Jašík J., Žabka J., Roithová J., Gerlich D., Int. J. Mass Spectrom. 2013, 354–355, 204–210;
Jašík J., Gerlich D., Roithová J., J. Am. Chem. Soc. 2014, 136, 2960–2962. PubMed
Jašík J., Navrátil R., Němec I., Roithová J., J. Phys. Chem. A 2015, 119, 2648–12655. PubMed
Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652;
Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785–789. PubMed
Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed
Jensen F., J. Chem. Phys. 2001, 115, 9113;
Jensen F., J. Chem. Phys. 2002, 116, 7372;
Jensen F., Helgaker T., J. Chem. Phys. 2004, 121, 3463. PubMed