Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates

. 2019 Oct 21 ; 58 (43) : 15412-15420. [epub] 20190823

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31364790

Grantová podpora
682275 European Research Council - International
740.018.022 Nederlandse Organisatie voor Wetenschappelijk Onderzoek - International
18-15175S Czech Science Foundation - International

Flavin-based catalysts are photoactive in the visible range which makes them useful in biology and chemistry. Herein, we present electrospray-ionization mass-spectrometry detection of short-lived intermediates in photooxidation of toluene catalysed by flavinium ions (Fl+ ). Previous studies have shown that photoexcited flavins react with aromates by proton-coupled electron transfer (PCET) on the microsecond time scale. For Fl+ , PCET leads to FlH.+ with the H-atom bound to the N5 position. We show that the reaction continues by coupling between FlH.+ and hydroperoxy or benzylperoxy radicals at the C4a position of FlH.+ . These results demonstrate that the N5-blocking effect reported for alkylated flavins is also active after PCET in these photocatalytic reactions. Structures of all intermediates were fully characterised by isotopic labelling and by photodissociation spectroscopy. These tools provide a new way to study reaction intermediates in the sub-second time range.

Zobrazit více v PubMed

Entsch B., van Berkel W. J., FASEB J. 1995, 9, 476–483; PubMed

Poulsen L. L., Ziegler D. M., J. Biol. Chem. 1979, 254, 6449–6455; PubMed

Ryerson C. C., Ballou D. P., Walsh C., Biochemistry 1982, 21, 2644–2655. PubMed

For reviews see:

Gelalcha F. G., Chem. Rev. 2007, 107, 3338–3361; PubMed

Romero E., Gómez Castellanos J. R., Gadda G., Fraaije M. W., Mattevi A., Chem. Rev. 2018, 118, 1742–1769. PubMed

Visitsatthawong S., Chenprakhon P., Chaiyen P., Surawatanawong P., J. Am. Chem. Soc. 2015, 137, 9363–9374. PubMed

Murahashi S., Oda T., Masui Y., J. Am. Chem. Soc. 1989, 111, 5002–5003;

Chen S., Foss F. W., Org. Lett. 2012, 14, 5150–5153; PubMed

Imada Y., Iida H., Ono S., Murahashi S.-I., J. Am. Chem. Soc. 2003, 125, 2868–2869; PubMed

Imada Y., Iida H., Murahashi S.-I., Naota T., Angew. Chem. Int. Ed. 2005, 44, 1704–1706; PubMed

Angew. Chem. 2005, 117, 1732–1734;

Murray A. T., Matton P., Fairhurst N. W. G., John M. P., Carbery D. R., Org. Lett. 2012, 14, 3656–3659; PubMed

Sakai T., Kumoi T., Ishikawa T., Nitta T., Iida H., Org. Biomol. Chem. 2018, 16, 3999–4007; PubMed

Chevalier Y., Lock Toy Ki Y., le Nouen D., Mahy J.-P., Goddard J.-P., Avenier F., Angew. Chem. Int. Ed. 2018, 57, 16412–16415; PubMed

Angew. Chem. 2018, 130, 16650–16653.

Fukuzumi S., Kuroda S., Tanaka T., J. Am. Chem. Soc. 1985, 107, 3020–3027;

Cibulka R., Vasold R., König B., Chem. Eur. J. 2004, 10, 6223–6231; PubMed

Mühldorf B., Wolf R., Chem. Commun. 2015, 51, 8425–8428; PubMed

Mühldorf B., Wolf R., Angew. Chem. Int. Ed. 2016, 55, 427–430; PubMed

Angew. Chem. 2016, 128, 437–441;

Metternich J. B., Gilmour R., J. Am. Chem. Soc. 2016, 138, 1040–1045; PubMed

Korvinson K. A., Hargenrader G. N., Stevanovic J., Xie Y., Joseph J., Maslak V., Hadad C. M., Glusac K. D., J. Phys. Chem. A 2016, 120, 7294–7300; PubMed

Mühldorf B., Wolf R., ChemCatChem 2017, 9, 920–923;

Tang G., Gong Z., Han W., Sun X., Tetrahedron Lett. 2018, 59, 658–662;

Morack T., Metternich J. B., Gilmour R., Org Lett. 2018, 20, 1316–1319; PubMed

Lesieur M., Genicot C., Pasau P., Org. Lett. 2018, 20, 1987–1990. PubMed

For review see: König B., Kümmel S., Svobodová E., Cibulka R., Phys. Sci. Rev. 2018, 3, DOI 101515/psr-2017-0168.

Megerle U., Wenninger M., Kutta R.-J., Lechner R., König B., Dick B., Riedle E., Phys. Chem. Chem. Phys. 2011, 13, 8869–8880. PubMed

Feldmeier C., Bartling H., Magerl K., Gschwind R. M., Angew. Chem. Int. Ed. 2015, 54, 1347–1351; PubMed

Angew. Chem. 2015, 127, 1363–1367.

Zelenka J., Svobodová E., Tarábek J., Hoskovcová I., Boguschová V., Bailly S., Sikorski M., Roithová J., Cibulka R., Org. Lett. 2019, 21, 114–119. PubMed

Roithová J., Chem. Soc. Rev. 2012, 41, 547–559. PubMed

For related on-line irradiation MS experiments see for example:

Chen S., Wan Q., Badu-Tawiah A. K., Angew. Chem. Int. Ed. 2016, 55, 9345–9349; PubMed

Angew. Chem. 2016, 128, 9491–9495;

Cai Y., Wang J., Zhang Y., Li Z., Hu D., Zheng N., Chen H., J. Am. Chem. Soc. 2017, 139, 12259–12266. PubMed PMC

Oliveira F. F. D., dos Santos M. R., Lalli P. M., Schmidt E. M., Bakuzis P., Lapis A. A. M., Monteiro A. L., Eberlin M. N., Neto B. A. D., J. Org. Chem. 2011, 76, 10140. PubMed

For a historic overview on helium tagging photodissociation spectroscopy, see: Gerlich D., J. Chin. Chem. Soc. 2018, 65, 637–653 and the references therein. Overview of work from other laboratories applying helium tagging spectroscopy can be found in the Supporting Information.

Roithová J., Gray A., Andris E., Jašík J., Gerlich D., Acc. Chem. Res. 2016, 49, 223–230. PubMed

For related photodissociation experiments in this field, see:

Guyon L., Tabarin T., Thuillier B., Antoine R., Broyer M., Boutou V., Wolf J.-P., Dugourd P., J. Chem. Phys. 2008, 128, 075103; PubMed

Zhang T., Papson K., Ochran R., Ridge D. P., J. Phys. Chem. A 2013, 117, 11136–11141; PubMed

Langer J., Günther A., Seidenbecher S., Berden G., Oomens J., Dopfer O., ChemPhysChem 2014, 15, 2550–2562; PubMed

Günther A., Nieto P., Müller D., Sheldrick A., Gerlich D., Dopfer O., J. Mol. Spectrosc. 2017, 332, 8–15;

Stockett M. H., Phys. Chem. Chem. Phys. 2017, 19, 25829–25833; PubMed

Bull J. N., Carrascosa E., Giacomozzi L., Bieske E. J., Stockett M. H., Phys. Chem. Chem. Phys. 2018, 20, 19672–19681; PubMed PMC

Matthews E., Cercola R., Dessent C. E. H., Molecules 2018, 23, 2036; PubMed PMC

Nieto P., Müller D., Sheldrick A., Günther A., Miyazaki M., Dopfer O., Phys. Chem. Chem. Phys. 2018, 20, 22148–22158; PubMed

Sheldrick A., Müller D., Günther A., Nieto P., Dopfer O., Phys. Chem. Chem. Phys. 2018, 20, 7407–7414. PubMed

Jašík J., Gerlich D., Roithová J., J. Phys. Chem. A 2015, 119, 2532–2542. PubMed

Žurek J., Cibulka R., Dvořáková H., Svoboda J., Tetrahedron Lett. 2010, 51, 1083–1086.

Müller F., Brüstlein M., Hemmerich P., Massey V., Walker W. H., Eur. J. Biochem. 1972, 25, 573–580. PubMed

Walker W. H., Hemmerich P., Massey V., Eur. J. Biochem. 1970, 13, 258–266; PubMed

Hemmerich P., Massey V., Weber G., Nature 1967, 213, 728–730. PubMed

Kemal C., Bruice T. C., Proc. Natl. Acad. Sci. USA 1976, 73, 995–999. PubMed PMC

Nanni E. J., Sawyer D. T., Ball S. S., Bruice T. C., J. Am. Chem. Soc. 1981, 103, 2797–2802.

Eberlein G., Bruice T. C., J. Am. Chem. Soc. 1983, 105, 6679–6684.

Massey V., Strickland S., Mayhew S. G., Howell L. G., Engel P. C., Matthews R. G., Schuman M., Sullivan P. A., Biochem. Biophys. Res. Commun. 1969, 36, 891–897; PubMed

Ballou D., Palmer G., Massey V., Biochem. Biophys. Res. Commun. 1969, 36, 898–904. PubMed

Insińska-Rak M., Sikorski M., Chem. Eur. J. 2014, 20, 15280–15291. PubMed

Merenyi G., Lind J., J. Am. Chem. Soc. 1991, 113, 3146–3153;

Orville A. M., Lountos G. T., Finnegan S., Gadda G., Prabhakar R., Biochemistry 2009, 48, 720–728; PubMed PMC

Wongnate T., Surawatanawong P., Visitsatthawong S., Sucharitakul J., Scrutton N. S., Chaiyen P., J. Am. Chem. Soc. 2014, 136, 241–253. PubMed

Roberts D. L., Frerman F. E., Kim J.-J. P., Proc. Natl. Acad. Sci. USA 1996, 93, 14355–14360; PubMed PMC

Fox K. M., Karplus P. A., J. Biol. Chem. 1999, 274, 9357–9362; PubMed

Wijaya I. M. M., Domratcheva T., Iwata T., Getzoff E. D., Kandori H., J. Am. Chem. Soc. 2016, 138, 4368–4376. PubMed

Beaty N. B., Ballou D. P., J. Biol. Chem. 1980, 255, 3817–3819; PubMed

Massey V., Hemmerich P., Biochem. Soc. Trans. 1980, 8, 246–257; PubMed

Arakawa Y., Yamanomoto K., Kita H., Minagawa K., Tanaka M., Haraguchi N., Itsuno S., Imada Y., Chem. Sci. 2017, 8, 5468–5475. PubMed PMC

“Interaction of the Gold(I) Cation Au(PMe3)+ with Unsaturated Hydrocarbons”: Jašíková L., Roithová J., Organometallics 2012, 31, 1935–1942.

Jašík J., Žabka J., Roithová J., Gerlich D., Int. J. Mass Spectrom. 2013, 354–355, 204–210;

Jašík J., Gerlich D., Roithová J., J. Am. Chem. Soc. 2014, 136, 2960–2962. PubMed

Jašík J., Navrátil R., Němec I., Roithová J., J. Phys. Chem. A 2015, 119, 2648–12655. PubMed

Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652;

Lee C., Yang W., Parr R. G., Phys. Rev. B 1988, 37, 785–789. PubMed

Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed

Jensen F., J. Chem. Phys. 2001, 115, 9113;

Jensen F., J. Chem. Phys. 2002, 116, 7372;

Jensen F., Helgaker T., J. Chem. Phys. 2004, 121, 3463. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Deazaflavin reductive photocatalysis involves excited semiquinone radicals

. 2020 Jun 23 ; 11 (1) : 3174. [epub] 20200623

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...