Ergodicity and parameter estimates in auditory neural circuits
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29082437
PubMed Central
PMC5908860
DOI
10.1007/s00422-017-0739-5
PII: 10.1007/s00422-017-0739-5
Knihovny.cz E-zdroje
- Klíčová slova
- Auditory pathway, Circular statistics, Ergodic theory, Ergodicity, Interspike interval, Probability distribution function, Sensory modality, Spike timing jitter, Vector strength,
- MeSH
- akční potenciály fyziologie MeSH
- časové faktory MeSH
- lidé MeSH
- modely neurologické * MeSH
- nervová síť fyziologie MeSH
- neurony fyziologie MeSH
- počítačová simulace MeSH
- pravděpodobnost * MeSH
- sluch fyziologie MeSH
- sluchová dráha fyziologie MeSH
- sluchová percepce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal the average in less time and larger population. The objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps find correspondence between variables and parameters. The methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: a formula to calculate vector strength of neural spike timing dependent on the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons where spike trains have and do not have the ergodic property are then discussed.
Czech Technical University Prague Zikova 1903 4 16636 Prague 6 Czech Republic
Max Planck Institute for the Physics of Complex Systems Noethnitzer Strasse 38 01187 Dresden Germany
Zobrazit více v PubMed
Ahveninen J, Kopco N, Jääskeläinen IP. Psychophysics and neuronal bases of sound localization in humans. Hear Res. 2014;307:86–97. doi: 10.1016/j.heares.2013.07.008. PubMed DOI PMC
Ahveninen J, Chang WT, Huang S, Keil B, Kopco N, Rossi S, Bonmassar G, Witzel T, Polimeni JR. Intracortical depth analyses of frequency-sensitive regions of human auditory cortex using 7T fMRI. NeuroImage. 2016;143:116–127. doi: 10.1016/j.neuroimage.2016.09.010. PubMed DOI PMC
Barlow HB. Single units and sensation: a neuron doctrine for perceptual psychology? Perception. 1972;1(4):371–394. doi: 10.1068/p010371. PubMed DOI
Berens P. CircStat: a MATLAB toolbox for circular statistics. J Stat Softw. 2009;31(10):1–21. doi: 10.18637/jss.v031.i10. DOI
Boltzmann L (1898) Lectures on gas theory (translated from German). Dover Publications Inc, New York (The English edition quoted here published in 1964)
Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B. Precise inhibition is essential for microsecond interaural time difference coding. Nature. 2002;417(6888):543–547. doi: 10.1038/417543a. PubMed DOI
Bronstein IN, Semendyaev KA (2013) Handbook of mathematics for engineers and technical students (Spravochnik po matematike dlya inzhenerov i uchashchikhsya vtuzov). Springer, Heidelberg (2004) English editions were published by various other publishers: Toibner, Leipzig, 1981; Harri Deutsch, Frankfurt am Main, 1985. Let Me Print, Moscow
Brozek G, Siegfried B, Klimenko VM, Bures J. Lick triggered intracranial stimulation interferes with retrieval of conditioned taste aversion. Physiol Behav. 1979;23(4):625–631. doi: 10.1016/0031-9384(79)90150-1. PubMed DOI
Bures Z. The stochastic properties of input spike trains control neuronal arithmetic. Biol Cybern. 2012;106(2):111–122. doi: 10.1007/s00422-012-0483-9. PubMed DOI
Bures Z, Marsalek P. On the precision of neural computation with interaural level differences in the lateral superior olive. Brain Res. 2013;1536:16–26. doi: 10.1016/j.brainres.2013.05.008. PubMed DOI
Camalet S, Duke T, Julicher F, Prost J. Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc Natl Acad Sci USA. 2000;97(7):3183–3188. doi: 10.1073/pnas.97.7.3183. PubMed DOI PMC
Cecchi GA, Sigman M, Alonso JM, Martinez L, Chialvo DR, Magnasco MO. Noise in neurons is message dependent. Proc Natl Acad Sci USA. 2000;97(10):5557–5561. doi: 10.1073/pnas.100113597. PubMed DOI PMC
Cipra T (1994) Probability theory. In: Rektorys K (ed) Survey of applicable mathematics, Springer Science and Business Media, New York, pp 688–732, vol 2, chap 33, p 724
Denman DJ, Siegle JH, Koch C, Reid RC, Blanche TJ. Spatial organization of chromatic pathways in the mouse dorsal lateral geniculate nucleus. J Neurosci. 2017;37(5):1102–1116. doi: 10.1523/JNEUROSCI.1742-16.2016. PubMed DOI PMC
DeWeese MR, Wehr M, Zador AM. Binary spiking in auditory cortex. J Neurosci. 2003;23(21):7940–7949. doi: 10.1523/JNEUROSCI.23-21-07940.2003. PubMed DOI PMC
Drapal M, Marsalek P. Stochastic model shows how cochlear implants process azimuth in real auditory space. Chin J Physiol. 2010;53(6):439–446. doi: 10.4077/CJP.2010.AMM029. PubMed DOI
Drapal M, Marsalek P. Stochastic model explains role of excitation and inhibition in binaural sound localization in mammals. Physiol Res. 2011;60(3):573–583. PubMed
Fechner GT (1860) Elements of psychophysics. Holt, Rinehart and Winston, New York, NY, USA, First published in 1860 in German, the English edition quoted here published in 1966
Fischer B, Peña J. Bilateral matching of frequency tuning in neural cross-correlators of the owl. Biol Cybern. 2009;100(6):521–531. doi: 10.1007/s00422-009-0312-y. PubMed DOI PMC
Geisler WS. Contributions of ideal observer theory to vision research. Vis Res. 2011;51(7):771–781. doi: 10.1016/j.visres.2010.09.027. PubMed DOI PMC
Goldberg JM, Brown PB. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol. 1969;32:613–636. doi: 10.1152/jn.1969.32.4.613. PubMed DOI
Green DM, Swets JA. Signal detection theory and psychophysics. New York: Wiley; 1966.
Gumbel EJ, Greenwood JA, Durand D. The circular normal distribution: theory and tables. J Am Stat Assoc. 1953;48(261):131–152. doi: 10.1080/01621459.1953.10483462. DOI
Harper NS, McAlpine D. Optimal neural population coding of an auditory spatial cue. Nature. 2004;430(7000):682–686. doi: 10.1038/nature02768. PubMed DOI
Haykin S, Moher M. Introduction to analog and digital communications. Hoboken: Wiley; 2007.
Heinz MG, Zhang X, Bruce IC, Carney LH. Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoust Res Lett Online. 2001;2(3):91–96. doi: 10.1121/1.1387155. DOI
Hopfield JJ, Brody CD. What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci USA. 2001;98(3):1282–1287. doi: 10.1073/pnas.98.3.1282. PubMed DOI PMC
Jarque CM, Bera AK. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett. 1980;6(3):255–259. doi: 10.1016/0165-1765(80)90024-5. DOI
Jeffress LA. A place theory of sound localization. J Comput Physiol Psychol. 1948;41(1):35–39. doi: 10.1037/h0061495. PubMed DOI
Joris PX, Carney LH, Smith PH, Yin TCT. Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol. 1994;71(3):1022–1036. doi: 10.1152/jn.1994.71.3.1022. PubMed DOI
Joris PX, Smith PH, Yin TCT. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. J Neurophysiol. 1994;71(3):1037–1051. doi: 10.1152/jn.1994.71.3.1037. PubMed DOI
Joris PX, Smith PH, Yin TCT. Coincidence detection in the auditory system: 50 years after Jeffress. Neuron. 1998;21:1235–1238. doi: 10.1016/S0896-6273(00)80643-1. PubMed DOI
Joris PX, Louage DH, Cardoen L, van der Heijden M. Correlation index: a new metric to quantify temporal coding. Hear Res. 2006;216:19–30. doi: 10.1016/j.heares.2006.03.010. PubMed DOI
Joris PX, Van de Sande B, Louage DH, van der Heijden M. Binaural and cochlear disparities. Proc Natl Acad Sci USA. 2006;103(34):12,917–12,922. doi: 10.1073/pnas.0601396103. PubMed DOI PMC
Kajikawa Y, Hackett TA. Entropy analysis of neuronal spike train synchrony. J Neurosci Meth. 2005;149(1):90–93. doi: 10.1016/j.jneumeth.2005.05.011. PubMed DOI
Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ. Principles of neural science. 4. New York: McGraw-Hill; 2000.
Koch C. Biophysics of computation: information processing in single neurons. New York: Oxford University Press; 2004.
Koch C, Laurent G. Complexity and the nervous system. Science. 1999;284(5411):96–98. doi: 10.1126/science.284.5411.96. PubMed DOI
Kostal L, Marsalek P. Neuronal jitter: can we measure the spike timing dispersion differently? Chin J Physiol. 2010;53(6):454–464. doi: 10.4077/CJP.2010.AMM031. PubMed DOI
Kostal L, Lansky P, Pokora O (2011) Variability measures of positive random variables. PLoS One 6(7): e21998, 1–11 PubMed PMC
Laback B, Majdak P. Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci USA. 2008;105(2):814–817. doi: 10.1073/pnas.0709199105. PubMed DOI PMC
Lehky SR. Temporal properties of visual channels measured by masking. J Opt Soc Am A. 1985;2(8):1260–1272. doi: 10.1364/JOSAA.2.001260. PubMed DOI
Lehky SR, Sejnowski TJ, Desimone R. Selectivity and sparseness in the responses of striate complex cells. Vis Res. 2005;45(1):57–73. doi: 10.1016/j.visres.2004.07.021. PubMed DOI PMC
Lehky SR, Sereno ME, Sereno AB. Population coding and the labeling problem: extrinsic versus intrinsic representations. Neural Comput. 2013;25(9):2235–2264. doi: 10.1162/NECO_a_00486. PubMed DOI
Lopez-Poveda EA, Meddis R. A human nonlinear cochlear filterbank. J Acoust Soc Am. 2001;110(6):3107–3118. doi: 10.1121/1.1416197. PubMed DOI
Mardia KV. Statistics of directional data. London: Academic Press; 1972.
Marsalek P. A simulation approach to the two-point stochastic model of olfactory neurons. Gen Physiol Biophys. 1994;13(5):341–356. PubMed
Marsalek P. Neural code for sound localization at low frequencies. Neurocomputing. 2001;38–40(1–4):1443–1452. doi: 10.1016/S0925-2312(01)00524-0. DOI
Marsalek P, Kofranek J. Spike encoding mechanisms in the sound localization pathway. Biosystems. 2005;79(1–3):191–8. doi: 10.1016/j.biosystems.2004.09.022. PubMed DOI
Marsalek P, Lansky P. Proposed mechanisms for coincidence detection in the auditory brainstem. Biol Cybern. 2005;92(6):445–451. doi: 10.1007/s00422-005-0571-1. PubMed DOI
Marsalek P, Hajny M, Vokurka M. Pathological physiology of visual pathway. In: Skorkovska K, editor. Homonymous visual defects. Cham: Springer; 2017. pp. 17–29.
Mason A, Oshinsky M, Hoy R. Hyperacute directional hearing in a microscale auditory system. Nature. 2001;410(6829):686–690. doi: 10.1038/35070564. PubMed DOI
Maunsell JH. Functional visual streams. Curr Opin Neurobiol. 1992;2:50–510. doi: 10.1016/0959-4388(92)90188-Q. PubMed DOI
Meinel C, Sack H. Multimedia data and its encoding. Berlin: Springer; 2014. pp. 153–289.
Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369 (English translation by Johnson KA, Goody RS in 2011)
Mountcastle VB. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol. 1957;20(4):408–434. doi: 10.1152/jn.1957.20.4.408. PubMed DOI
Naka KI, Rushton WAH. S-potentials from colour units in the retina of fish (Cyprinidae) J Physiol. 1966;185(3):536–555. doi: 10.1113/jphysiol.1966.sp008001. PubMed DOI PMC
Nawrot MP, Boucsein C, Molina VR, Riehle A, Aertsen A, Rotter S. Measurement of variability dynamics in cortical spike trains. J Neurosci Meth. 2008;169(2):374–390. doi: 10.1016/j.jneumeth.2007.10.013. PubMed DOI
Pokora O, Lansky P. Statistical approach in search for optimal signal in simple olfactory neuronal models. Math Biosci. 2008;214(1):100–108. doi: 10.1016/j.mbs.2008.02.010. PubMed DOI
Sanda P, Marsalek P. Stochastic interpolation model of neural circuit in the medial superior olive. Brain Res. 2012;1434:257–265. doi: 10.1016/j.brainres.2011.08.048. PubMed DOI
Schroeder MR. New viewpoints in binaural interactions. In: Evans EF, Wilson JP, editors. Psychophysics and physiology of hearing. New York: Academic Press; 1977. pp. 455–467.
Sclar G, Maunsell JHR, Lennie P. Coding of image contrast in central visual pathways of the macaque monkey. Vis Res. 1990;30(1):1–10. doi: 10.1016/0042-6989(90)90123-3. PubMed DOI
Smirnov NV. Table for estimating goodness of fit of empirical distributions. Ann Math Statist. 1948;19(2):279–281. doi: 10.1214/aoms/1177730256. DOI
Sun J, Li Z, Tong S (2012) Inferring functional neural connectivity with phase synchronization analysis: a review of methodology. Comput Math Methods Med 239210, 1–13 PubMed PMC
Syka J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev. 2002;82(3):601–636. doi: 10.1152/physrev.00002.2002. PubMed DOI
Tanner WP., Jr Physiological implications of psychophysical data. Ann N Y Acad Sci. 1961;89(5):752–765. doi: 10.1111/j.1749-6632.1961.tb20176.x. PubMed DOI
Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature. 1996;381(6582):520–522. doi: 10.1038/381520a0. PubMed DOI
Thorpe S, Delorme A, Van Rullen R. Spike-based strategies for rapid processing. Neural Netw. 2001;14(6):715–725. doi: 10.1016/S0893-6080(01)00083-1. PubMed DOI
Vachon F, Tremblay S. Auditory attentional blink: masking the second target is necessary, delayed masking is sufficient. Can J Exp Psychol. 2005;59(4):279. doi: 10.1037/h0087480. PubMed DOI
Van Essen DC, DeYoe EA. Concurrent processing in the primate visual cortex. In: Gazzaniga MS, editor. The cognitive neurosciences. Cambridge: MIT Press; 1995. pp. 383–400.
van Hemmen JL. Vector strength after Goldberg, Brown, and von Mises: biological and mathematical perspectives. Biol Cybern. 2013;107(4):385–396. doi: 10.1007/s00422-013-0561-7. PubMed DOI
Vencovsky V, Rund F. Using a physical cochlear model to predict masker phase effects in hearing-impaired listeners: a role of peripheral compression. Acta Acust United Acust. 2016;102(2):373–382. doi: 10.3813/AAA.918953. DOI