Geology defines microbiome structure and composition in nunataks and valleys of the Sør Rondane Mountains, East Antarctica
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38380088
PubMed Central
PMC10877063
DOI
10.3389/fmicb.2024.1316633
Knihovny.cz E-zdroje
- Klíčová slova
- Antarctica, bacteria, bedrock, eukaryotes, metabarcoding, microbial ecology, rRNA,
- Publikační typ
- časopisecké články MeSH
Understanding the relation between terrestrial microorganisms and edaphic factors in the Antarctic can provide insights into their potential response to environmental changes. Here we examined the composition of bacterial and micro-eukaryotic communities using amplicon sequencing of rRNA genes in 105 soil samples from the Sør Rondane Mountains (East Antarctica), differing in bedrock or substrate type and associated physicochemical conditions. Although the two most widespread taxa (Acidobacteriota and Chlorophyta) were relatively abundant in each sample, multivariate analysis and co-occurrence networks revealed pronounced differences in community structure depending on substrate type. In moraine substrates, Actinomycetota and Cercozoa were the most abundant bacterial and eukaryotic phyla, whereas on gneiss, granite and marble substrates, Cyanobacteriota and Metazoa were the dominant bacterial and eukaryotic taxa. However, at lower taxonomic level, a distinct differentiation was observed within the Cyanobacteriota phylum depending on substrate type, with granite being dominated by the Nostocaceae family and marble by the Chroococcidiopsaceae family. Surprisingly, metazoans were relatively abundant according to the 18S rRNA dataset, even in samples from the most arid sites, such as moraines in Austkampane and Widerøefjellet ("Dry Valley"). Overall, our study shows that different substrate types support distinct microbial communities, and that mineral soil diversity is a major determinant of terrestrial microbial diversity in inland Antarctic nunataks and valleys.
InBioS Research Unit Department of Life Sciences University of Liège Liège Belgium
Institute for Natural Sciences Brussels Belgium
Laboratory of Protistology and Aquatic Ecology Department of Biology Ghent University Ghent Belgium
Zobrazit více v PubMed
Alekseev I., Zverev A., Abakumov E. (2020). Microbial communities in permafrost soils of Larsemann Hills, eastern Antarctica: environmental controls and effect of human impact. Microorganisms 8:1202. doi: 10.3390/microorganisms8081202, PMID: PubMed DOI PMC
An S., Couteau C., Luo F., Neveu J., DuBow M. S. (2013). Bacterial diversity of surface sand samples from the Gobi and Taklamaken deserts. Microb. Ecol. 66, 850–860. doi: 10.1007/s00248-013-0276-2, PMID: PubMed DOI
Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data [online].
Archer S. D. J., de los Ríos A., Lee K. C., Niederberger T. S., Cary S. C., Coyne K. J., et al. . (2016). Endolithic microbial diversity in sandstone and granite from the McMurdo dry valleys, Antarctica. Polar Biol. 40, 997–1006. doi: 10.1007/s00300-016-2024-9 DOI
Artois T., Fontaneto D., Hummon W. D., McInnes S. J., Todaro M. A., Sørensen M. V., et al. . (2011). “Ubiquity of microscopic animals? Evidence from the morphological approach in species identification” in Biogeography of microscopic organisms: Is everything small everywhere. ed. Fontaneto D. (Cambridge: Cambridge University Press; ), 245–249.
Banerjee S., Baah-Acheamfour M., Carlyle C. N., Bissett A., Richardson A. E., Siddique T., et al. . (2016). Determinants of bacterial communities in Canadian agroforestry systems. Environ. Microbiol. 18, 1805–1816. doi: 10.1111/1462-2920.12986, PMID: PubMed DOI
Bastian M., Heymann S., Jacomy M. (2009). Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 3, No. 1), pp.361–362. Available at: 10.1609/icwsm.v3i1.13937 DOI
Battistuzzi F. U., Hedges S. B. (2008). A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 26, 335–343. doi: 10.1093/molbev/msn247, PMID: PubMed DOI
Bay S. K., Dong X., Bradley J. A., Leung P. M., Grinter R., Jirapanjawat T., et al. . (2021). Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256. doi: 10.1038/s41564-020-00811-w, PMID: PubMed DOI
Beisner B. E., Peres-Neto P. R., Lindström E. S., Barnett A., Longhi M. L. (2006). The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87, 2985–2991. doi: 10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2 PubMed DOI
Belnap J., Büdel B., Lange O. L. (2001). Biological soil crusts: characteristics and distribution. Ecol. Stud. 150, 3–30. doi: 10.1007/978-3-642-56475-8_1 DOI
Blanchet F. G., Legendre P., Borcard D. (2008). Forward selection of explanatory variables. Ecol. 89, 2623–2632. doi: 10.1890/07-0986.1 PubMed DOI
Bockheim J. G., Hall K. J. (2002). Permafrost, active-layer dynamics and periglacial environments of continental Antarctica: periglacial and permafrost research in the southern hemisphere. S. Afr. J. Sci. 98, 82–90.
Borcard D., Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153, 51–68.
Broady P. A. (2005). The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algol. Stud. 118, 95–112. doi: 10.1127/1864-1318/2006/0118-0095 DOI
Brooks S. T., Jabour J., van den Hoff J., Bergstrom D. M. (2019). Our footprint on Antarctica competes with nature for rare ice-free land. Nat. Sustain. 2, 185–190. doi: 10.1038/s41893-019-0237-y DOI
Buelow H. N., Winter A. S., Van Horn D. J., Barrett J. E., Gooseff M. N., Schwartz E., et al. . (2016). Microbial community responses to increased water and organic matter in the arid soils of the McMurdo dry valleys, Antarctica. Front. Microbiol. 7:1040. doi: 10.3389/fmicb.2016.01040, PMID: PubMed DOI PMC
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869, PMID: PubMed DOI PMC
Chan Y., Lacap D. C., Lau M. C. Y., Ha K. Y., Warren-Rhodes K. A., Cockell C. S., et al. . (2012). Hypolithic microbial communities: between a rock and a hard place. Environ. Microbiol. 14, 2272–2282. doi: 10.1111/j.1462-2920.2012.02821.x, PMID: PubMed DOI
Cleenwerck I., Camu N., Engelbeen K., De Winter T., Vandemeulebroecke K., De Vos P., et al. . (2007). Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int. J. Syst. Evol. Microbiol. 57, 1647–1652. doi: 10.1099/ijs.0.64840-0 PubMed DOI
Coleine C., Biagioli F., Vera J. P., Onofri S., Selbmann L. (2021). Endolithic microbial composition in Helliwell Hills, a newly investigated Mars-like area in Antarctica. Environ. Microbiol. 23, 4002–4016. doi: 10.1111/1462-2920.15419, PMID: PubMed DOI
Colesie C., Gommeaux M., Green T. G. A., Büdel B. (2013). Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria land, and Diamond Hill, Darwin Mountains region. Antarct. Sci. 26, 115–123. doi: 10.1017/s0954102013000291 DOI
Convey P., Biersma E. M., Casanova-Katny A., Maturana C. S. (2020). “Refuges of Antarctic diversity” in Past Antarctica. eds. Oliva M., Ruiz-Fernández J. (New York, NY: Academic Press; ), 181–200.
Convey P., Gibson J., Hillenbrand C.-D., Hodgson D. A., Pugh P. J., Smellie J. L., et al. . (2008). Antarctic terrestrial life – challenging the history of the frozen continent? Biol. Rev. 83, 103–117. doi: 10.1111/j.1469-185x.2008.00034.x, PMID: PubMed DOI
Cowan D. A., Makhalanyane T. P., Dennis P. G., Hopkins D. W. (2014). Microbial ecology and biogeochemistry of continental Antarctic soils. Front. Microbiol. 5:154. doi: 10.3389/fmicb.2014.00154, PMID: PubMed DOI PMC
Cowan D. A., Tow L. A. (2004). Endangered Antarctic environments. Annu. Rev. Microbiol. 58, 649–690. doi: 10.1146/annurev.micro.57.030502.090811 PubMed DOI
Coyne K. J., Parker A. E., Lee C. K., Sohm J. A., Kalmbach A., Gunderson T., et al. . (2020). The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo dry valleys, Antarctica. FEMS Microbiol. Ecol. 96:fiaa010. doi: 10.1093/femsec/fiaa010 PubMed DOI PMC
Csardi G., Nepusz T. (2006). The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9.
Cucini C., Nardi F., Magnoni L., Rebecchi L., Guidetti R., Convey P., et al. . (2022). Microhabitats, macro-differences: a survey of temperature records in Victoria land terrestrial and freshwater environments. Antarct. Sci. 34, 256–265. doi: 10.1017/s0954102022000050 DOI
Delgado-Baquerizo M., Oliverio A. M., Brewer T. E., Benavent-González A., Eldridge D. J., Bardgett R. D., et al. . (2018a). A global atlas of the dominant bacteria found in soil. Science 359, 320–325. doi: 10.1126/science.aap9516, PMID: PubMed DOI
Delgado-Baquerizo M., Reith F., Dennis P. G., Hamonts K., Powell J. R., Young A., et al. . (2018b). Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99, 583–596. doi: 10.1002/ecy.2137, PMID: PubMed DOI
Dragone N. B., Henley J. B., Holland-Moritz H., Diaz M. A., Hogg I. D., Berry Lyons W., et al. . (2022). Elevational constraints on the composition and genomic attributes of microbial communities in Antarctic soils. MSystems 7:e0133021. doi: 10.1128/msystems.01330-21, PMID: PubMed DOI PMC
Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl. Acids Res. 17, 7843–7853. PubMed PMC
Feeser K. L., Van Horn D. J., Buelow H. N., Colman D. R., Mchugh T. A., Okie J. G., et al. . (2018). Local and regional scale heterogeneity drive bacterial community diversity and composition in a polar desert. Front. Microbiol. 9:1928. doi: 10.3389/fmicb.2018.01928, PMID: PubMed DOI PMC
Fierer N., Jackson R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103, 626–631. doi: 10.1073/pnas.0507535103, PMID: PubMed DOI PMC
Franco A. L. C., Adams B. J., Diaz M. A., Lemoine N. P., Dragone N. B., Fierer N., et al. . (2021). Response of Antarctic soil fauna to climate-driven changes since the last glacial maximum. Glob. Chang. Biol. 28, 644–653. doi: 10.1111/gcb.15940, PMID: PubMed DOI
Friedman J., Alm E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8:e1002687. doi: 10.1371/journal.pcbi.1002687, PMID: PubMed DOI PMC
Fullerton K. M., Schrenk M. O., Yücel M., Manini E., Basili M., Rogers T. J., et al. . (2021). Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin. Nat. Geosci. 14, 301–306. doi: 10.1038/s41561-021-00725-0 DOI
Giguere A. T., Eichorst S. A., Meier D. V., et al. . (2021). Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils. ISME J 15, 363–376. doi: 10.1038/s41396-020-00750-8 PubMed DOI PMC
Genuer R., Poggi J.-M., Tuleau-Malot C. (2015). VSURF: An R package for variable selection using random forests. R J. 7, 19–33. doi: 10.32614/RJ-2015-018 DOI
Goordial J., Davila A., Greer C. W., Cannam R., DiRuggiero J., McKay C. P., et al. . (2016). Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environ. Microbiol. 19, 443–458. doi: 10.1111/1462-2920.13353, PMID: PubMed DOI
Gorodetskaya I., Van Lipzig N. P., Van den Broeke M. R., Mangold A., Boot W., Reijmer C. H. (2013). Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud land, East Antarctica: analysis of two contrasting years. J. Geophys. Res. Atmos. 118, 1700–1715. doi: 10.1002/jgrd.50177 DOI
Greening C., Islam Z. F., Bay S. K. (2022). Hydrogen is a major lifeline for aerobic bacteria. Trends Microbiol. 30, 330–337. doi: 10.1016/j.tim.2021.08.004 PubMed DOI
Guillou L., Bachar D., Audic S., Bass D., Berney C., Bittner L., et al. . (2012). The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. doi: 10.1093/nar/gks1160, PMID: PubMed DOI PMC
Gupta P., Sangwan N., Lal R., Vakhlu J. (2015). Bacterial diversity of Drass, cold desert in Western Himalaya, and its comparison with Antarctic and Arctic. Arch. Microbiol. 197, 851–860. doi: 10.1007/s00203-015-1121-4, PMID: PubMed DOI
Hershkovitz N., Oren A., Cohen Y. (1991). Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl. Environ. Microbiol. 57, 645–648. doi: 10.1128/aem.57.3.645-648.1991, PMID: PubMed DOI PMC
Hijmans R. J. (2021). Introduction to the geosphere package (Version 1.5–14).
Holm S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70. Available at: https://www.jstor.org/stable/4615733
Jacobs J., Thomas R. J. (2004). Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic–early Paleozoic east African– Antarctic orogen. Geology 32:721. doi: 10.1130/g20516.1 DOI
Ji M., Greening C., Vanwonterghem I., Carere C. R., Bay S. K., Steen J. A., et al. . (2017). Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403. doi: 10.1038/nature25014, PMID: PubMed DOI
Ji M., van Dorst J., Bissett A., Brown M. V., Palmer A. S., Snape I., et al. . (2015). Microbial diversity at Mitchell peninsula, eastern Antarctica: a potential biodiversity ‘hotspot’. Polar Biol. 39, 237–249. doi: 10.1007/s00300-015-1776-y DOI
Jones S. E., Lennon J. T. (2010). Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. U. S. A. 107, 5881–5886. doi: 10.1073/pnas.0912765107, PMID: PubMed DOI PMC
Jung P., Mikhailyuk T., Emrich D., Baumann K., Dultz S., Büdel B. (2020). Shifting boundaries: ecological and geographical range extension based on three new species in the vyanobacterial genera Cyanocohniella, Oculatella, and, Aliterella. J. Phycol. 56, 1216–1231. doi: 10.1111/jpy.13025 PubMed DOI
Komsta L., Novomestky F., (2015). Moments, cumulants, skewness, kurtosis and related tests. R package version, 14(1).
Kurtz Z. D., Muller C. L., Miraldi E. R., Littman D. R., Blaser M. J., Bonneau R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11:e1004226. doi: 10.1371/journal.pcbi.1004226, PMID: PubMed DOI PMC
Lambrechts S., Willems A., Tahon G. (2019). Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Fron. Microbiol. 242. doi: 10.3389/fmicb.2019.00242 PubMed DOI PMC
Lauber C. L., Hamady M., Knight R., Fierer N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120. doi: 10.1128/aem.00335-09, PMID: PubMed DOI PMC
Lee S.-H. (2009). Distribution patterns of the members of phylum Acidobacteria in global soil samples. J. Microbiol. Biotechnol. 19, 1281–1287. doi: 10.4014/jmb.0904.4017, PMID: PubMed DOI
Lee C. K., Barbier B. A., Bottos E. M., McDonald I. R., Cary S. C. (2012). The Inter-Valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J. 6, 1046–1057. doi: 10.1038/ismej.2011.170 PubMed DOI PMC
Lee C. K., Laughlin D. C., Bottos E. M., Caruso T., Joy K., Barrett J. E., et al. . (2019). Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Commun. Biol. 2:62. doi: 10.1038/s42003-018-0274-5, PMID: PubMed DOI PMC
Lukashanets D. A., Convey P., Borodin O. I., Miamin V. Y., Hihiniak Y. H., Gaydashov A. A., et al. . (2021). Eukarya biodiversity in the Thala Hills, East Antarctica. Antarct. Sci. 33, 605–623. doi: 10.1017/s0954102021000328 DOI
Lulákova P., Šantrůčková H., Elster J., Hanáček M., Kotas P., Meador T. B., et al. . (2023). Mineral substrate quality determines the initial soil microbial development in front of the Nordenskiöldbreen, Svalbard. FEMS Microbiol. Ecol. 99:fiad104. doi: 10.1093/femsec/fiad104, PMID: PubMed DOI PMC
Makhalanyane T. P., Valverde A., Gunnigle E., Frossard A., Ramond J.-B., Cowan D. A. (2015). Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 39, 203–221. doi: 10.1093/femsre/fuu011 PubMed DOI
Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M. (2011). Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int. J. Syst. Evol. Microbiol. 61, 1823–1828. doi: 10.1099/ijs.0.026005-0, PMID: PubMed DOI
Martín González A. M., Dalsgaard B., Olesen J. M. (2010). Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7, 36–43. doi: 10.1016/j.ecocom.2009.03.008 DOI
McArdle B. H., Anderson M. J. (2001). Fitting multivariate models to community data: a comment on distance‐based redundancy analysis. Ecol. 82, 290–297. doi: 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 DOI
McMurdie P. J., Holmes S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217, PMID: PubMed DOI PMC
Meslier V., Cristina Casero M., Dailey M., Wierzchos J., Ascaso C., Artieda O., et al. . (2018). Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ. Microbiol. 20, 1765–1781. doi: 10.1111/1462-2920.14106, PMID: PubMed DOI
Moniz M. B. J., Rindi F., Novis P. M., Broady P. A., Guiry M. D. (2012). Molecular phylogeny of Antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic diversity. J. Phycol. 48, 940–955. doi: 10.1111/j.1529-8817.2012.01172.x, PMID: PubMed DOI
Moore R. A., Azúa-Bustos A., González-Silva C., Carr C. E. (2023). Unveiling metabolic pathways involved in the extreme desiccation tolerance of an Atacama cyanobacterium. Sci. Rep. 13:15767. doi: 10.1038/s41598-023-41879-8, PMID: PubMed DOI PMC
Nabout J. C., Siqueira T., Bini L. M., Nogueira I. D. S. (2009). No evidence for environmental and spatial processes in structuring phytoplankton communities. Acta Oecol. 35, 720–726. doi: 10.1016/j.actao.2009.07.002 DOI
Niederberger T. D., McDonald I. R., Hacker A. L., Soo R. M., Barrett J. E., Wall D. H., et al. . (2008). Microbial community composition in soils of northern Victoria land, Antarctica. Environ. Microbiol. 10, 1713–1724. doi: 10.1111/j.1462-2920.2008.01593.x, PMID: PubMed DOI
Obbels D., Verleyen E., Mano M.-J., Zorigt N., Sweetlove M., Tytgat B., et al. . (2016). Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud land, East Antarctica. FEMS Microbiol. Ecol. 92:fiw041–fiw041. doi: 10.1093/femsec/fiw041 PubMed DOI
Oliverio A. M., Geisen S., Delgado-Baquerizo M., Maestre F. T., Turner B. L., Fierer N. (2020). The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6:eaax8787. doi: 10.1126/sciadv.aax8787, PMID: PubMed DOI PMC
Ortiz M., Leung P. M., Shelley G., Jirapanjawat T., Nauer P. A., Van Goethem M. W., et al. . (2021). Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc. Natl. Acad. Sci. 118:e2025322118. doi: 10.1073/pnas.2025322118, PMID: PubMed DOI PMC
Pattyn F., Matsuoka K., Berte J. (2009). Glacio-meteorological conditions in the vicinity of the Belgian Princess Elisabeth station, Antarctica. Antarct. Sci. 22:79. doi: 10.1017/s0954102009990344 DOI
Paulson J. N., Pop M., Bravo H. C., (2013). metagenomeSeq: statistical analysis for sparse high-throughput sequencing. Bioconductor package, 1(0), p. 191.
Peres-Neto P. R., Legendre P., Dray S., Borcard D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625. doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2, PMID: PubMed DOI
Pessi I. S., Pushkareva E., Lara Y., Borderie F., Wilmotte A., Elster J. (2019). Marked succession of cyanobacterial communities following glacier retreat in the high Arctic. Microbial Ecol. 77, 136–147. doi: 10.1007/s00248-018-1203-3 PubMed DOI
Pinseel E., Janssens S., Verleyen E., Vanormelingen P., Kohler T. J., Biersma E. M., et al. . (2020). Global radiation in a rare biosphere soil diatom. Nat. Commun. 11:2382. doi: 10.1038/s41467-020-16181-0, PMID: PubMed DOI PMC
Pinseel E., Van B., Wolfe A. P., Harper M., Antoniades D., Ashworth A., et al. . (2021). Extinction of austral diatoms in response to large-scale climate dynamics in Antarctica. Sci. Adv. 7:eabh3233. doi: 10.1126/sciadv.abh3233, PMID: PubMed DOI PMC
Pointing S. B., Belnap J. (2012). Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. [online] 10, 551–562. doi: 10.1038/nrmicro2831 PubMed DOI
Pointing S. B., Chan Y., Lacap D. C., Lau M. C. Y., Jurgens J. A., Farrell R. L. (2009). Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl. Acad. Sci. 106, 19964–19969. doi: 10.1073/pnas.0908274106, PMID: PubMed DOI PMC
Potts M. (1994). Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755–805. doi: 10.1128/mr.58.4.755-805.1994, PMID: PubMed DOI PMC
Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., et al. . (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196. doi: 10.1093/nar/gkm864, PMID: PubMed DOI PMC
Pugh P., Convey P. (2008). Surviving out in the cold: Antarctic endemic invertebrates and their refugia. J. Biogeogr. 35, 2176–2186. doi: 10.1111/j.1365-2699.2008.01953.x DOI
Pushkareva E., Pessi I. S., Namsaraev Z., Mano M. J., Elster J., Wilmotte A. (2018). Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica. Syst. Appl. Microbiol. 41, 363–373. doi: 10.1016/j.syapm.2018.01.006, PMID: PubMed DOI
R Core Team (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/.
Ramond J. B., Cowan D. A. (2022). “Microbial Ecology of Hot Desert Soils” in Microbiology of Hot Deserts. Ecological Studies. eds. Ramond J. B., Cowan D. A., vol. 244 (Cham: Springer; ) doi: 10.1007/978-3-030-98415-1_4 DOI
Ray A. E., Zaugg J., Benaud N., Chelliah D. S., Bay S. K., Wong H. L., et al. . (2022). Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts. ISME J. 16, 2547–2560. doi: 10.1038/s41396-022-01298-5, PMID: PubMed DOI PMC
Rigonato J., Gama W. A., Alvarenga D. O., Branco L. H. Z., Brandini F. P., Genuario D. B., et al. . (2016). Aliterella atlantica gen. nov., sp. nov., and Aliterella antarctica sp. nov., novel members of coccoid Cyanobacteria. Inter. J. syst. Evolut. Microbiol. 66, 2853–2861. doi: 10.1099/ijsem.0.001066 PubMed DOI
Ruppel A. S., Läufer A., Jacobs J., Elburg M., Krohne N., Damaske D., et al. . (2015). The Main shear zone in Sør Rondane, East Antarctica: implications for the late-pan-African tectonic evolution of Dronning Maud land. Tectonics 34, 1290–1305. doi: 10.1002/2014tc003763 DOI
Sakaeva A., Sokol E. R., Kohler T. J., Stanish L. F., Spaulding S. A., Howkins A., et al. . (2016). Evidence for dispersal and habitat controls on pond diatom communities from the McMurdo Sound region of Antarctica. Polar Biol. 39, 2441–2456. doi: 10.1007/s00300-016-1901-6 DOI
Schwager E., Mallick H., Ventz S., Huttenhower C. (2017). A Bayesian method for detecting pairwise associations in compositional data. PLoS Comput. Biol. 13:e1005852. doi: 10.1371/journal.pcbi.1005852, PMID: PubMed DOI PMC
Schwartz E., Van Horn D. J., Buelow H. N., Okie J. G., Gooseff M. N., Barrett J. E., et al. . (2014). Characterization of growing bacterial populations in McMurdo Dry Valley soils through stable isotope probing with O-18-water. FEMS Microbiol. Ecol. 89, 415–425. doi: 10.1111/1574-6941.12349, PMID: PubMed DOI PMC
Severgnini M., Canini F., Consolandi C., Camboni T., Paolo D’Acqui L., Mascalchi C., et al. . (2021). Highly differentiated soil bacterial communities in Victoria land macro-areas (Antarctica). FEMS Microbiol. Ecol. 97:fiab087. doi: 10.1093/femsec/fiab087, PMID: PubMed DOI
Shiraishi K., Osanai Y., Ishizuka H., Asami M. (1997). Antarctic geological map series (sheet 35, Sør Rondane Mountains). National Institute of Polar Research, Japan.
Soina V. S., Mulyukin A. L., Demkina E. V., Vorobyova E. A., El-Registan G. I. (2004). The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4, 345–358. doi: 10.1089/ast.2004.4.345, PMID: PubMed DOI
Sokol E. R., Herbold C. W., Lee C. K., Cary S. C., Barrett J. E. (2013). Local and regional influences over soil microbial metacommunities in the transantarctic mountains. Ecosphere 4:art136. doi: 10.1890/es13-00136.1 DOI
Solon A. J., Mastrangelo C., Vimercati L., Sommers P., Darcy J. L., Gendron E. M. S., et al. . (2021). Gullies and moraines are islands of biodiversity in an arid, mountain landscape, Asgard range, Antarctica. Front. Microbiol. 12:654135. doi: 10.3389/fmicb.2021.654135, PMID: PubMed DOI PMC
Stevens M. I., D’Haese C. A. (2014). Islands in ice: isolated populations of Cryptopygus sverdrupi (collembola) among nunataks in the Sør Rondane Mountains, Dronning Maud land, Antarctica. Biodiversity 15, 169–177. doi: 10.1080/14888386.2014.928791 DOI
Stoeck T., Bass D., Nebel M., Christen R., Jones M. D., Breiner H. W., et al. . (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. doi: 10.1111/j.1365-294x.2009.04480.x PubMed DOI
Suganuma Y., Miura H., Zondervan A., Okuno J. (2014). East Antarctic deglaciation and the link to global cooling during the quaternary: evidence from glacial geomorphology and 10Be surface exposure dating of the Sør Rondane Mountains, Dronning Maud land. Quat. Sci. Rev. 97, 102–120. doi: 10.1016/j.quascirev.2014.05.007 DOI
Tamaru Y., Takani Y., Yoshida T., Sakamoto T. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71, 7327–7333. doi: 10.1128/AEM.71.11.7327-7333.2005, PMID: PubMed DOI PMC
Thompson A. R. (2021). Phagotrophic protists (protozoa) in Antarctic terrestrial ecosystems: diversity, distribution, ecology, and best research practices. Polar Biol. 44, 1467–1484. doi: 10.1007/s00300-021-02896-3 DOI
Thompson A. R., Geisen S., Adams B. J. (2020). Shotgun metagenomics reveal a diverse assemblage of protists in a model Antarctic soil ecosystem. Environ. Microbiol. 22, 4620–4632. doi: 10.1111/1462-2920.15198, PMID: PubMed DOI
Timoncini A., Costantini F., Bernardi E., Martini C., Mugnai F., Mancuso F. P., et al. . (2022). Insight on bacteria communities in outdoor bronze and marble artefacts in a changing environment. Sci. Total Environ. 850:157804. doi: 10.1016/j.scitotenv.2022.157804 PubMed DOI
Tytgat B., Verleyen E., Sweetlove M., D'hondt S., Clercx P., van Ranst E., et al. . (2016). Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiol. Ecol. 92:fiw126. doi: 10.1093/femsec/fiw126, PMID: PubMed DOI
Tytgat B., Verleyen E., Sweetlove M., van den Berge K., Pinseel E., Hodgson D. A., et al. . (2023). Polar lake microbiomes have distinct evolutionary histories. Sci. Adv. 9:eade7130. doi: 10.1126/sciadv.ade7130, PMID: PubMed DOI PMC
Vanhellemont Q., Lambrechts S., Savaglia V., Tytgat B., Verleyen E., Vyverman W. (2021). Towards physical habitat characterisation in the Antarctic Sør Rondane Mountains using satellite remote sensing. Remote Sens. Appl.: Soc. Environ. 23:100529. doi: 10.1016/j.rsase.2021.100529 DOI
Van Horn D. J., Okie J. G., Buelow H. N., Gooseff M. N., Barrett J. E., Takacs-Vesbach C. D. (2014). Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl. Environ. Microbiol. 80, 3034–3043. doi: 10.1128/AEM.03414-13 PubMed DOI PMC
Venables W. R., Ripley B. D. (2002). Modern applied statistics with S. New York: Springer Science & Business Media, pp.183–206.
Verleyen E., Van de Vijver B., Tytgat B., Pinseel E., Hodgson D. A., Kopalová K., et al. . (2021). Diatoms define a novel freshwater biogeography of the Antarctic. Ecog. 44, 548–560. doi: 10.1111/ecog.05374 DOI
Vick-Majors T. J., Priscu J. C., Amaral-Zettler L. A. (2014). Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME J. 8, 778–789. doi: 10.1038/ismej.2013.190, PMID: PubMed DOI PMC
Wei T., Simko V. (2021) R package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.90). Available at: https://github.com/taiyun/corrplot
Wynn-Williams D. D. (1996). Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb. Ecol. 31, 177–188. doi: 10.1007/bf00167863, PMID: PubMed DOI
Zar J. H. (1972). Significance testing of the spearman rank correlation coefficient. J. Am. Stat. Assoc. 67, 578–580. doi: 10.1080/01621459.1972.10481251 DOI