Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
FT170100341
Department of Education and Training | Australian Research Council (ARC)
APP5191146
Department of Health | National Health and Medical Research Council (NHMRC)
PubMed
35933499
PubMed Central
PMC9561532
DOI
10.1038/s41396-022-01298-5
PII: 10.1038/s41396-022-01298-5
Knihovny.cz E-zdroje
- MeSH
- hydrogenasa * genetika MeSH
- koloběh uhlíku MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- ribulosa-1,5-bisfosfát-karboxylasa MeSH
- Verrucomicrobia MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogenasa * MeSH
- půda MeSH
- ribulosa-1,5-bisfosfát-karboxylasa MeSH
Cold desert soil microbiomes thrive despite severe moisture and nutrient limitations. In Eastern Antarctic soils, bacterial primary production is supported by trace gas oxidation and the light-independent RuBisCO form IE. This study aims to determine if atmospheric chemosynthesis is widespread within Antarctic, Arctic and Tibetan cold deserts, to identify the breadth of trace gas chemosynthetic taxa and to further characterize the genetic determinants of this process. H2 oxidation was ubiquitous, far exceeding rates reported to fulfill the maintenance needs of similarly structured edaphic microbiomes. Atmospheric chemosynthesis occurred globally, contributing significantly (p < 0.05) to carbon fixation in Antarctica and the high Arctic. Taxonomic and functional analyses were performed upon 18 cold desert metagenomes, 230 dereplicated medium-to-high-quality derived metagenome-assembled genomes (MAGs) and an additional 24,080 publicly available genomes. Hydrogenotrophic and carboxydotrophic growth markers were widespread. RuBisCO IE was discovered to co-occur alongside trace gas oxidation enzymes in representative Chloroflexota, Firmicutes, Deinococcota and Verrucomicrobiota genomes. We identify a novel group of high-affinity [NiFe]-hydrogenases, group 1m, through phylogenetics, gene structure analysis and homology modeling, and reveal substantial genetic diversity within RuBisCO form IE (rbcL1E), and high-affinity 1h and 1l [NiFe]-hydrogenase groups. We conclude that atmospheric chemosynthesis is a globally-distributed phenomenon, extending throughout cold deserts, with significant implications for the global carbon cycle and bacterial survival within environmental reservoirs.
Center for Pan 3rd Pole Environment Lanzhou University Lanzhou 730000 China
School of Biological Sciences Monash University Clayton VIC 3800 Australia
School of Biotechnology and Biomolecular Sciences UNSW Sydney NSW 2052 Australia
Zobrazit více v PubMed
Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW. Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol. 2014;5:154. doi: 10.3389/fmicb.2014.00154. PubMed DOI PMC
Kleinteich J, Hildebrand F, Bahram M, Voigt AY, Wood SA, Jungblut AD, et al. Pole-to-pole connections: similarities between Arctic and Antarctic microbiomes and their vulnerability to environmental change. Front Ecol Evol. 2017;5.
Neufeld JD, Mohn WW. Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol. 2005;71:5710–8. doi: 10.1128/AEM.71.10.5710-5718.2005. PubMed DOI PMC
Tindall BJ. Prokaryotic diversity in the Antarctic: the tip of the iceberg. Micro Ecol. 2004;47:271–83. doi: 10.1007/s00248-003-1050-7. PubMed DOI
Leung PM, Bay SK, Meier DV, Chiri E, Cowan DA, Gillor O, et al. Energetic basis of microbial growth and persistence in desert ecosystems. mSystems. 2020;5:e00495–19.. doi: 10.1128/mSystems.00495-19. PubMed DOI PMC
Lambrechts S, Willems A, Tahon G. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Front Microbiol. 2019;10:242. PubMed PMC
Pearce DA. Extremophiles in Antarctica: life at low temperatures. In: Stan-Lotter H, Fendrihan S, editors. Adaption of microbial life to environmental extremes: novel research results and application. Vienna: Springer; 2012. p. 87–118.
Alsop T. Seasons. In: Oliver JE, editor. Encyclopedia of world climatology. Dordrecht, Netherlands: Springer; 2005. p. 651–5.
Fahey D, Newman PA, Pyle JA, Safari B, Chipperfield MP, Karoly D, et al. Scientific assessment of ozone depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58. World Meteorological Organization; 2018.
Bay S, Ferrari B, Greening C. Life without water: How do bacteria generate biomass in desert ecosystems? Microbiol Aust. 2018;39:28–32. doi: 10.1071/MA18008. DOI
Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3. doi: 10.1038/nature25014. PubMed DOI
Ray AE, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil microbiomes with the genetic capacity for atmospheric chemosynthesis are widespread across the poles and are associated with moisture, carbon, and nitrogen limitation. Front Microbiol. 2020;11. PubMed PMC
Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119. doi: 10.1038/nrmicro2504. PubMed DOI
Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81. doi: 10.1038/s41396-019-0479-8. PubMed DOI PMC
Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK, Jirapanjawat T, et al. Two chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801–13. doi: 10.1038/s41396-019-0393-0. PubMed DOI PMC
Constant P, Poissant L, Villemur R. Isolation of Streptomyces sp PCB7, the first microorganism demonstrating high-affinity uptake of tropospheric H-2. ISME J. 2008;2:1066–76. doi: 10.1038/ismej.2008.59. PubMed DOI
Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58. doi: 10.1038/s41396-020-0713-4. PubMed DOI PMC
Constant P, Chowdhury SP, Hesse L, Pratscher J, Conrad R. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H2-oxidizing bacteria. Appl Environ Microbiol. 2011;77:6027–35. doi: 10.1128/AEM.00673-11. PubMed DOI PMC
Constant P, Chowdhury SP, Pratscher J, Conrad R. Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity [NiFe]-hydrogenase. Environ Microbiol. 2010;12:821–9. doi: 10.1111/j.1462-2920.2009.02130.x. PubMed DOI
Greening C, Carere CR, Rushton-Green R, Harold LK, Hards K, Taylor MC, et al. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci USA. 2015;112:10497. doi: 10.1073/pnas.1508385112. PubMed DOI PMC
Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H-2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci USA. 2014;111:4257–61. doi: 10.1073/pnas.1320586111. PubMed DOI PMC
Bay S, Waite D, Dong X, Gillor O, Chown S, Hugenholtz P, et al. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME J. 2021;15:3339–56. doi: 10.1038/s41396-021-01001-0. PubMed DOI PMC
Lynch RC, Darcy JL, Kane NC, Nemergut DR, Schmidt SK. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Front Microbiol. 2014;5. PubMed PMC
Ortiz M, Leung Pok M, Shelley G, Jirapanjawat T, Nauer Philipp A, Van Goethem Marc W, et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci USA. 2021;118:e2025322118. doi: 10.1073/pnas.2025322118. PubMed DOI PMC
King GM. Contributions of atmospheric CO and hydrogen uptake to microbial dynamics on recent Hawaiian volcanic deposits. Appl Environ Microbiol. 2003;69:4067. doi: 10.1128/AEM.69.7.4067-4075.2003. PubMed DOI PMC
Park SW, Hwang EH, Jang HS, Lee JH, Kang BS, Oh JI, et al. Presence of duplicate genes encoding a phylogenetically new subgroup of form I ribulose 1,5-bisphosphate carboxylase/oxygenase in Mycobacterium sp. strain JC1 DSM 3803. Res Microbiol. 2009;160:159–65. doi: 10.1016/j.resmic.2008.12.002. PubMed DOI
Tebo BM, Davis RE, Anitori RP, Connell LB, Schiffman P, Staudigel H. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica. Front Microbiol. 2015;6. PubMed PMC
Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77. doi: 10.1038/ismej.2015.153. PubMed DOI PMC
Zhang E, Thibaut LM, Terauds A, Raven M, Tanaka MM, van Dorst J, et al. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome. 2020;8:37. doi: 10.1186/s40168-020-00809-w. PubMed DOI PMC
Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, et al. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ Microbiol. 2016;18:1834–49. doi: 10.1111/1462-2920.13034. PubMed DOI
Zhao K, Kong W, Wang F, Long X-E, Guo C, Yue L, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biol Biochem. 2018;127:230–8. doi: 10.1016/j.soilbio.2018.09.034. DOI
Cary SC, McDonald IR, Barrett JE, Cowan DA. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol. 2010;8:129–38. doi: 10.1038/nrmicro2281. PubMed DOI
Ji M, Williams TJ, Montgomery K, Wong HL, Zaugg J, Berengut JF, et al. Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations. ISME J. 2021;15:2692–707. doi: 10.1038/s41396-021-00944-8. PubMed DOI PMC
Montgomery K, Williams TJ, Brettle M, Berengut JF, Zhang E, Zaugg J, et al. Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils. Environ Microbiol. 2021;23:4276–94. doi: 10.1111/1462-2920.15610. PubMed DOI
Fang Y, Yuan Y, Liu J, Wu G, Yang J, Hua Z, et al. Casting light on the adaptation mechanisms and evolutionary history of the widespread Sumerlaeota. mBio. 2021;12:e00350–21. doi: 10.1128/mBio.00350-21. PubMed DOI PMC
Sánchez-Osuna M, Barbé J, Erill I. Comparative genomics of the DNA damage-inducible network in the Patescibacteria. Environ Microbiol. 2017;19:3465–74. doi: 10.1111/1462-2920.13826. PubMed DOI
Bay SK, Dong X, Bradley JA, Leung PM, Grinter R, Jirapanjawat T, et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat Microbiol. 2021;6:246–56. doi: 10.1038/s41564-020-00811-w. PubMed DOI
Li Q-M, Zhou Y-L, Wei Z-F, Wang Y. Phylogenomic insights into distribution and adaptation of Bdellovibrionota in marine waters. bioRxiv. 2020. 10.1101/2020.11.01.364414. PubMed PMC
Williams HN, Chen H. Environmental regulation of the distribution and ecology of bdellovibrio and like organisms. Front Microbiol. 2020;11:545070. doi: 10.3389/fmicb.2020.545070. PubMed DOI PMC
Imhoff JF, Rahn T, Künzel S, Neulinger SC. Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins. Front Microbiol. 2018;8:2679. doi: 10.3389/fmicb.2017.02679. PubMed DOI PMC
Baker PL, Orf GS, Khan Z, Espinoza L, Leung S, Kevershan K, et al. A molecular biology tool kit for the phototrophic firmicute heliobacterium modesticaldum. Appl Environ Microbiol. 2019;85:e01287-19. PubMed PMC
Tank M, Bryant DA. Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. Front Microbiol. 2015;6. PubMed PMC
Zeng Y, Koblížek M. Phototrophic gemmatimonadetes: a new “Purple” branch on the bacterial tree of life. In: Hallenbeck PC, editor. Modern topics in the phototrophic prokaryotes: environmental and applied aspects. Cham: Springer International Publishing; 2017. p. 163–92.
Zeng Y, Nupur, Wu N, Madsen AM, Chen X, Gardiner AT, et al. Gemmatimonas groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum gemmatimonadetes. Front Microbiol. 2021;11. PubMed PMC
Zeng Y, Feng F, Medová H, Dean J, Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA. 2014;111:7795. doi: 10.1073/pnas.1400295111. PubMed DOI PMC
Ward LM, Li-Hau F, Kakegawa T, McGlynn SE. Complex history of aerobic respiration and phototrophy in the chloroflexota class anaerolineae revealed by high-quality draft genome of Ca. Roseilinea mizusawaensis AA3_104. Microbes Environ. 2021;36:ME21020. PubMed PMC
Thiel V, Fukushima S-I, Kanno N, Hanada S. Chloroflexi. In: Schmidt TM, editor. Encyclopedia of microbiology. 4th ed. Oxford: Academic Press; 2019. p. 651–62.
Tourna M, Maclean P, Condron L, O’Callaghan M, Wakelin SA. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol Ecol. 2014;88:538–49. doi: 10.1111/1574-6941.12323. PubMed DOI
Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28. doi: 10.1038/s41396-018-0078-0. PubMed DOI PMC
Magalhães CM, Machado A, Frank-Fahle B, Lee CK, Cary SC. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Front Microbiol. 2014;5. PubMed PMC
Richter I, Herbold CW, Lee CK, McDonald IR, Barrett JE, Cary SC. Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol. 2014;89:347–59. doi: 10.1111/1574-6941.12322. PubMed DOI
Ayton J, Aislabie J, Barker GM, Saul D, Turner S. Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ Microbiol. 2010;12:689–703. doi: 10.1111/j.1462-2920.2009.02111.x. PubMed DOI
Tolar BB, Ross MJ, Wallsgrove NJ, Liu Q, Aluwihare LI, Popp BN, et al. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. ISME J. 2016;10:2605–19. doi: 10.1038/ismej.2016.61. PubMed DOI PMC
Convey P, Chown SL, Clarke A, Barnes DKA, Bokhorst S, Cummings V, et al. The spatial structure of Antarctic biodiversity. Ecol Monogr. 2014;84:203–44. doi: 10.1890/12-2216.1. DOI
Robinson S, King D, Bramley-Alves J, Waterman M, Ashcroft M, Wasley J, et al. Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nat Clim Chang. 2018;8:879–84. doi: 10.1038/s41558-018-0280-0. DOI
Meier Dimitri V, Imminger S, Gillor O, Woebken D, Lax S. Distribution of mixotrophy and desiccation survival mechanisms across microbial genomes in an arid biological soil crust community. mSystems. 2021;6:e00786–20. PubMed PMC
Jordaan K, Lappan R, Dong X, Aitkenhead I, Bay S, Chiri E, et al. Hydrogen-oxidizing bacteria are abundant in desert soils and strongly stimulated by hydration. mSystems. 2020;5:e01131-20. PubMed PMC
Gupta RS, Khadka B. Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis. Photosynth Res. 2016;127:201–18. doi: 10.1007/s11120-015-0177-y. PubMed DOI
Cardona T. Origin of bacteriochlorophyll a and the early diversification of photosynthesis. PLoS ONE. 2016;11:e0151250. doi: 10.1371/journal.pone.0151250. PubMed DOI PMC
DeLong EF, Béjà O. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol. 2010;8:e1000359. doi: 10.1371/journal.pbio.1000359. PubMed DOI PMC
Mohammadi SS, Schmitz RA, Pol A, Berben T, Jetten MSM, Op den Camp HJM, et al. The acidophilic methanotroph Methylacidimicrobium tartarophylax 4AC grows as autotroph on H2 under microoxic conditions. Front Microbiol. 2019;10. PubMed PMC
Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212. doi: 10.1038/srep34212. PubMed DOI PMC
Fritsche E, Paschos A, Beisel H-G, Böck A, Huber R. Crystal structure of the hydrogenase maturating endopeptidase HYBD from Escherichia coli11. J Mol Biol. 1999;288:989–98. doi: 10.1006/jmbi.1999.2719. PubMed DOI
Schäfer C, Bommer M, Hennig Sandra E, Jeoung J-H, Dobbek H, Lenz O. Structure of an actinobacterial-type [NiFe]-hydrogenase reveals insight into O2-tolerant H2 oxidation. Structure. 2016;24:285–92. doi: 10.1016/j.str.2015.11.010. PubMed DOI
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58. doi: 10.1038/nprot.2015.053. PubMed DOI PMC
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303. doi: 10.1093/nar/gky427. PubMed DOI PMC
James MNG. An X-ray crystallographic approach to enzyme structure and function. Can J Biochem. 1980;58:251–71. doi: 10.1139/o80-035. PubMed DOI
Lai J, Niks D, Wang Y, Domratcheva T, Barends TRM, Schwarz F, et al. X-ray and NMR crystallography in an enzyme active site: the indoline quinonoid intermediate in tryptophan synthase. J Am Chem Soc. 2011;133:4–7. doi: 10.1021/ja106555c. PubMed DOI
Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O. Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution. Proc Natl Acad Sci USA. 2002;99:15971–6. doi: 10.1073/pnas.212640899. PubMed DOI PMC
Guo R, Conrad R. Extraction and characterization of soil hydrogenases oxidizing atmospheric hydrogen. Soil Biol Biochem. 2008;40:1149–54. doi: 10.1016/j.soilbio.2007.12.007. DOI
Khdhiri M, Hesse L, Popa ME, Quiza L, Lalonde I, Meredith LK, et al. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition. Soil Biol Biochem. 2015;85:1–9. doi: 10.1016/j.soilbio.2015.02.030. DOI
Piché-Choquette S, Tremblay J, Tringe SG, Constant P. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups. PeerJ. 2016;4:e1782. doi: 10.7717/peerj.1782. PubMed DOI PMC
Finstad KM, Probst AJ, Thomas BC, Andersen GL, Demergasso C, Echeverría A, et al. Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics. Front Microbiol. 2017;8:1435. doi: 10.3389/fmicb.2017.01435. PubMed DOI PMC
Jung P, Schermer M, Briegel-Williams L, Baumann K, Leinweber P, Karsten U, et al. Water availability shapes edaphic and lithic cyanobacterial communities in the Atacama Desert. J Phycol. 2019;55:1306–18. doi: 10.1111/jpy.12908. PubMed DOI
Lee KC, Caruso T, Archer SDJ, Gillman LN, Lau MCY, Cary SC, et al. Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo Dry Valleys of Antarctica. Front Microbiol. 2018;9:2619. doi: 10.3389/fmicb.2018.02619. PubMed DOI PMC
Tamura T, Ishida Y, Hamada M, Otoguro M, Yamamura H, Hayakawa M, et al. Description of Actinomycetospora chibensis sp. nov., Actinomycetospora chlora sp. nov., Actinomycetospora cinnamomea sp. nov., Actinomycetospora corticicola sp. nov., Actinomycetospora lutea sp. nov., Actinomycetospora straminea sp. nov. and Actinomycetospora succinea sp. nov. and emended description. Int J Syst Evolut Microbiol. 2011;61:1275–80. doi: 10.1099/ijs.0.024166-0. PubMed DOI
Yamamura H, Tamura T, Sakiyama Y, Harayama S. Nocardia amamiensis sp. nov., isolated from a sugar-cane field in Japan. Int J Syst Evolut Microbiol. 2007;57:1599. doi: 10.1099/ijs.0.64829-0. PubMed DOI
Fang BZ, Han MX, Zhang LY, Jiao JY, Zhang XT, Zhang ZT, et al. Nocardia aurea sp. nov., a novel actinobacterium isolated from a karstic subterranean environment. Int J Syst Evolut Microbiol. 2019;69:159–64. doi: 10.1099/ijsem.0.003122. PubMed DOI
Jurado V, Boiron P, Kroppenstedt RM, Laurent F, Couble A, Laiz L, et al. Nocardia altamirensis sp. nov., isolated from Altamira cave, Cantabria, Spain. Int J Syst Evolut Microbiol. 2008;58:2210. doi: 10.1099/ijs.0.65482-0. PubMed DOI
Demaree J, Smith N. Nocardia vaccinii n.sp. causing galls on blueberry plants. Phytopathology. 1952;42:249–52.
Li X, Wang Z, Lu F, Zhang H, Tian J, He L, et al. Actinocorallia populi sp. nov., an endophytic actinomycete isolated from a root of Populus adenopoda (Maxim.) Int J Syst Evolut Microbiol. 2018;68:2325. doi: 10.1099/ijsem.0.002840. PubMed DOI
Golovacheva R, Karavaĭko G. Sulfobacillus, a new genus of thermophilic sporulating bacteria. Mikrobiologiia. 1978;47:815–22. PubMed
Schorn MA, Alanjary MM, Aguinaldo K, Korobeynikov A, Podell S, Patin N, et al. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. Microbiology. 2016;162:2075. doi: 10.1099/mic.0.000386. PubMed DOI PMC
Klenk H-P, Lu M, Lucas S, Lapidus A, Copeland A, Pitluck S, et al. Genome sequence of the ocean sediment bacterium Saccharomonospora marina type strain (XMU15(T)) Stand Genom Sci. 2012;6:265. doi: 10.4056/sigs.2655905. PubMed DOI PMC
Liu ZP, Wu JF, Liu ZH, Liu SJ. Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evolut Microbiol. 2006;56:555–8. doi: 10.1099/ijs.0.63878-0. PubMed DOI
Tian X-P, Zhang Y-Q, Li Q-X, Zhi X-Y, Tang S-K, Zhang S, et al. Streptomyces nanshensis sp. nov., isolated from the Nansha Islands in the South China Sea. Int J Syst Evolut Microbiol. 2009;59:745. doi: 10.1099/ijs.0.003442-0. PubMed DOI
Maker A, Hemp J, Pace LA, Ward LM, Fischer WW. Draft genome sequence of Hydrogenibacillus schlegelii MA48, a deep-branching member of the Bacilli class of firmicutes. Genome Announc. 2017;5:e00380–16. doi: 10.1128/genomeA.00380-16. PubMed DOI PMC
Niu M-M, Ming H, Cheng L-J, Zhao Z-L, Ji W-L, Li M, et al. Amycolatopsis nivea sp. nov., isolated from a Yellow River sample. Int J Syst Evolut Microbiol. 2020;70:3084–90. doi: 10.1099/ijsem.0.004134. PubMed DOI
Torkko P, Suomalainen S, Iivanainen E, Tortoli E, Suutari M, Seppänen J, et al. Mycobacterium palustre sp. nov., a potentially pathogenic, slowly growing mycobacterium isolated from clinical and veterinary specimens and from Finnish stream waters. Int J Syst Evolut Microbiol. 2002;52:1519. PubMed
Albuquerque L, Ferreira C, Tomaz D, Tiago I, Veríssimo A, da Costa MS, et al. Meiothermus rufus sp. nov., a new slightly thermophilic red-pigmented species and emended description of the genus Meiothermus. Syst Appl Microbiol. 2009;32:306–13. doi: 10.1016/j.syapm.2009.05.002. PubMed DOI
Chung AP, Rainey F, Nobre MF, Burghardt J, Costa MSD. Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-Hydroxy fatty acids. Int J Syst Evol Microbiol. 1997;47:1225–30. PubMed
Yoshida M, Izumiyama S, Fukano H, Sugiyama K, Suzuki M, Shibayama K, et al. Draft genome sequence of sp. Strain shizuoka-1, a novel mycobacterium isolated from groundwater of a bathing facility in Shizuoka, Japan. Genome Announc. 2017;5:e01309–17. doi: 10.1128/genomeA.01309-17. PubMed DOI PMC
Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem. 2014;78:10–20. doi: 10.1016/j.soilbio.2014.07.005. DOI
Ji M, Kong W, Jia H, Delgado-Baquerizo M, Zhou T, Liu X, et al. Polar soils exhibit distinct patterns in microbial diversity and dominant phylotypes. Soil Biol Biochem. 2022;166:108550. doi: 10.1016/j.soilbio.2022.108550. DOI
Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. GigaScience. 2016;5:21. doi: 10.1186/s13742-016-0126-5. PubMed DOI PMC
van Dorst J, Bissett A, Palmer AS, Brown M, Snape I, Stark JS, et al. Community fingerprinting in a sequencing world. FEMS Microbiol Ecol. 2014;89:316–30. doi: 10.1111/1574-6941.12308. PubMed DOI
Walkley A, Black IA. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38. doi: 10.1097/00010694-193401000-00003. DOI
Rayment GE, Lyons DJ. Soil chemical methods—Australasia. Melbourne: CSIRO Publishing; 2010.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Li D, Liu CM, Luo R, Sadakane K, Lam T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6. doi: 10.1093/bioinformatics/btv033. PubMed DOI
Bushnell B, editor. BBMap: a fast, accurate, splice-aware aligner. Conference: 9th annual genomics of energy & environment meeting. Berkeley, CA, United States: Lawrence Berkeley National Lab; 2014.
Rodriguez-R LM, Konstantinidis KT. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics. 2014;30:629–35. doi: 10.1093/bioinformatics/btt584. PubMed DOI
Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26. doi: 10.1186/2049-2618-2-26. PubMed DOI PMC
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165. doi: 10.7717/peerj.1165. PubMed DOI PMC
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359. doi: 10.7717/peerj.7359. PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. doi: 10.1101/gr.186072.114. PubMed DOI PMC
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7. PubMed PMC
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8. doi: 10.1038/ismej.2017.126. PubMed DOI PMC
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–30. doi: 10.1093/nar/gkt1223. PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8. doi: 10.1038/s41592-021-01101-x. PubMed DOI PMC
Darling AE, Jospin G, Lowe E, Matsen FAIV, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243. doi: 10.7717/peerj.243. PubMed DOI PMC
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa Sabina L, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900. doi: 10.1093/nar/gkaa621. PubMed DOI PMC
Lan Y, Rosen G, Hershberg R. Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains. Microbiome. 2016;4:18. PubMed PMC
Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59. doi: 10.1093/nar/gky174. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257. doi: 10.1038/ncomms11257. PubMed DOI PMC
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. doi: 10.1093/nar/gkt1178. PubMed DOI PMC
Tu Q, Lin L, Cheng L, Deng Y, He Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics. 2018;35:1040–8. doi: 10.1093/bioinformatics/bty741. PubMed DOI
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40. doi: 10.1093/bioinformatics/btu031. PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez J, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. doi: 10.1093/sysbio/syq010. PubMed DOI
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5. doi: 10.1093/nar/gkw290. PubMed DOI PMC
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31:3784–8. doi: 10.1093/nar/gkg563. PubMed DOI PMC
Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49:D344–54. doi: 10.1093/nar/gkaa977. PubMed DOI PMC