Tooth agenesis: What do we know and is there a connection to cancer?
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33249565
DOI
10.1111/cge.13892
Knihovny.cz E-zdroje
- Klíčová slova
- WNT pathway, cancer, genetic variants, hypodontia, odontogenesis, oligodontia, predictive marker,
- MeSH
- anodoncie epidemiologie genetika MeSH
- časná detekce nádoru MeSH
- dědičné nádorové syndromy epidemiologie genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- karcinogeneze MeSH
- karcinom epidemiologie genetika MeSH
- kolorektální nádory epidemiologie genetika MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádory vaječníků epidemiologie genetika MeSH
- nádory žaludku epidemiologie genetika MeSH
- nádory epidemiologie genetika MeSH
- odontogeneze MeSH
- signální dráha Wnt genetika MeSH
- signální transdukce genetika MeSH
- transkripční faktor MSX1 genetika MeSH
- transkripční faktor PAX9 genetika MeSH
- změna barvy zubů MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- MSX1 protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- PAX9 protein, human MeSH Prohlížeč
- transkripční faktor MSX1 MeSH
- transkripční faktor PAX9 MeSH
Like all developmental processes, odontogenesis is highly complex and dynamically regulated, with hundreds of genes co-expressed in reciprocal networks. Tooth agenesis (missing one or more/all teeth) is a common human craniofacial anomaly and may be caused by genetic variations and/or environmental factors. Variants in PAX9, MSX1, AXIN2, EDA, EDAR, and WNT10A genes are associated with tooth agenesis. Currently, variants in ATF1, DUSP10, CASC8, IRF6, KDF1, GREM2, LTBP3, and components and regulators of WNT signaling WNT10B, LRP6, DKK, and KREMEN1 are at the forefront of interest. Due to the interconnectedness of the signaling pathways of carcinogenesis and odontogenesis, tooth agenesis could be a suitable marker for early detection of cancer predisposition. Variants in genes associated with tooth agenesis could serve as prognostic or therapeutic targets in cancer. This review aims to summarize existing knowledge of development and clinical genetics of teeth. Concurrently, the review proposes possible approaches for future research in this area, with particular attention to roles in monitoring, early diagnosis and therapy of tumors associated with defective tooth development.
Clinic of Comprehensive Cancer Care Masaryk Memorial Cancer Institute Brno Czech Republic
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Amini F, Rakhshan V, Babaei P. Prevalence and pattern of hypodontia in the permanent dentition of 3374 Iranian orthodontic patients. Dent Res J (Isfahan). 2012;9(3):245-250.
Rohilla M. Etiology of Various Dental Developmental Anomalies -Review of Literature. J Dent Probl Solut. 2017;4(2):19-25.
Šerý O, Bonczek O, Hloušková A, et al. A screen of a large Czech cohort of oligodontia patients implicates a novel mutation in the PAX9 gene. Eur J Oral Sci. 2015;123(2):65-71.
Vastardis H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop. 2000;117(6):650-656.
Cobourne MT, Sharpe PT. Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition. Wiley Interdiscip Rev Dev Biol. 2013;2(2):183-212.
Shimizu T, Maeda T. Prevalence and genetic basis of tooth agenesis. Jpn Dent Sci Rev. 2009;45(1):52-58.
Memarpour M, Shafiei F. Witkop tooth and nail syndrome: a report of three cases in a family. Pediatr Dermatol. 2011;28(3):281-285.
Palaska PK, Antonarakis GS. Prevalence and patterns of permanent tooth agenesis in individuals with Down syndrome: a meta-analysis. Eur J Oral Sci. 2016;124(4):317-328.
Dunbar AC, McIntyre GT, Laverick S, et al. Axenfeld-Rieger syndrome: a case report. J Orthod. 2015;42(4):324-330.
Zeng B, Zhao Q, Li S, et al. Novel EDA or EDAR Mutations Identified in Patients with X-Linked Hypohidrotic Ectodermal Dysplasia or Non-Syndromic Tooth Agenesis. Genes (Basel). 2017;8(10):pii:E259.
Al-Kharboush GH, Al-Balkhi KM, Al-Moammar K. The prevalence of specific dental anomalies in a group of Saudi cleft lip and palate patients. Saudi Dent J. 2015;27(2):75-80.
Bartzela TN, Carels CE, Bronkhorst EM, et al. Tooth agenesis patterns in unilateral cleft lip and palate in humans. Arch Oral Biol. 2013;58(6):596-602.
Salvi A, Giacopuzzi E, Bardellini E, et al. Mutation analysis by direct and whole exome sequencing in familial and sporadic tooth agenesis. Int J Mol Med. 2016;38(5):1338-1348.
Mostowska A, Biedziak B, Jagodzinski PP. Novel MSX1 mutation in a family with autosomal-dominant hypodontia of second premolars and third molars. Arch Oral Biol. 2012;57(6):790-795.
Pirinen S, Kentala A, Nieminen P, Varilo T, Thesleff I, Arte S. Recessively inherited lower incisor hypodontia. J Med Genet. 2001;38(8):551-556.
Zhang XX, Wong SW, Han D, Feng HL. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia. Chin J Dent Res. 2015;18(4):229-234.
Shilpa G, Gokhale N, Mallineni SK, Nuvvula S. Prevalence of dental anomalies in deciduous dentition and its association with succedaneous dentition: A cross-sectional study of 4180 South Indian children. J Indian Soc Pedod Prev Dent. 2017;35(1):56-62.
King NM, Tongkoom S, Wong HM. Morphological and Numerical Characteristics of the Southern Chinese Dentitions. Part III: Anomalies in the Primary Dentition. Open Anthropol J. 2010;3:25-36.
Yonezu T, Hayashi Y, Sasaki J, Machida Y. Prevalence of congenital dental anomalies of the deciduous dentition in Japanese children. Bull Tokyo Dent Coll. 1997;38(1):27-32.
Chen YH, Cheng NC, Wang YB, Yang CY. Prevalence of congenital dental anomalies in the primary dentition in Taiwan. Pediatr Dent. 2010;32(7):525-529.
Mukhopadhyay S, Mitra S. Anomalies in primary dentition: Their distribution and correlation with permanent dentition. J Nat Sc Biol Med. 2014;5(1):139-143.
Rakhshan V. Congenitally missing teeth (hypodontia): A review of the literature concerning the etiology, prevalence, risk factors, patterns and treatment. Dent Res J. 2015;12(1):1-13.
Khalaf K, Miskelly J, Voge E, Macfarlane TV. Prevalence of hypodontia and associated factors: a systematic review and meta-analysis. J Orthod. 2014;41(4):299-316.
Yassin SM. Prevalence and distribution of selected dental anomalies among saudi children in Abha, Saudi Arabia. J Clin Exp Dent. 2016;8(5):e485-e490.
Fekonja A. Hypodontia in orthodontically treated children. Eur J Orthod. 2005;27(5):457-460.
Polder BJ, Van't Hof MA, Van der Linden FP, Kuijpers-Jagtman AM. A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol. 2004;32(3):217-226.
Tucker AS, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet. 2004;5(7):499-508.
Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Aust Dent J. 2014;59(Suppl 1):55-80.
Juuri E, Jussila M, Seidel K, et al. Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development. 2013;140(7):1424-1432.
Hovorakova M, Lesot H, Peterka M, Peterkova R. Early development of the human dentition revisited. J Anat. 2018;233(2):135-145.
Ahtiainen L, Uski I, Thesleff I, Mikkola ML. Early epithelial signaling center governs tooth budding morphogenesis. J Cell Biol. 2016;214(6):753-767.
Lesot H, Kieffer-Combeau S, Fausser JL, et al. Cell-cell and cell-matrix interactions during initial enamel organ histomorphogenesis in the mouse. Connect Tissue Res. 2002;43(2-3):191-200.
Fleischmannova J, Matalova E, Sharpe PT, Misek I, Radlanski RJ. Formation of the tooth-bone interface. J Dent Res. 2010;89(2):108-115.
Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol. 1994;38(3):463-469.
Lesot H, Hovorakova M, Peterka M, Peterkova R. Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Aust Dent J. 2014;59(Suppl 1):81-100.
Nasrullah Q, Renfree MB, Evans AR. Three-dimensional mammalian tooth development using diceCT. Arch Oral Biol. 2018;85:183-191.
Lisi S, Peterková R, Peterka M, Vonesch JL, Ruch JV, Lesot H. Tooth morphogenesis and pattern of odontoblast differentiation. Connect Tissue Res. 2003;44(Suppl 1):167-170.
Luder HU. Malformations of the tooth root in humans. Front Physiol. 2015;6:307.
Thesleff I. The genetic basis of tooth development and dental defects. Am J Med Genet A. 2006;140(23):2530-2535.
Tucker AS, Sharpe PT. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res. 1999;78(4):826-834.
Bonczek O, Balcar VJ, Šerý O. PAX9 gene mutations and tooth agenesis: A review. Clin Genet. 2017;92(5):467-476.
Hloušková A, Bielik P, Bonczek O, et al. Mutations in AXIN2 gene as a risk factor for tooth agenesis and cancer: A review. Neuro Endocrinol Lett. 2017;38(3):131-137.
Wong SW, Han D, Zhang H, et al. Nine Novel PAX9 Mutations and a Distinct Tooth Agenesis Genotype-Phenotype. J Dent Res. 2018;97(2):155-162.
Yu M, Wong SW, Han D, Cai T. Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis. Oral Dis. 2019;25(3):646-651.
Zhang L, Yu M, Wong SW, et al. Comparative analysis of rare EDAR mutations and tooth agenesis pattern in EDAR- and EDA-associated nonsyndromic oligodontia. Hum Mutat. 2020;41(11):1957-1966.
Williams MA, Biguetti C, Romero-Bustillos M, et al. Colorectal cancer-associated genes are associated with tooth agenesis and may have a role in tooth development. Sci Rep. 2018;8(1):2979.
Vieira AR, Modesto A, Meira R, Barbosa ARS, Lidral AC, Murray JC. Interferon regulatory factor 6 (IRF6) and fibroblast growth factor receptor 1 (FGFR1) contribute to human tooth agenesis. Am J Med Genet A. 2007;143A(6):538-545.
Vieira AR, Seymen F, Patir A, Menezes R. Evidence of linkage disequilibrium between polymorphisms at the IRF6 locus and isolate tooth agenesis, in a Turkish population. Arch Oral Biol. 2008;53(8):780-784.
Chu EY, Tamasas B, Fong H, et al. Full Spectrum of Postnatal Tooth Phenotypes in a Novel Irf6 Cleft Lip Model. J Dent Res. 2016;95(11):1265-1273.
Letra A, Fakhouri W, Fonseca RF, et al. Interaction between IRF6 and TGFA genes contribute to the risk of nonsyndromic cleft lip/palate. PLoS One. 2012;7(9):e45441.
Küchler EC, Lips A, Tannure PN, et al. Tooth agenesis association with self-reported family history of cancer. J Dent Res. 2013;92(2):149-155.
Porntaveetus T, Otsuka-Tanaka Y, Basson MA, Moon AM, Sharpe PT, Ohazama A. Expression of fibroblast growth factors (Fgfs) in murine tooth development. J Anat. 2011;218(5):534-543.
Yoshikawa H, Matsubara K, Zhou X, et al. WNT10B functional dualism: beta-catenin/Tcf-dependent growth promotion or independent suppression with deregulated expression in cancer. Mol Biol Cell. 2007;18(11):4292-4303.
Yu P, Yang W, Han D, et al. Mutations in WNT10B Are Identified in Individuals with Oligodontia. Am J Hum Genet. 2016;99(1):195-201.
Kantaputra PN, Hutsadaloi A, Kaewgahya M, et al. WNT10B mutations associated with isolated dental anomalies. Clin Genet. 2018;93(5):992-999.
Dassule HR, McMahon AP. Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol. 1998;202(2):215-227.
Yamashiro T, Zheng L, Shitaku Y, et al. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation. 2007;75(5):452-462.
Yu M, Liu Y, Wang Y, et al. Epithelial wnt10a is essential for tooth root furcation morphogenesis. J Dent Res. 2020;99(3):311-319.
Massink MP, Créton MA, Spanevello F, et al. Loss-of-Function Mutations in the WNT Co-receptor LRP6 Cause Autosomal-Dominant Oligodontia. Am J Hum Genet. 2015;97(4):621-626.
Ockeloen CW, Khandelwal KD, Dreesen K, et al. Novel mutations in LRP6 highlight the role of WNT signaling in tooth agenesis. Genet Med. 2016;18(11):1158-1162.
Dinckan N, Du R, Petty LE, et al. Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis. J Dent Res. 2018;97(1):49-59.
Li J, Huang X, Xu X, et al. SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development. 2011;138(10):1977-1989.
Kantaputra PN, Kaewgahya M, Hatsadaloi A, et al. GREMLIN 2 mutations and dental anomalies. J Dent Res. 2015;94(12):1646-1652.
Zeng B, Lu H, Xiao X, et al. KDF1 is a novel candidate gene of non-syndromic tooth agenesis. Arch Oral Biol. 2019;97:131-136.
Noor A, Windpassinger C, Vitcu I, et al. Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF-beta binding protein 3. Am J Hum Genet. 2009;84(4):519-523.
Lammi L, Arte S, Somer M, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74(5):1043-1050.
Marvin ML, Mazzoni SM, Herron CM, Edwards S, Gruber SB, Petty EM. AXIN2-associated autosomal dominant ectodermal dysplasia and neoplastic syndrome. Am J Med Genet A. 2011;155A(4):898-902.
Beard C, Purvis R, Winship IM, Macrae FA, Buchanan DD. Phenotypic confirmation of oligodontia, colorectal polyposis and cancer in a family carrying an exon 7 nonsense variant in the AXIN2 gene. Fam Cancer. 2019;18(3):311-315.
Otero L, Lacunza E, Vasquez V, Arbelaez V, Cardier F, González F. Variations in AXIN2 predict risk and prognosis of colorectal cancer. BDJ Open. 2019;5:13.
Lejeune S, Guillemot F, Triboulet JP, et al. Low frequency of AXIN2 mutations and high frequency of MUTYH mutations in patients with multiple polyposis. Hum Mutat. 2006;27(10):1064.
Lindor NM, Win AK, Gallinger S, et al. Colorectal cancer and self-reported tooth agenesis. Hered Cancer Clin Pract. 2014;12(1):7.
Paranjyothi MV, Kumaraswamy KL, Begum LF, Basheer S. Tooth agenesis: A susceptible indicator for colorectal cancer? J Cancer Res Ther. 2018;14(3):527-531.
Chalothorn LA, Beeman CS, Ebersole JL, et al. Hypodontia as a risk marker for epithelial ovarian cancer: a case-controlled study. J Am Dent Assoc. 2008;139(2):163-169.
Fekonja A, Čretnik A, Takač I. Hypodontia prevalence and pattern in women with epithelial ovarian cancer. Angle Orthod. 2014;84(5):810-814.
Cardoso EF, Martelli DR, Machado RA, et al. Nonsyndromic cleft lip and palate, gastric cancer and tooth agenesis. Med Oral Patol Oral Cir Bucal. 2018;23(1):e44-e48.
Iavazzo C, Papakiritsis M, Gkegkes ID. Hypodontia and ovarian cancer: A systematic review. J Turk Ger Gynecol Assoc. 2016;17(1):41-44.
Yin W, Oral Dis BZ. Hypodontia, a prospective predictive marker for tumor? Oral Dis. 2016;22(4):265-273.
Ritwik P, Patterson KK. Diagnosis of Tooth Agenesis in Childhood and Risk for Neoplasms in Adulthood. Ochsner J. 2018;18(4):345-350.
Gawron-Jakubek W, Spaczynska J, Pitynski K, Loster BW. Coexistence of tooth agenesis and ovarian cancer - a systematic literature review. Ginekol Pol. 2019;90(12):707-710.
Bonds J, Pollan-White S, Xiang L, Mues G, D'Souza R. Is there a link between ovarian cancer and tooth agenesis? Eur J Med Genet. 2014;57(5):235-239.
MacKenzie A, Ferguson MW, Sharpe PT. Hox-7 expression during murine craniofacial development. Development. 1991;113(2):601-611.
Xie H, Cherrington BD, Meadows JD, Witham EA, Mellon PL. Msx1 homeodomain protein represses the αGSU and GnRH receptor genes during gonadotrope development. Mol Endocrinol. 2013;27(3):422-436.
Yue Y, Yuan Y, Li L, et al. Homeobox protein MSX1 inhibits the growth and metastasis of breast cancer cells and is frequently silenced by promoter methylation. Int J Mol Med. 2018;41(5):2986-2996.
Yue Y, Zhou K, Li J, Jiang S, Li C, Men H. MSX1 induces G0/G1 arrest and apoptosis by suppressing Notch signaling and is frequently methylated in cervical cancer. Onco Targets Ther. 2018;11:4769-4780.
Park K, Kim K, Rho SB, et al. Homeobox Msx1 interacts with p53 tumor suppressor and inhibits tumor growth by inducing apoptosis. Cancer Res. 2005;65(3):749-757.
Eppich S, Kuhn C, Schmoeckel E, et al. MSX1-A potential marker for uterus-preserving therapy of endometrial carcinomas. Int J Mol Sci. 2020;21(12):4529.
Bonczek O, Bielik P, Krejčí P, et al. Next generation sequencing reveals a novel nonsense mutation in MSX1 gene related to oligodontia. PLoS One. 2018;13(9):e0202989.
Ogawa T, Kapadia H, Wang B, D'Souza RN. Studies on Pax9-Msx1 protein interactions. Arch Oral Biol. 2005;50(2):141-145.
Jia S, Zhou J, Fanelli C, et al. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero. Development. 2017;144(20):3819-3828.
Gerber JK, Richter T, Kremmer E, et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. J Pathol. 2002;197(3):293-297.