WNT10A variants: following the pattern of inheritance in tooth agenesis and self-reported family history of cancer

. 2022 Dec ; 26 (12) : 7045-7055. [epub] 20220824

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35999385

Grantová podpora
NT/11420 - 6/2010 Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund
MMCI Masarykova Univerzita
00209805 Masarykova Univerzita
NU20-06-00189 Agentura Pro Zdravotnický Výzkum České Republiky

Odkazy

PubMed 35999385
DOI 10.1007/s00784-022-04664-x
PII: 10.1007/s00784-022-04664-x
Knihovny.cz E-zdroje

OBJECTIVES: The aim of this study was the analysis of WNT10A variants in seven families of probands with various forms of tooth agenesis and self-reported family history of cancer. MATERIALS AND METHODS: We enrolled 60 young subjects (aged 13 to 17) from the Czech Republic with various forms of tooth agenesis. Dental phenotypes were assessed using Planmeca ProMax 3D (Planmeca Oy, Finland) with Planmeca Romexis software (version 2.9.2) together with oral examinations. After screening PAX9, MSX1, EDA, EDAR, AXIN2 and WNT10A genes on the Illumina MiSeq platform (Illumina, USA), we further analyzed the evolutionarily highly conserved WNT10A gene by capillary sequencing in the seven families. RESULTS: All the detected variants were heterozygous or compound heterozygous with various levels of phenotypic expression. The most severe phenotype (oligodontia) was found in a proband who was compound heterozygous for the previously identified WNT10A variant p.Phe228Ile and a newly discovered c.748G > A variant (p.Gly250Arg) of WNT10A. The newly identified variant causes substitution of hydrophobic glycine for hydrophilic arginine. CONCLUSIONS: We suggest that the amino acid changes in otherwise highly conserved sequences significantly affect the dental phenotype. No relationship between the presence of WNT10A variants and a risk of cancer has been found. CLINICAL RELEVANCE: Screening of PAX9, MSX1, EDA, EDAR, AXIN2 and WNT10A genes in hope to elucidate the pattern of inheritance in families.

Zobrazit více v PubMed

Thesleff I (2006) The genetic basis of tooth development and dental defects. Am J Med Genet A 140:2530–2535. https://doi.org/10.1002/ajmg.a.31360 PubMed DOI

Tucker A, Sharpe PT (1999) Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. J Dent Res 78:826–834. https://doi.org/10.1177/00220345990780040201 PubMed DOI

Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508. https://doi.org/10.1038/nrg1380 PubMed DOI

Vieira AR, Meira R, Modesto A, Murray JC (2004) MSX1, PAX9, and TGFA contribute to tooth agenesis in humans. J Dent Res 83:723–727. https://doi.org/10.1177/154405910408300913 PubMed DOI

van der Schalk-Weide Y, Beemer FA (1994) Faber Ja, Bosman F Symptomatology of patients with oligodontia. J Oral Rehabil 21:247–261. https://doi.org/10.1111/j.1365-2842.1994.tb01141.x DOI

Khalaf K, Miskelly J, Voge E, Macfarlane TV (2014) Prevalence of hypodontia and associated factors: a systematic review and meta-analysis. J Orthod 41:299–316. https://doi.org/10.1179/1465313314Y.0000000116 PubMed DOI

Nieminen P (2009) Genetic basis of tooth agenesis. J Exp Zool B Mol Dev Evol 312B:320–342. https://doi.org/10.1002/jez.b.21277 PubMed DOI

Polder BJ, Van’t Hof MA, Van Der Linden FPGA, Kuijpers-Jagtman AM (2004) A meta-analysis of the prevalence of dental agenesis of permanent teeth Community. Dent Oral Epidemiol 32:217–226. https://doi.org/10.1111/j.1600-0528.2004.00158.x DOI

Jussila M, Thesleff I (2012) Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 4:a008425. https://doi.org/10.1101/cshperspect.a008425 PubMed DOI PMC

Bailleul-Forestier I, Molla M, Verloes A, Berdal A (2008) The genetic basis of inherited anomalies of the teeth. Part 1: clinical and molecular aspects of non-syndromic dental disorders. Eur J Med Genet 51:273–291. https://doi.org/10.1016/j.ejmg.2008.02.009 PubMed DOI

Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE (1996) A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 13:417–421. https://doi.org/10.1038/ng0896-417 PubMed DOI

Šerý O, Bonczek O, Hloušková A, Černochová P, Vaněk J, Míšek I, Krejčí P, Izakovičová Hollá L (2015) A screen of a large Czech cohort of oligodontia patients implicates a novel mutation in the PAX9 gene. Eur J Oral Sci 123:65–71. https://doi.org/10.1111/eos.12170 PubMed DOI

Bonczek O, Balcar VJ, Šerý O (2017) PAX9 gene mutations and tooth agenesis: A review. Clin Genet 92:467–476. https://doi.org/10.1111/cge.12986 PubMed DOI

Song S, Han D, Qu H, Gong Y, Wu H, Zhang X, Zhong N, Feng H (2009) EDA gene mutations underlie non-syndromic oligodontia. J Dent Res 88:126–131. https://doi.org/10.1177/0022034508328627 PubMed DOI PMC

Bergendal B, Klar J, Stecksén-Blicks C, Norderyd J, Dahl N (2011) Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Am J Med Genet A 155A:1616–1622. https://doi.org/10.1002/ajmg.a.34045 PubMed DOI

Mostowska A, Biedziak B, Zadurska M, Matuszewska-Trojan S, Jagodziński PP (2015) WNT10A coding variants and maxillary lateral incisor agenesis with associated dental anomalies. Eur J Oral Sci 123:1–8. https://doi.org/10.1111/eos.12165 PubMed DOI

Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis - a look outside the nucleus. Science 287:1606–1609. https://doi.org/10.1126/science.287.5458.1606 PubMed DOI

Yuan Q, Zhao M, Tandon B, Maili L, Liu X, Zhang A, Baugh EH, Tran T, Rm S, Hecht JT, Swindell EC, Wagner DS, Letra A (2017) Role of WNT10A in failure of tooth development in humans and zebrafish. Mol Genet Genomic Med 5:730–741. https://doi.org/10.1002/mgg3.332 PubMed DOI PMC

Miller JR (2002) The Wnts. Genome Biol 3(1):reviews3001.1–reviews3001.15.  https://doi.org/10.1186/gb-2001-3-1-reviews3001

Bodine PVN, Komm BS (2006) Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord 7:33–39. https://doi.org/10.1007/s11154-006-9002-4 PubMed DOI

Van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214. https://doi.org/10.1242/dev.033910 PubMed DOI

Moon RT, Shah K (2002) Developmental biology: signalling polarity. Nature 417:239–240. https://doi.org/10.1038/417239a PubMed DOI

Zhang Y, Tomann P, Andl T, Gallant NM, Huelsken J, Jerchow B, Birchmeier W, Paus R, Piccolo S, Mikkola ML, Morrisey EE, Overbeek PA, Scheidereit C, Millar SE, Schmidt-Ullrich R (2009) Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev Cell 17:49–61. https://doi.org/10.1016/j.devcel.2009.05.011 PubMed DOI PMC

Mostowska A, Hozyasz KK, Biedziak B, Wojcicki P, Lianeri M, Jagodzinski PP (2012) Genotype and haplotype analysis of WNT genes in non-syndromic cleft lip with or without cleft palate. Eur J Oral Sci 120:1–8. https://doi.org/10.1111/j.1600-0722.2011.00938.x PubMed DOI

Mues G, Bonds J, Xiang L, Vieira AR, Seymen F, Klein O, D’souza RN (2014) The WNT10A gene in ectodermal dysplasias and selective tooth agenesis. Am J Med Genet A 164A:2455–2460. https://doi.org/10.1002/ajmg.a.36520 PubMed DOI

Liu F, Millar SE (2010) Wnt/beta-catenin signaling in oral tissue development and disease. J Dent Res 89:318–330. https://doi.org/10.1177/0022034510363373 PubMed DOI PMC

Tamura M, Nemoto E, Sato MM, Nakashima A, Shimauchi H (2010) Role of the Wnt signaling pathway in bone and tooth. Front Biosci (Elite Ed) 2:1405–1413. https://doi.org/10.2741/e201 PubMed DOI

Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305. https://doi.org/10.1101/gad.11.24.3286 PubMed DOI

Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88. https://doi.org/10.1146/annurev.cellbio.14.1.59 PubMed DOI

Bohring A, Stamm T, Spaich C, Haase C, Spree K, Hehr U, Hoffmann M, Ledig S, Sel S, Wieacker P, Röpke A (2009) WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am J Hum Genet 85:97–105. https://doi.org/10.1016/j.ajhg.2009.06.001 PubMed DOI PMC

Wang J, Shackleford GM (1996) Murine Wnt10a and Wnt10b: cloning and expression in developing limbs, face and skin of embryos and in adults. Oncogene 13:1537–1544 PubMed

Dassule HR, Mcmahon AP (1998) Analysis of epithelial-mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev Biol 202:215–227. https://doi.org/10.1006/dbio.1998.8992 PubMed DOI

Millar SE, Willert K, Salinas PC, Roelink H, Nusse R, Sussman DJ, Barsh GS (1999) WNT signaling in the control of hair growth and structure. Dev Biol 207:133–149. https://doi.org/10.1006/dbio.1998.9140 PubMed DOI

Andl T, Reddy ST, Gaddapara T, Millar SE (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2:643–653. https://doi.org/10.1016/s1534-5807(02)00167-3 PubMed DOI

Bailleul-Forestier I, Berdal A, Vinckier F, De Ravel T, Fryns JP, Verloes A (2008) The genetic basis of inherited anomalies of the teeth. Part 2: syndromes with significant dental involvement. Eur J Med Genet 51:383–408. https://doi.org/10.1016/j.ejmg.2008.05.003 PubMed DOI

Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, Bal E, Chassaing N, Vincent MC, Viot G, Clauss F, Manière MC, Toupenay S, Le Merrer M, Lyonnet S, Cormier-Daire V, Amiel J, Faivre L, de Prost Y, Munnich A, Bonnefont JP, Bodemer C, Smahi A (2011) Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat 32:70–72. https://doi.org/10.1002/humu.21384 PubMed DOI

Wedgeworth EK, Nagy N, White JML, Pembroke AC, Mcgrath JA (2011) Intra-familial variability of ectodermal defects associated with WNT10A mutations. Acta Derm Venereol 91:346–347. https://doi.org/10.2340/00015555-1028 PubMed DOI

Van Den Boogaard MJ, Créton M, Bronkhorst Y, Van Der Hout A, Hennekam E, Lindhout D, Cune M, Van Amstel HKP (2012) Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Genet 49:327–331. https://doi.org/10.1136/jmedgenet-2012-100750 PubMed DOI

Mostowska A, Biedziak B, Zadurska M, Dunin-Wilczynska I, Lianeri M, Jagodzinski PP (2013) Nucleotide variants of genes encoding components of the Wnt signalling pathway and the risk of non-syndromic tooth agenesis. Clin Genet 84:429–440. https://doi.org/10.1111/cge.12061 PubMed DOI

Plaisancié J, Bailleul-Forestier I, Gaston V, Vaysse F, Lacombe D, Holder-Espinasse M, Abramowicz M, Coubes C, Plessis G, Faivre L, Demeer B, Vincent-Delorme C, Dollfus H, Sigaudy S, Guillén-Navarro E, Verloes A, Jonveaux P, Martin-Coignard D, Colin E, Bieth E, Calvas P, Chassaing N (2013) Mutations in WNT10A are frequently involved in oligodontia associated with minor signs of ectodermal dysplasia. Am J Med Genet A 161A:671–678. https://doi.org/10.1002/ajmg.a.35747 PubMed DOI

Song S, Zhao R, He H, Zhang J, Feng H, Lin L (2014) WNT10A variants are associated with non-syndromic tooth agenesis in the general population. Hum Genet 133:117–124. https://doi.org/10.1007/s00439-013-1360-x PubMed DOI

Arzoo PS, Klar J, Bergendal B, Norderyd J, Dahl N (2014) WNT10A mutations account for ¼ of population-based isolated oligodontia and show phenotypic correlations. Am J Med Genet A 164A:353–359. https://doi.org/10.1002/ajmg.a.36243 PubMed DOI

Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480. https://doi.org/10.1016/j.cell.2006.10.018 PubMed DOI

Li J, Zhang Z, Wang L, Zhang Y (2019) The oncogenic role of Wnt10a in colorectal cancer through activation of canonical Wnt/β-catenin signaling. Oncol Lett 17:3657–3664. https://doi.org/10.3892/ol.2019.10035 PubMed DOI PMC

Bonczek O, Krejci P, Izakovicova-Holla L, Cernochova P, Kiss I, Vojtesek B (2021) Tooth agenesis: What do we know and is there a connection to cancer? Clin Genet 99:493–502. https://doi.org/10.1111/cge.13892 PubMed DOI

Jia S, Zhou J, Fanelli C, Wee Y, Bonds J, Schneider P, Mues G, D’Souza RN (2017) Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero. Development 144:3819–3828. https://doi.org/10.1242/dev.157750 PubMed DOI PMC

Yu M, Wong SW, Han D, Cai T (2019) Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis. Oral Dis 25:646–651. https://doi.org/10.1111/odi.12931 PubMed DOI

Roche: Sequencing Solutions Technical Note: How To Evaluate NimbleGen SeqCap EZ Target Enrichment Data Roche Diagnostics: Mannheim. http://netdocs.roche.com/DDM/Effective/07187009001_RNG_SeqCap-EZ_TchNote_Eval-data_v2.1.pdf Accessed 2 October 2020

Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–17660. https://doi.org/10.1093/bioinformatics/btp324 PubMed DOI PMC

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352 PubMed DOI PMC

Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. https://doi.org/10.1093/bioinformatics/btr509 PubMed DOI PMC

R. CoreTeam (2015) R:A language and environment for statistical computing. Available: https://www.R-project.org/ . Accessed 28 September 2020

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754 PubMed DOI PMC

Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017 PubMed DOI

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248 PubMed DOI PMC

Arte S, Parmanen S, Pirinen S, Alaluusua S, Nieminen P (2013) Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS One 8:e73705. https://doi.org/10.1371/journal.pone.0073705 PubMed DOI PMC

Kantaputra P, Sripathomsawat W (2011) WNT10A and isolated hypodontia. Am J Med Genet A 155A:1119–1122. https://doi.org/10.1002/ajmg.a.33840 PubMed DOI

Zhang J, Tian XJ, Xing J (2016) Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks. J Clin Med 5:41. https://doi.org/10.3390/jcm5040041 PubMed DOI PMC

Heise RL, Stober V, Cheluvaraju C, Hollingsworth JW, Garantziotis S (2011) Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J Biol Chem 286:17435–17444. https://doi.org/10.1074/jbc.M110.137273 PubMed DOI PMC

Hlouskova A, Bielik P, Bonczek O, Balcar VJ, Šerý O (2017) Mutations in AXIN2 gene as a risk factor for tooth agenesis and cancer: A review. Neuro Endocrinol Lett 38:131–137 PubMed

He H, Han D, Feng H, Qu H, Song S, Bai B, Zhang Z (2013) Involvement of and interaction between WNT10A and EDA mutations in tooth agenesis cases in the Chinese population. PLoS One 8:e80393. https://doi.org/10.1371/journal.pone.0080393 PubMed DOI PMC

Suomalainen M, Thesleff I (2010) Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/beta-catenin signaling in the epithelial stem cells. Dev Dyn 239:364–372. https://doi.org/10.1002/dvdy.22106 PubMed DOI

Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC (2012) Structural basis of Wnt recognition by Frizzled. Science 337:59–64. https://doi.org/10.1126/science.1222879 PubMed DOI PMC

Nawaz S, Klar J, Wajid M, Aslam M, Tariq M, Schuster J, Baig SM, Dahl N (2009) WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome. Eur J Hum Genet 17:1600–1605. https://doi.org/10.1038/ejhg.2009.81 PubMed DOI PMC

Tardieu C, Jung S, Niederreither K, Prasad M, Hadj-Rabia S, Philip N, Mallet A, Consolino E, Sfeir E, Noueiri B, Chassaing N, Dollfus H, Manière MC, Bloch-Zupan A, Clauss F (2017) Dental and extra-oral clinical features in 41 patients with WNT10A gene mutations: A multicentric genotype-phenotype study. Clin Genet 92:477–486. https://doi.org/10.1111/cge.12972 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...