Hot Deformation Treatment of Grain-Modified Mg-Li Alloy
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33066408
PubMed Central
PMC7602192
DOI
10.3390/ma13204557
PII: ma13204557
Knihovny.cz E-resources
- Keywords
- constitutive model, flow stress, hot compression test, magnesium alloy, microstructure evolution, processing map,
- Publication type
- Journal Article MeSH
In this work, a systematic analysis of the hot deformation mechanism and a microstructure characterization of an as-cast single α-phase Mg-4.5 Li-1.5 Al alloy modified with 0.2% TiB addition, as a grain refiner, is presented. The optimized constitutive model and hot working terms of the Mg-Li alloy were also determined. The hot compression procedure of the Mg-4.5 Li-1.5 Al + 0.2 TiB alloy was performed using a DIL 805 A/D dilatometer at deformation temperatures from 250 °C to 400 °C and with strain rates of 0.01-1 s-1. The processing map adapted from a dynamic material model (DMM) of the as-cast alloy was developed through the superposition of the established instability map and power dissipation map. By considering the processing maps and microstructure characteristics, the processing window for the Mg-Li alloy were determined to be at the deformation temperature of 590 K-670 K and with a strain rate range of 0.01-0.02 s-1.
See more in PubMed
Yu X., Wang J., Zhang M.L., Yang P.P., Yang L.H., Cao D.X., Li J.Q. One-step synthesis of lamellar molybdate pillared hydrotalcite and its application for AZ31 Mg alloy protection. Solid State Sci. 2009;11:376–381. doi: 10.1016/j.solidstatesciences.2008.08.003. DOI
Jia W.T., Ma L.F., Le Q.C., Zhi C.C., Liu P.T. Deformation and fracture behaviors of AZ31B Mg alloy at elevated temperature under uniaxial compression. J. Alloys Compd. 2019;783:863–876. doi: 10.1016/j.jallcom.2018.12.260. DOI
Li X., Ren L., Le Q., Jin P., Cheng C., Wang T., Wang P., Zhou X., Chen X., Li D. The hot deformation behavior, microstructure evolution and texture types of as-cast Mg–Li alloy. J. Alloy Compd. 2020;831:154868. doi: 10.1016/j.jallcom.2020.154868. DOI
Li Y., Guan Y., Zhai J., Lin J. Hot Deformation Behavior of LA43M Mg-Li Alloy via Hot Compression Tests. J. Mater. Eng. Perform. 2019;28:7768–7781. doi: 10.1007/s11665-019-04500-6. DOI
Cheng Y., Qin T., Wang H., Zhang Z. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. T. Nonferr. Metal Soc. 2009;19:517–524. doi: 10.1016/S1003-6326(08)60305-2. DOI
Król M. Effect of grain refinements on the microstructure and thermal behaviour of Mg–Li–Al alloy. J. Therm. Anal. Calorim. 2018;133:237–246. doi: 10.1007/s10973-018-7223-x. DOI
Xu W., Birbilis N., Sha G., Wang Y., Daniels J.E., Xiao Y., Ferry M. A High-Specific-Strength and Corrosion-Resistant Magnesium Alloy. Nat. Mater. 2015;14:1229–1235. doi: 10.1038/nmat4435. PubMed DOI
Sun Y., Wang R., Ren J., Feng C.P. Hot deformation behavior of Mg-8Li-3Al-2Zn-0.2Zr alloy based on constitutive analysis, dynamic recrystallization kinetics, and processing map. Mech Mater. 2019;131:158–168. doi: 10.1016/j.mechmat.2019.02.005. DOI
Dong H., Pan F., Jiang B., Zeng Y. Evolution of microstructure and mechanical properties of a duplex Mg–Li alloy under extrusion with an increasing ratio. Mater. Des. 2014;57:121–127. doi: 10.1016/j.matdes.2013.12.055. DOI
Zhao Z., Xing X., Ma J., Bian L., Liang W., Wang Y. Effect of addition of Al-Si eutectic alloy on microstructure and mechanical properties of Mg-12wt%Li alloy. J. Mater. Sci. Technol. 2018;34:1564–1569. doi: 10.1016/j.jmst.2018.03.007. DOI
Becerra A., Pekguleryuz M. Effects of lithium, indium, and zinc on the lattice parameters of magnesium. J. Mater. Res. 2008;23:3379–3386. doi: 10.1557/JMR.2008.0414. DOI
Li R.H., Pan F.S., Jiang B., Dong H.W., Yang Q.S. Effect of Li addition on the mechanical behavior and texture of the as-extruded AZ31 magnesium alloy. Mater. Sci. Eng. 2013;562:33–38. doi: 10.1016/j.msea.2012.11.032. DOI
Sroka M., Zieliński A., Mikuła J. The service life of the repair welded joint of Cr-Mo/Cr-Mo-V. Arch. Metal. Mater. 2016;61:969–974. doi: 10.1515/amm-2016-0217. DOI
Zieliński A., Sroka M., Dudziak T. Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service. Materials. 2018;11:2130. doi: 10.3390/ma11112130. PubMed DOI PMC
Ojdanic A., Horky J., Mingler B., Fanetti M., Gardonio S., Valant M., Sulkowski B., Schafler E., Orlov D., Zehetbauer M.J. The Effects of Severe Plastic Deformation and/or Thermal Treatment on the Mechanical Properties of Biodegradable Mg-Alloys. Metals. 2020;10:1064. doi: 10.3390/met10081064. DOI
Lianggang G., Shuang Y., He Y., Jun Z. Processing map of as-cast 7075 aluminum alloy for hot working. Chin. J. Aeronaut. 2015;28:1774–1783.
Zhou X., Wang K., Lu S., Li X., Feng R., Zhong M. Flow behavior and 3D processing map for hot deformation of Ti-2.7Cu alloy. J. Mater. Res. Technol. 2020;9:2652–2661. doi: 10.1016/j.jmrt.2019.12.093. DOI
Łukaszek-Sołek A., Krawczyk J., Śleboda T., Grelowski J. Optimization of the hot forging parameters for 4340 steel by processing maps. J. Mater. Res. Technol. 2019;8:3281–3290. doi: 10.1016/j.jmrt.2019.05.018. DOI
Hao J., Zhang J., Xu C., Nie K. Optimum Parameters and Kinetic Analysis for Hot Working of a Solution-Treated Mg-Zn-Y-Mn Magnesium Alloy. J. Alloy Compd. 2018;754:283–296. doi: 10.1016/j.jallcom.2018.04.292. DOI
Nuckowski P.M. Texture and residual stresses in the CuSn6 alloy subjected to intense plastic deformation. Arch. Metal. Mater. 2018;63:241–245. doi: 10.24425/118934. DOI
Yang Y., Peng X., Ren F., Wen H., Su J., Xie W. Constitutive Modeling and Hot Deformation Behavior of Duplex Structured Mg–Li–Al–Sr Alloy. J. Mater. Sci. Technol. 2016;32:1289–1296. doi: 10.1016/j.jmst.2016.11.015. DOI
Ch Z., Li Z., Yu C. Hot deformation behavior of an extruded Mg–Li–Zn–RE alloy. Mater. Sci. Eng. A Struct. 2011;528:961–966.
Bajargan G., Singh G., Ramamurty U. Effect of Li addition on the plastic deformation behaviour of AZ31 magnesium alloy. Mater. Sci. Eng. A Struct. 2016;662:492–505. doi: 10.1016/j.msea.2016.03.087. DOI
Hao M., Cheng W., Wang L., Mostaed E., Bian L., Wang H., Niu X. Texture evolution in Mg-8Sn-1Zn-1Al alloy during hot compression via competition between twinning and dynamic precipitation. Mater. Sci. Eng. A Struct. 2019;748:418–427. doi: 10.1016/j.msea.2019.01.108. DOI
Askariani S.A., Pishbin S.M.H. Hot Deformation Behavior of Mg-4Li-1Al Alloy via Hot Compression Tests. J. Alloy Compd. 2016;688:1058–1065. doi: 10.1016/j.jallcom.2016.07.049. DOI
Trojanová Z., Droz Z., Lukáč P., Chmelík F. Deformation behaviour of Mg–Li alloys at elevated temperatures. Mater. Sci. Eng. A Struct. 2005;410–411:148–151. doi: 10.1016/j.msea.2005.08.088. DOI
Wu C., Han S. Hot Deformation Behavior and Dynamic Recrystallization Characteristics in a Low-Alloy High-Strength Ni- Cr-Mo-V Steel. Acta Metal. Sin Engl. 2018;31:963–974. doi: 10.1007/s40195-018-0729-1. DOI
Król M. Magnesium–lithium alloys with TiB and Sr additions. J. Therm. Anal. Calorim. 2019;138:4237–4245. doi: 10.1007/s10973-019-08341-2. DOI
Król M., Snopiński P., Czech A. The phase transitions in selective laser-melted 18-NI (300-grade) maraging steel. J. Therm. Anal. Calorim. 2020 doi: 10.1007/s10973-020-09316-4. DOI
Liu G., Xie W., Hadadzadeh A., Wei G., Ma Z., Liu J., Yang Y., Xie W., Peng X., Wells M. Hot deformation behavior and processing map of a superlight dual-phase Mg–Li alloy. J. Alloy Compd. 2018;766:460–469. doi: 10.1016/j.jallcom.2018.07.024. DOI
Sakai T., Jonas J.J. Overview no. 35 Dynamic recrystallization: Mechanical and microstructural considerations. Acta Metal. 1984;32:189–209. doi: 10.1016/0001-6160(84)90049-X. DOI
Spigarelli S., Mehtedi M.E. High-Temperature Deformation and Creep in Mg Wrought Alloys. Scripta Mater. 2010;63:704–709. doi: 10.1016/j.scriptamat.2009.12.034. DOI
Hajnyš J., Pagáč M., Mesicek J., Petrů J., Krol M. Influence of scanning strategies parameters on residual stress in SLM process according to bridge curvature method for stainless steel AISI 316L. Materials. 2020;13:1659. doi: 10.3390/ma13071659. PubMed DOI PMC
Cai J., Li F.G., Liu T.Y., Chen B., Hen M. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain. Mater. Des. 2011;32:1144–1151. doi: 10.1016/j.matdes.2010.11.004. DOI
Dieter E.G. Mechanical Metallurgy. 2nd ed. McGraw Hill Publishing; New York, NY, USA: 1976.
Quan G.Z., Shi Y., Wang Y.X., Kang B.S., Ku T.W., Songet W.J. Constitutive modeling for the dynamic recrystallization evolution of AZ80 magnesium alloy based on stressestrain data. Mater. Sci. Eng. A Struct. 2011;528:8051–8059. doi: 10.1016/j.msea.2011.07.064. DOI
Chen Z., Tong R., Dong Z. Plastic Flow Characteristics of an Extruded Mg-Li-Zn-RE Alloy. Rare Metal. Mater. Eng. 2013;42:1779–1784.
Lv B.J., Peng J., Wang Y.J., An X.Q., Zhong L.P., Tang A.T., Pan F.S. Dynamic recrystallization behavior and hot workability of Mge2.0Zne0.3Zre0.9Y alloy by using hot compression test. Mater. Des. 2014;53:357–365. doi: 10.1016/j.matdes.2013.07.016. DOI
Prasad Y.V.R.K., Rao K.P., Hort N., Kainer K.U. Hot working parameters and mechanisms in as-cast mge3sne1ca alloy. Mater. Lett. 2008;62:4207–4209. doi: 10.1016/j.matlet.2008.06.035. DOI
Xu T.C., Peng X.D., Qin J., Chen Y.F., Yang Y., Wei G.B. Dynamic Recrystallization Behavior of Mg-Li-Al-Nd Duplex Alloy During Hot Compression. J. Alloy Compd. 2015;639:79–88. doi: 10.1016/j.jallcom.2015.03.144. DOI
Sivakesavam O., Prasad Y.V.R.K. Characteristics of superplasticity domain in the processing map for hot working of as-cast Mge11.5Lie1.5Al alloy. Mater. Sci. Eng. A Struct. 2002;323:270–277. doi: 10.1016/S0921-5093(01)01392-2. DOI
Liu J.W., Zhao Z.G., Lu S.Q. Microstructure evolution and constitutive equation for the hot deformation of LZ91 Mg alloy. Catal. Today. 2018;318:119–125.
Hlinka J., Kraus M., Hajnys J., Pagac M., Petrů J., Brytan Z., Tański T. Complex Corrosion Properties of AISI 316L Steel Prepared by 3D Printing Technology for Possible Implant Applications. Materials. 2020;13:1527. doi: 10.3390/ma13071527. PubMed DOI PMC
Guo Y., Xuanyuan Y., Lia C., Yang S. Characterization of Hot Deformation Behavior and Processing Maps of Mg-3Sn-2Al-1Zn-5Li Magnesium Alloy. Metals. 2019;9:1262. doi: 10.3390/met9121262. DOI
Jiang L., Huang W., Zhang D., Guo F., Xue H., Xu J., Pan F. Effect of Sn on the microstructure evolution of AZ80 magnesium alloy during hot compression. J. Alloy Compd. 2017;727:205–214. doi: 10.1016/j.jallcom.2017.07.225. DOI
Wei G., Peng X., Hadadzadeh A., Mahmoodkhani Y., Xie W., Yang Y., Wells M.A. Constitutive modelling of Mg–9Li–3Al–2Sr–2Y at elevated temperatures. Mech. Mater. 2015;89:241–253. doi: 10.1016/j.mechmat.2015.05.006. DOI
Srinivasan N., Prasad Y.V.R.K., Rao P.R. Hot Deformation Behaviour of Mg-3Al Alloy-A Study Using Processing Map. Mater. Sci. Eng. A Struct. 2008;476:146–156. doi: 10.1016/j.msea.2007.04.103. DOI
Zou Y., Zhang L., Li Y., Wang H., Liu J., Liaw P.K., Bei H., Zhang Z. Improvement of Mechanical Behaviors of a Superlight Mg-Li Base Alloy by Duplex Phases and Fine Precipitates. J. Alloy Compd. 2018;735:2625–2633. doi: 10.1016/j.jallcom.2017.12.025. DOI
He J., Jiang B., Yu X., Xu J., Jiang Z., Liu B., Pan F. Strain Path Dependence of Texture and Property Evolutions on Rolled Mg-Li-Al- Zn Alloy Possessed of an Asymmetric Texture. J. Alloy Compd. 2017;698:771–785. doi: 10.1016/j.jallcom.2016.12.205. DOI
Prasad Y.V.R.K., Seshacharyulu T. Modelling of hot deformation for microstructural control. Int. Mater. Rev. 1998;43:243–258. doi: 10.1179/imr.1998.43.6.243. DOI
Shalbafi M., Roumina R., Mahmudi R. Hot deformation of the extruded Mge10Lie1Zn alloy: Constitutive analysis and processing maps. J. Alloys Compd. 2017;696:1269–1277. doi: 10.1016/j.jallcom.2016.12.087. DOI
Zhou Y., Chen Z., Ji J., Sun Z. Effects of second phases on deformation behavior and dynamic recrystallization of as-cast Mg-4.3Li-4.1Zn-1.4Y alloy during hot compression. J. Alloy Compd. 2019;770:540–548. doi: 10.1016/j.jallcom.2018.08.129. DOI