Electrofreezing of Liquid Ammonia

. 2022 Oct 27 ; 13 (42) : 9889-9894. [epub] 20221018

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36255376

Here we prove that, in addition to temperature and pressure, another important thermodynamic variable permits the exploration of the phase diagram of ammonia: the electric field. By means of (path integral) ab initio molecular dynamics simulations, we predict that, upon applying intense electric fields on ammonia, the electrofreezing phenomenon occurs, leading the liquid toward a novel ferroelectric solid phase. This study proves that electric fields can generally be exploited as the access key to otherwise-unreachable regions in phase diagrams, unveiling the existence of new condensed-phase structures. Furthermore, the reported findings have manifold practical implications, from the safe storage and transportation of ammonia to the understanding of the solid structures this compound forms in planetary contexts.

Zobrazit více v PubMed

Yang B.; Ding W.; Zhang H.; Zhang S. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687. 10.1039/D0EE02263B. DOI

Atreya S. K.; Mahaffy P. R.; Niemann H. B.; Wong M. H.; Owen T. C. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planetary and Space Science 2003, 51, 105–112. 10.1016/S0032-0633(02)00144-7. PubMed DOI

Hofstadter M. D.; Muhleman D. O. Latitudinal variations of ammonia in the atmosphere of Uranus: An analysis of microwave observations. Icarus 1989, 81, 396–412. 10.1016/0019-1035(89)90060-2. DOI

Lindal G. F. The atomosphere of Neptune: an analysis of radio occultation data acquired with Voyager 2. Astron. J. 1992, 103, 967–982. 10.1086/116119. DOI

Becker H. N.; et al. Small lightning flashes from shallow electrical storms on Jupiter. Nature 2020, 584, 55–58. 10.1038/s41586-020-2532-1. PubMed DOI

Sasselov D. D. Extrasolar planets. Nature 2008, 451, 29–31. 10.1038/451029a. PubMed DOI

Hewat A. W.; Riekel C. The crystal structure of deuteroammonia between 2 and 180 K by neutron powder profile refinement. Acta Crystallogr. A 1979, A35, 569–571. 10.1107/S0567739479001340. DOI

Datchi F.; Ninet S.; Gauthier M.; Saitta A. M.; Canny B.; Decremps F. Solid ammonia at high pressure: A single-crystal x-ray diffraction study to 123 GPa. Phys. Rev. B 2006, 73, 174111.10.1103/PhysRevB.73.174111. DOI

Loveday J. S.; Nelmes R. J.; Marshall W. G.; Besson J. M.; Klotz S.; Hamel G. Structure of deuterated ammonia IV. Phys. Rev. Lett. 1996, 76, 74.10.1103/PhysRevLett.76.74. PubMed DOI

Cavazzoni C.; Chiarotti G. L.; Scandolo S.; Tosatti E.; Bernasconi M.; Parrinello M. Superionic and metallic states of water and ammonia at giant planet conditions. Science 1999, 283, 44–46. 10.1126/science.283.5398.44. PubMed DOI

Ninet S.; Datchi F.; Saitta A. M. Proton disorder and superionicity in hot dense ammonia ice. Phys. Rev. Lett. 2012, 108, 165702.10.1103/PhysRevLett.108.165702. PubMed DOI

Pickard C. J.; Needs R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 2008, 7, 775–779. 10.1038/nmat2261. PubMed DOI

Ninet S.; Datchi F.; Dumas P.; Mezouar M.; Garbarino G.; Mafety A.; Pickard C. J.; Needs R. J.; Saitta A. M. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 2014, 89, 174103.10.1103/PhysRevB.89.174103. DOI

Choi E. M.; Yoon Y. H.; Lee S.; Kang H. Freezing transition of interfacial water at room temperature under electric fields. Phys. Rev. Lett. 2005, 95, 085701.10.1103/PhysRevLett.95.085701. PubMed DOI

Erratum: Freezing Transition of Interfacial Water at Room Temperature under Electric Fields [Phys. Rev. Lett. 95, 085701 (2005)]. Phys. Rev. Lett. 2006, 96, 039905. 10.1103/PhysRevLett.96.039905 PubMed

Gavish M.; Wang J. L.; Eisenstein M.; Lahav M.; Leiserowitz L. The role of crystal polarity in α-amino acid crystals for induced nucleation of ice. Science 1992, 256, 815–818. 10.1126/science.256.5058.815. PubMed DOI

Braslavsky I.; Lipson S. G. Electrofreezing effect and nucleation of ice crystals in free growth experiments. Appl. Phys. Lett. 1998, 72, 264.10.1063/1.120705. DOI

Jha P. K.; et al. A review on effect of DC voltage on crystallization process in food systems. Innov. Food Sci. Emerg. 2017, 42, 204–219. 10.1016/j.ifset.2017.06.002. DOI

Svishchev I. M.; Kusalik P. G. Crystallization of liquid water in a molecular dynamics simulation. Phys. Rev. Lett. 1994, 73, 975.10.1103/PhysRevLett.73.975. PubMed DOI

Svishchev I. M.; Kusalik P. G. Electrofreezing of liquid water: A microscopic perspective. J. Am. Chem. Soc. 1996, 118, 649–654. 10.1021/ja951624l. DOI

Peleg Y.; Yoffe A.; Ehre D.; Lahav M.; Lubomirsky I. The role of the electric field in electrofreezing. J. Phys. Chem. C 2019, 123, 30443–30446. 10.1021/acs.jpcc.9b09399. DOI

Saitta A. M.; Saija F.; Giaquinta P. V. Ab initio molecular dynamics study of dissociation of water under an electric field. Phys. Rev. Lett. 2012, 108, 207801.10.1103/PhysRevLett.108.207801. PubMed DOI

Cassone G. Nuclear quantum effects largely influence molecular dissociation and proton transfer in liquid water under an electric field. J. Phys. Chem. Lett. 2020, 11, 8983–8988. 10.1021/acs.jpclett.0c02581. PubMed DOI

Zhu W.; et al. Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nat. Commun. 2019, 10, 1925.10.1038/s41467-019-09950-z. PubMed DOI PMC

Cassone G.; Sponer J.; Trusso S.; Saija F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 2019, 21, 21205–21212. 10.1039/C9CP03101D. PubMed DOI

Stuve E. M. Ionization of water in interfacial electric fields: an electrochemical view. Chem. Phys. Lett. 2012, 519–520, 1–17. 10.1016/j.cplett.2011.09.040. DOI

Hammadi Z.; Descoins M.; Salançon E.; Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012, 101, 243110.10.1063/1.4770516. DOI

Laporte S.; Pietrucci F.; Guyot F.; Saitta A. M. Formic acid synthesis in a water–mineral system: major role of the interface. J. Phys. Chem. C 2020, 124, 5125–5131. 10.1021/acs.jpcc.9b09979. DOI

Creazzo F.; Luber S. Explicit solvent effects on (110) ruthenium oxide surface wettability: Structural, electronic and mechanical properties of rutile RuO2 by means of spin-polarized DFT-MD. Appl. Surf. Sci. 2021, 570, 150993.10.1016/j.apsusc.2021.150993. DOI

Geissler P. L.; Dellago C.; Chandler D.; Hutter J.; Parrinello M. Autoionization in liquid water. Science 2001, 291, 2121–2124. 10.1126/science.1056991. PubMed DOI

Fried S. D.; Boxer S. G. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. Acc. Chem. Res. 2015, 48, 998–1006. 10.1021/ar500464j. PubMed DOI PMC

Laage D.; Elsaesser T.; Hynes J. T. Perspective: Structure and ultrafast dynamics of biomolecular hydration shells. Struct. Dynam. 2017, 4, 044018.10.1063/1.4981019. PubMed DOI PMC

Kundu A.; Dahms F.; Fingerhut B. P.; Nibbering E. T. J.; Pines E.; Elsaesser T. Hydrated excess protons in acetonitrile/water mixtures: Solvation species and ultrafast proton motions. J. Phys. Chem. Lett. 2019, 10, 2287–2294. 10.1021/acs.jpclett.9b00756. PubMed DOI

Aragones A. C.; Haworth N. L.; Darwish N.; Ciampi S.; Bloomfield N. J.; Wallace G. G.; Diez-Perez I.; Coote M. L. Electrostatic catalysis of a Diels-Alder reaction. Nature 2016, 531, 88–91. 10.1038/nature16989. PubMed DOI

Shaik S.; Mandal D.; Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8, 1091–1098. 10.1038/nchem.2651. PubMed DOI

Shaik S.; Danovich D.; Joy J.; Wang Z.; Stuyver T. Electric-field mediated chemistry: Uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142, 12551–12562. 10.1021/jacs.0c05128. PubMed DOI

Saitta A. M.; Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 13768–13773. 10.1073/pnas.1402894111. PubMed DOI PMC

Cassone G.; Pietrucci F.; Saija F.; Guyot F.; Saitta A. M. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chem. Sci. 2017, 8, 2329–2336. 10.1039/C6SC04269D. PubMed DOI PMC

Che F.; Gray J. T.; Ha S.; Kruse N.; Scott S. L.; McEwen J.-S. Elucidating the roles of electric fields in catalysis: A perspective. ACS Catal. 2018, 8, 5153–5174. 10.1021/acscatal.7b02899. DOI

Huang X.; et al. Electric field–induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.10.1126/sciadv.aaw3072. PubMed DOI PMC

Futera Z.; Tse J. S.; English N. J. Possibility of realizing superionic ice VII in external electric fields of planetary bodies. Sci. Adv. 2020, 6 (21), eaaz291510.1126/sciadv.aaz2915. PubMed DOI PMC

Becke A. D. Density-Functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098.10.1103/PhysRevA.38.3098. PubMed DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.10.1103/PhysRevB.37.785. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of Density Functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Chattopadhyay A.; Boxer S. G. Vibrational Stark effect spectroscopy. J. Am. Chem. Soc. 1995, 117, 1449–1450. 10.1021/ja00109a038. DOI

Bromberg A.; Kimel S.; Ron A. Infrared spectrum of liquid and crystalline ammonia. Chem. Phys. Lett. 1977, 46, 262–266. 10.1016/0009-2614(77)85257-3. DOI

Zheng W.; Kaiser R. I. An infrared spectroscopy study of the phase transition in solid ammonia. Chem. Phys. Lett. 2007, 440, 229–234. 10.1016/j.cplett.2007.04.070. DOI

O’Reilly D. E.; Peterson E. M.; Scheie C. E. Self-diffusion in liquid ammonia and deuteroammonia. J. Chem. Phys. 1973, 58, 4072.10.1063/1.1678963. DOI

Boese A. D.; Chandra A.; Martin J. M. L.; Marx D. From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia. J. Chem. Phys. 2003, 119, 5965.10.1063/1.1599338. DOI

Queyroux J.-A.; Ninet S.; Weck G.; Garbarino G.; Mezouar M.; Datchi F. Structure of liquid ammonia at high pressures and temperatures. Phys. Rev. B 2019, 100, 224104.10.1103/PhysRevB.100.224104. DOI

Errington J. R.; Debenedetti P. G. Relationship between structural order and the anomalies of liquid water. Nature 2001, 409, 318–321. 10.1038/35053024. PubMed DOI

Steinhardt P. J.; Nelson D. R.; Ronchetti M. Icosahedral bond orientational order in supercooled liquids. Phys. Rev. Lett. 1981, 47, 1297.10.1103/PhysRevLett.47.1297. DOI

Reisman S.; Giovambattista N. Glass and liquid phase diagram of a polyamorphic monatomic system. J. Chem. Phys. 2013, 138, 064509.10.1063/1.4790404. PubMed DOI

Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Liquid methanol under a static electric field. J. Chem. Phys. 2015, 142, 054502.10.1063/1.4907010. PubMed DOI

Cassone G.; Sofia A.; Rinaldi G.; Sponer J. Catalyst-free hydrogen synthesis from liquid ethanol: An ab initio molecular dynamics study. J. Phys. Chem. C 2019, 123, 9202–9208. 10.1021/acs.jpcc.9b01037. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hydrogen Bonds under Electric Fields with Quantum Accuracy

. 2025 May 08 ; 129 (18) : 4077-4092. [epub] 20250429

The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions

. 2023 Sep 07 ; 14 (35) : 7808-7813. [epub] 20230825

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...