Electrofreezing of Liquid Ammonia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36255376
PubMed Central
PMC9619927
DOI
10.1021/acs.jpclett.2c02576
Knihovny.cz E-zdroje
- MeSH
- amoniak * chemie MeSH
- elektřina MeSH
- simulace molekulární dynamiky * MeSH
- teplota MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amoniak * MeSH
Here we prove that, in addition to temperature and pressure, another important thermodynamic variable permits the exploration of the phase diagram of ammonia: the electric field. By means of (path integral) ab initio molecular dynamics simulations, we predict that, upon applying intense electric fields on ammonia, the electrofreezing phenomenon occurs, leading the liquid toward a novel ferroelectric solid phase. This study proves that electric fields can generally be exploited as the access key to otherwise-unreachable regions in phase diagrams, unveiling the existence of new condensed-phase structures. Furthermore, the reported findings have manifold practical implications, from the safe storage and transportation of ammonia to the understanding of the solid structures this compound forms in planetary contexts.
Zobrazit více v PubMed
Yang B.; Ding W.; Zhang H.; Zhang S. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 2021, 14, 672–687. 10.1039/D0EE02263B. DOI
Atreya S. K.; Mahaffy P. R.; Niemann H. B.; Wong M. H.; Owen T. C. Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets. Planetary and Space Science 2003, 51, 105–112. 10.1016/S0032-0633(02)00144-7. PubMed DOI
Hofstadter M. D.; Muhleman D. O. Latitudinal variations of ammonia in the atmosphere of Uranus: An analysis of microwave observations. Icarus 1989, 81, 396–412. 10.1016/0019-1035(89)90060-2. DOI
Lindal G. F. The atomosphere of Neptune: an analysis of radio occultation data acquired with Voyager 2. Astron. J. 1992, 103, 967–982. 10.1086/116119. DOI
Becker H. N.; et al. Small lightning flashes from shallow electrical storms on Jupiter. Nature 2020, 584, 55–58. 10.1038/s41586-020-2532-1. PubMed DOI
Sasselov D. D. Extrasolar planets. Nature 2008, 451, 29–31. 10.1038/451029a. PubMed DOI
Hewat A. W.; Riekel C. The crystal structure of deuteroammonia between 2 and 180 K by neutron powder profile refinement. Acta Crystallogr. A 1979, A35, 569–571. 10.1107/S0567739479001340. DOI
Datchi F.; Ninet S.; Gauthier M.; Saitta A. M.; Canny B.; Decremps F. Solid ammonia at high pressure: A single-crystal x-ray diffraction study to 123 GPa. Phys. Rev. B 2006, 73, 174111.10.1103/PhysRevB.73.174111. DOI
Loveday J. S.; Nelmes R. J.; Marshall W. G.; Besson J. M.; Klotz S.; Hamel G. Structure of deuterated ammonia IV. Phys. Rev. Lett. 1996, 76, 74.10.1103/PhysRevLett.76.74. PubMed DOI
Cavazzoni C.; Chiarotti G. L.; Scandolo S.; Tosatti E.; Bernasconi M.; Parrinello M. Superionic and metallic states of water and ammonia at giant planet conditions. Science 1999, 283, 44–46. 10.1126/science.283.5398.44. PubMed DOI
Ninet S.; Datchi F.; Saitta A. M. Proton disorder and superionicity in hot dense ammonia ice. Phys. Rev. Lett. 2012, 108, 165702.10.1103/PhysRevLett.108.165702. PubMed DOI
Pickard C. J.; Needs R. J. Highly compressed ammonia forms an ionic crystal. Nat. Mater. 2008, 7, 775–779. 10.1038/nmat2261. PubMed DOI
Ninet S.; Datchi F.; Dumas P.; Mezouar M.; Garbarino G.; Mafety A.; Pickard C. J.; Needs R. J.; Saitta A. M. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 2014, 89, 174103.10.1103/PhysRevB.89.174103. DOI
Choi E. M.; Yoon Y. H.; Lee S.; Kang H. Freezing transition of interfacial water at room temperature under electric fields. Phys. Rev. Lett. 2005, 95, 085701.10.1103/PhysRevLett.95.085701. PubMed DOI
Erratum: Freezing Transition of Interfacial Water at Room Temperature under Electric Fields [Phys. Rev. Lett. 95, 085701 (2005)]. Phys. Rev. Lett. 2006, 96, 039905. 10.1103/PhysRevLett.96.039905 PubMed
Gavish M.; Wang J. L.; Eisenstein M.; Lahav M.; Leiserowitz L. The role of crystal polarity in α-amino acid crystals for induced nucleation of ice. Science 1992, 256, 815–818. 10.1126/science.256.5058.815. PubMed DOI
Braslavsky I.; Lipson S. G. Electrofreezing effect and nucleation of ice crystals in free growth experiments. Appl. Phys. Lett. 1998, 72, 264.10.1063/1.120705. DOI
Jha P. K.; et al. A review on effect of DC voltage on crystallization process in food systems. Innov. Food Sci. Emerg. 2017, 42, 204–219. 10.1016/j.ifset.2017.06.002. DOI
Svishchev I. M.; Kusalik P. G. Crystallization of liquid water in a molecular dynamics simulation. Phys. Rev. Lett. 1994, 73, 975.10.1103/PhysRevLett.73.975. PubMed DOI
Svishchev I. M.; Kusalik P. G. Electrofreezing of liquid water: A microscopic perspective. J. Am. Chem. Soc. 1996, 118, 649–654. 10.1021/ja951624l. DOI
Peleg Y.; Yoffe A.; Ehre D.; Lahav M.; Lubomirsky I. The role of the electric field in electrofreezing. J. Phys. Chem. C 2019, 123, 30443–30446. 10.1021/acs.jpcc.9b09399. DOI
Saitta A. M.; Saija F.; Giaquinta P. V. Ab initio molecular dynamics study of dissociation of water under an electric field. Phys. Rev. Lett. 2012, 108, 207801.10.1103/PhysRevLett.108.207801. PubMed DOI
Cassone G. Nuclear quantum effects largely influence molecular dissociation and proton transfer in liquid water under an electric field. J. Phys. Chem. Lett. 2020, 11, 8983–8988. 10.1021/acs.jpclett.0c02581. PubMed DOI
Zhu W.; et al. Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nat. Commun. 2019, 10, 1925.10.1038/s41467-019-09950-z. PubMed DOI PMC
Cassone G.; Sponer J.; Trusso S.; Saija F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 2019, 21, 21205–21212. 10.1039/C9CP03101D. PubMed DOI
Stuve E. M. Ionization of water in interfacial electric fields: an electrochemical view. Chem. Phys. Lett. 2012, 519–520, 1–17. 10.1016/j.cplett.2011.09.040. DOI
Hammadi Z.; Descoins M.; Salançon E.; Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012, 101, 243110.10.1063/1.4770516. DOI
Laporte S.; Pietrucci F.; Guyot F.; Saitta A. M. Formic acid synthesis in a water–mineral system: major role of the interface. J. Phys. Chem. C 2020, 124, 5125–5131. 10.1021/acs.jpcc.9b09979. DOI
Creazzo F.; Luber S. Explicit solvent effects on (110) ruthenium oxide surface wettability: Structural, electronic and mechanical properties of rutile RuO2 by means of spin-polarized DFT-MD. Appl. Surf. Sci. 2021, 570, 150993.10.1016/j.apsusc.2021.150993. DOI
Geissler P. L.; Dellago C.; Chandler D.; Hutter J.; Parrinello M. Autoionization in liquid water. Science 2001, 291, 2121–2124. 10.1126/science.1056991. PubMed DOI
Fried S. D.; Boxer S. G. Measuring electric fields and noncovalent interactions using the vibrational Stark effect. Acc. Chem. Res. 2015, 48, 998–1006. 10.1021/ar500464j. PubMed DOI PMC
Laage D.; Elsaesser T.; Hynes J. T. Perspective: Structure and ultrafast dynamics of biomolecular hydration shells. Struct. Dynam. 2017, 4, 044018.10.1063/1.4981019. PubMed DOI PMC
Kundu A.; Dahms F.; Fingerhut B. P.; Nibbering E. T. J.; Pines E.; Elsaesser T. Hydrated excess protons in acetonitrile/water mixtures: Solvation species and ultrafast proton motions. J. Phys. Chem. Lett. 2019, 10, 2287–2294. 10.1021/acs.jpclett.9b00756. PubMed DOI
Aragones A. C.; Haworth N. L.; Darwish N.; Ciampi S.; Bloomfield N. J.; Wallace G. G.; Diez-Perez I.; Coote M. L. Electrostatic catalysis of a Diels-Alder reaction. Nature 2016, 531, 88–91. 10.1038/nature16989. PubMed DOI
Shaik S.; Mandal D.; Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8, 1091–1098. 10.1038/nchem.2651. PubMed DOI
Shaik S.; Danovich D.; Joy J.; Wang Z.; Stuyver T. Electric-field mediated chemistry: Uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. J. Am. Chem. Soc. 2020, 142, 12551–12562. 10.1021/jacs.0c05128. PubMed DOI
Saitta A. M.; Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 13768–13773. 10.1073/pnas.1402894111. PubMed DOI PMC
Cassone G.; Pietrucci F.; Saija F.; Guyot F.; Saitta A. M. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chem. Sci. 2017, 8, 2329–2336. 10.1039/C6SC04269D. PubMed DOI PMC
Che F.; Gray J. T.; Ha S.; Kruse N.; Scott S. L.; McEwen J.-S. Elucidating the roles of electric fields in catalysis: A perspective. ACS Catal. 2018, 8, 5153–5174. 10.1021/acscatal.7b02899. DOI
Huang X.; et al. Electric field–induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.10.1126/sciadv.aaw3072. PubMed DOI PMC
Futera Z.; Tse J. S.; English N. J. Possibility of realizing superionic ice VII in external electric fields of planetary bodies. Sci. Adv. 2020, 6 (21), eaaz291510.1126/sciadv.aaz2915. PubMed DOI PMC
Becke A. D. Density-Functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098.10.1103/PhysRevA.38.3098. PubMed DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.10.1103/PhysRevB.37.785. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of Density Functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
Chattopadhyay A.; Boxer S. G. Vibrational Stark effect spectroscopy. J. Am. Chem. Soc. 1995, 117, 1449–1450. 10.1021/ja00109a038. DOI
Bromberg A.; Kimel S.; Ron A. Infrared spectrum of liquid and crystalline ammonia. Chem. Phys. Lett. 1977, 46, 262–266. 10.1016/0009-2614(77)85257-3. DOI
Zheng W.; Kaiser R. I. An infrared spectroscopy study of the phase transition in solid ammonia. Chem. Phys. Lett. 2007, 440, 229–234. 10.1016/j.cplett.2007.04.070. DOI
O’Reilly D. E.; Peterson E. M.; Scheie C. E. Self-diffusion in liquid ammonia and deuteroammonia. J. Chem. Phys. 1973, 58, 4072.10.1063/1.1678963. DOI
Boese A. D.; Chandra A.; Martin J. M. L.; Marx D. From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia. J. Chem. Phys. 2003, 119, 5965.10.1063/1.1599338. DOI
Queyroux J.-A.; Ninet S.; Weck G.; Garbarino G.; Mezouar M.; Datchi F. Structure of liquid ammonia at high pressures and temperatures. Phys. Rev. B 2019, 100, 224104.10.1103/PhysRevB.100.224104. DOI
Errington J. R.; Debenedetti P. G. Relationship between structural order and the anomalies of liquid water. Nature 2001, 409, 318–321. 10.1038/35053024. PubMed DOI
Steinhardt P. J.; Nelson D. R.; Ronchetti M. Icosahedral bond orientational order in supercooled liquids. Phys. Rev. Lett. 1981, 47, 1297.10.1103/PhysRevLett.47.1297. DOI
Reisman S.; Giovambattista N. Glass and liquid phase diagram of a polyamorphic monatomic system. J. Chem. Phys. 2013, 138, 064509.10.1063/1.4790404. PubMed DOI
Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Liquid methanol under a static electric field. J. Chem. Phys. 2015, 142, 054502.10.1063/1.4907010. PubMed DOI
Cassone G.; Sofia A.; Rinaldi G.; Sponer J. Catalyst-free hydrogen synthesis from liquid ethanol: An ab initio molecular dynamics study. J. Phys. Chem. C 2019, 123, 9202–9208. 10.1021/acs.jpcc.9b01037. DOI
Hydrogen Bonds under Electric Fields with Quantum Accuracy
The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions