The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37623433
PubMed Central
PMC10494223
DOI
10.1021/acs.jpclett.3c01810
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Among the many prototypical acid-base systems, ammonia aqueous solutions hold a privileged place, owing to their omnipresence in various planets and their universal solvent character. Although the theoretical optimal water-ammonia molar ratio to form NH4+ and OH- ion pairs is 50:50, our ab initio molecular dynamics simulations show that the tendency of forming these ionic species is inversely (directly) proportional to the amount of ammonia (water) in ammonia aqueous solutions, up to a water-ammonia molar ratio of ∼75:25. Here we prove that the reactivity of these liquid mixtures is rooted in peculiar microscopic patterns emerging at the H-bonding scale, where the highly orchestrated motion of 5 solvating molecules modulates proton transfer events through local electric fields. This study demonstrates that the reaction of water with NH3 is catalyzed by a small cluster of water molecules, in which an H atom possesses a high local electric field, much like the effect observed in catalysis by water droplets [ PNAS 2023, 120, e2301206120].
Zobrazit více v PubMed
Caldin E.; Gold V.. Proton-Transfer Reactions, 1st ed.; Springer: New York, NY, 1975.
Bountis T.Proton Transfer in Hydrogen-Bonded Systems, 1st ed.; Springer: New York, NY, 1992.
Migliore A.; Polizzi N. F.; Therien M. J.; Beratan D. N. Biochemistry and Theory of Proton-Coupled Electron Transfer. Chem. Rev. 2014, 114, 3381–3465. 10.1021/cr4006654. PubMed DOI PMC
Harrison R. M.; Van Grieken R.. Atmospheric Particles, 1st ed.; Wiley: 1998.
Engdahl A.; Nelander B.; Åstrand P. Complex formation between water and formamide. J. Chem. Phys. 1993, 99, 4894–4907. 10.1063/1.466039. DOI
Naden Robinson V.; Hermann A. Plastic and superionic phases in ammonia-water mixtures at high pressures and temperatures. J. Phys.: Condens. Matter 2020, 32, 184004.10.1088/1361-648X/ab68f7. PubMed DOI
Pietrucci F.; Saitta A. M. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15030–15035. 10.1073/pnas.1512486112. PubMed DOI PMC
Geissler P. L.; Dellago C.; Chandler D.; Hutter J.; Parrinello M. Autoionization in Liquid Water. Science 2001, 291, 2121–2124. 10.1126/science.1056991. PubMed DOI
Cassone G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J. Phys. Chem. Lett. 2020, 11, 8983–8988. 10.1021/acs.jpclett.0c02581. PubMed DOI
Ruiz-Lopez M. F.; Francisco J. S.; Martins-Costa M. T. C.; Anglada J. M. Molecular reactions at aqueous interfaces. Nature Reviews Chemistry 2020, 4, 459–475. 10.1038/s41570-020-0203-2. PubMed DOI
Che F.; Gray J. T.; Ha S.; Kruse N.; Scott S. L.; McEwen J.-S. Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catal. 2018, 8, 5153–5174. 10.1021/acscatal.7b02899. DOI
Saitta A. M.; Saija F.; Giaquinta P. V. Ab Initio Molecular Dynamics Study of Dissociation of Water under an Electric Field. Phys. Rev. Lett. 2012, 108, 207801.10.1103/PhysRevLett.108.207801. PubMed DOI
Cassone G.; Sponer J.; Saija F. Ab Initio Molecular Dynamics Studies of the Electric-Field-Induced Catalytic Effects on Liquids. Top. Catal. 2022, 65, 40–58. 10.1007/s11244-021-01487-0. DOI
Futera Z.; Tse J. S.; English N. J. Possibility of realizing superionic ice VII in external electric fields of planetary bodies. Science Advances 2020, 6, eaaz2915.10.1126/sciadv.aaz2915. PubMed DOI PMC
Stuve E. M. Ionization of water in interfacial electric fields: An electrochemical view. Chem. Phys. Lett. 2012, 519–520, 1–17. 10.1016/j.cplett.2011.09.040. DOI
Hammadi Z.; Descoins M.; Salançon E.; Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012, 101, 243110.10.1063/1.4770516. DOI
Laage D.; Elsaesser T.; Hynes J. T. Perspective: Structure and ultrafast dynamics of biomolecular hydration shells. Structural Dynamics 2017, 4, 044018.10.1063/1.4981019. PubMed DOI PMC
Kundu A.; Dahms F.; Fingerhut B. P.; Nibbering E. T. J.; Pines E.; Elsaesser T. Hydrated Excess Protons in Acetonitrile/Water Mixtures: Solvation Species and Ultrafast Proton Motions. J. Phys. Chem. Lett. 2019, 10, 2287–2294. 10.1021/acs.jpclett.9b00756. PubMed DOI
Xiong H.; Lee J. K.; Zare R. N.; Min W. Strong Electric Field Observed at the Interface of Aqueous Microdroplets. J. Phys. Chem. Lett. 2020, 11, 7423–7428. 10.1021/acs.jpclett.0c02061. PubMed DOI
Lee J. K.; Samanta D.; Nam H. G.; Zare R. N. Micrometer-Sized Water Droplets Induce Spontaneous Reduction. J. Am. Chem. Soc. 2019, 141, 10585–10589. 10.1021/jacs.9b03227. PubMed DOI
Hao H.; Leven I.; Head-Gordon T. Can electric fields drive chemistry for an aqueous microdroplet?. Nat. Commun. 2022, 13, 280.10.1038/s41467-021-27941-x. PubMed DOI PMC
Chattopadhyay A.; Boxer S. G. Vibrational Stark Effect Spectroscopy. J. Am. Chem. Soc. 1995, 117, 1449–1450. 10.1021/ja00109a038. DOI
Fried S. D.; Boxer S. G. Measuring Electric Fields and Noncovalent Interactions Using the Vibrational Stark Effect. Acc. Chem. Res. 2015, 48, 998–1006. 10.1021/ar500464j. PubMed DOI PMC
Cassone G.; Sponer J.; Trusso S.; Saija F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 2019, 21, 21205–21212. 10.1039/C9CP03101D. PubMed DOI
Mollica Nardo V.; Cassone G.; Ponterio R. C.; Saija F.; Sponer J.; Tommasini M.; Trusso S. Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the Centrosymmetric Indigo Molecule. J. Phys. Chem. A 2020, 124, 10856–10869. 10.1021/acs.jpca.0c09791. PubMed DOI
Aragonès A. C.; Haworth N. L.; Darwish N.; Ciampi S.; Bloomfield N. J.; Wallace G. G.; Diez-Perez I.; Coote M. L. Electrostatic catalysis of a Diels–Alder reaction. Nature 2016, 531, 88–91. 10.1038/nature16989. PubMed DOI
Shaik S.; Danovich D.; Joy J.; Wang Z.; Stuyver T. Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. J. Am. Chem. Soc. 2020, 142, 12551–12562. 10.1021/jacs.0c05128. PubMed DOI
Shaik S.; Mandal D.; Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8, 1091–1098. 10.1038/nchem.2651. PubMed DOI
Cassone G.; Pietrucci F.; Saija F.; Guyot F.; Saitta A. M. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chem. Sci. 2017, 8, 2329–2336. 10.1039/C6SC04269D. PubMed DOI PMC
Saggu M.; Levinson N. M.; Boxer S. G. Experimental Quantification of Electrostatics in X-H··· Hydrogen Bonds. J. Am. Chem. Soc. 2012, 134, 18986–18997. 10.1021/ja305575t. PubMed DOI PMC
Smith J. D.; Cappa C. D.; Wilson K. R.; Cohen R. C.; Geissler P. L.; Saykally R. J. Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 14171–14174. 10.1073/pnas.0506899102. PubMed DOI PMC
Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Effect of Electric Field Orientation on the Mechanical and Electrical Properties of Water Ices: An Ab-initio Study. J. Phys. Chem. B 2014, 118, 12717–12724. 10.1021/jp507376v. PubMed DOI
Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Liquid methanol under a static electric field. J. Chem. Phys. 2015, 142, 054502.10.1063/1.4907010. PubMed DOI
Cassone G.; Sofia A.; Rinaldi G.; Sponer J. Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study. J. Phys. Chem. C 2019, 123, 9202–9208. 10.1021/acs.jpcc.9b01037. DOI
Cassone G.; Sofia A.; Sponer J.; Saitta A. M.; Saija F. Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields. Molecules 2020, 25, 3371.10.3390/molecules25153371. PubMed DOI PMC
Saitta A. M.; Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 13768–13773. 10.1073/pnas.1402894111. PubMed DOI PMC
Cassone G.; Sponer J.; Sponer J. E.; Pietrucci F.; Saitta A. M.; Saija F. Synthesis of (d)-erythrose from glycolaldehyde aqueous solutions under electric field. Chem. Commun. 2018, 54, 3211–3214. 10.1039/C8CC00045J. PubMed DOI
Cassone G.; Sponer J.; Sponer J. E.; Saija F. Electrofreezing of Liquid Ammonia. J. Phys. Chem. Lett. 2022, 13, 9889–9894. 10.1021/acs.jpclett.2c02576. PubMed DOI PMC
Emsley J. Very strong hydrogen bonding. Chem. Soc. Rev. 1980, 9, 91–124. 10.1039/cs9800900091. DOI
Dannenberg J. J. An Introduction to Hydrogen Bonding By George A. Jeffrey (University of Pittsburgh). Oxford University Press: New York and Oxford. 1997. ix + 303 pp. $60.00. ISBN 0–19–509549–9. J. Am. Chem. Soc. 1998, 120, 5604–5604. 10.1021/ja9756331. DOI
Lane J. R.; Vaida V.; Kjaergaard H. G. Calculated electronic transitions of the water ammonia complex. J. Chem. Phys. 2008, 128, 034302.10.1063/1.2814163. PubMed DOI
Hunter E. P. L.; Lias S. G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656. 10.1063/1.556018. DOI
Bankura A.; Chandra A. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures. J. Chem. Phys. 2012, 136, 114509.10.1063/1.3691602. PubMed DOI
Chen M.; Zheng L.; Santra B.; Ko H.-Y.; DiStasio R. A. Jr; Klein M. L.; Car R.; Wu X. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 2018, 10, 413–419. 10.1038/s41557-018-0010-2. PubMed DOI
Song X.; Basheer C.; Zare R. N. Making ammonia from nitrogen and water microdroplets. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2301206120.10.1073/pnas.2301206120. PubMed DOI PMC