The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions

. 2023 Sep 07 ; 14 (35) : 7808-7813. [epub] 20230825

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37623433

Among the many prototypical acid-base systems, ammonia aqueous solutions hold a privileged place, owing to their omnipresence in various planets and their universal solvent character. Although the theoretical optimal water-ammonia molar ratio to form NH4+ and OH- ion pairs is 50:50, our ab initio molecular dynamics simulations show that the tendency of forming these ionic species is inversely (directly) proportional to the amount of ammonia (water) in ammonia aqueous solutions, up to a water-ammonia molar ratio of ∼75:25. Here we prove that the reactivity of these liquid mixtures is rooted in peculiar microscopic patterns emerging at the H-bonding scale, where the highly orchestrated motion of 5 solvating molecules modulates proton transfer events through local electric fields. This study demonstrates that the reaction of water with NH3 is catalyzed by a small cluster of water molecules, in which an H atom possesses a high local electric field, much like the effect observed in catalysis by water droplets [ PNAS 2023, 120, e2301206120].

Zobrazit více v PubMed

Caldin E.; Gold V.. Proton-Transfer Reactions, 1st ed.; Springer: New York, NY, 1975.

Bountis T.Proton Transfer in Hydrogen-Bonded Systems, 1st ed.; Springer: New York, NY, 1992.

Migliore A.; Polizzi N. F.; Therien M. J.; Beratan D. N. Biochemistry and Theory of Proton-Coupled Electron Transfer. Chem. Rev. 2014, 114, 3381–3465. 10.1021/cr4006654. PubMed DOI PMC

Harrison R. M.; Van Grieken R.. Atmospheric Particles, 1st ed.; Wiley: 1998.

Engdahl A.; Nelander B.; Åstrand P. Complex formation between water and formamide. J. Chem. Phys. 1993, 99, 4894–4907. 10.1063/1.466039. DOI

Naden Robinson V.; Hermann A. Plastic and superionic phases in ammonia-water mixtures at high pressures and temperatures. J. Phys.: Condens. Matter 2020, 32, 184004.10.1088/1361-648X/ab68f7. PubMed DOI

Pietrucci F.; Saitta A. M. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15030–15035. 10.1073/pnas.1512486112. PubMed DOI PMC

Geissler P. L.; Dellago C.; Chandler D.; Hutter J.; Parrinello M. Autoionization in Liquid Water. Science 2001, 291, 2121–2124. 10.1126/science.1056991. PubMed DOI

Cassone G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J. Phys. Chem. Lett. 2020, 11, 8983–8988. 10.1021/acs.jpclett.0c02581. PubMed DOI

Ruiz-Lopez M. F.; Francisco J. S.; Martins-Costa M. T. C.; Anglada J. M. Molecular reactions at aqueous interfaces. Nature Reviews Chemistry 2020, 4, 459–475. 10.1038/s41570-020-0203-2. PubMed DOI

Che F.; Gray J. T.; Ha S.; Kruse N.; Scott S. L.; McEwen J.-S. Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catal. 2018, 8, 5153–5174. 10.1021/acscatal.7b02899. DOI

Saitta A. M.; Saija F.; Giaquinta P. V. Ab Initio Molecular Dynamics Study of Dissociation of Water under an Electric Field. Phys. Rev. Lett. 2012, 108, 207801.10.1103/PhysRevLett.108.207801. PubMed DOI

Cassone G.; Sponer J.; Saija F. Ab Initio Molecular Dynamics Studies of the Electric-Field-Induced Catalytic Effects on Liquids. Top. Catal. 2022, 65, 40–58. 10.1007/s11244-021-01487-0. DOI

Futera Z.; Tse J. S.; English N. J. Possibility of realizing superionic ice VII in external electric fields of planetary bodies. Science Advances 2020, 6, eaaz2915.10.1126/sciadv.aaz2915. PubMed DOI PMC

Stuve E. M. Ionization of water in interfacial electric fields: An electrochemical view. Chem. Phys. Lett. 2012, 519–520, 1–17. 10.1016/j.cplett.2011.09.040. DOI

Hammadi Z.; Descoins M.; Salançon E.; Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012, 101, 243110.10.1063/1.4770516. DOI

Laage D.; Elsaesser T.; Hynes J. T. Perspective: Structure and ultrafast dynamics of biomolecular hydration shells. Structural Dynamics 2017, 4, 044018.10.1063/1.4981019. PubMed DOI PMC

Kundu A.; Dahms F.; Fingerhut B. P.; Nibbering E. T. J.; Pines E.; Elsaesser T. Hydrated Excess Protons in Acetonitrile/Water Mixtures: Solvation Species and Ultrafast Proton Motions. J. Phys. Chem. Lett. 2019, 10, 2287–2294. 10.1021/acs.jpclett.9b00756. PubMed DOI

Xiong H.; Lee J. K.; Zare R. N.; Min W. Strong Electric Field Observed at the Interface of Aqueous Microdroplets. J. Phys. Chem. Lett. 2020, 11, 7423–7428. 10.1021/acs.jpclett.0c02061. PubMed DOI

Lee J. K.; Samanta D.; Nam H. G.; Zare R. N. Micrometer-Sized Water Droplets Induce Spontaneous Reduction. J. Am. Chem. Soc. 2019, 141, 10585–10589. 10.1021/jacs.9b03227. PubMed DOI

Hao H.; Leven I.; Head-Gordon T. Can electric fields drive chemistry for an aqueous microdroplet?. Nat. Commun. 2022, 13, 280.10.1038/s41467-021-27941-x. PubMed DOI PMC

Chattopadhyay A.; Boxer S. G. Vibrational Stark Effect Spectroscopy. J. Am. Chem. Soc. 1995, 117, 1449–1450. 10.1021/ja00109a038. DOI

Fried S. D.; Boxer S. G. Measuring Electric Fields and Noncovalent Interactions Using the Vibrational Stark Effect. Acc. Chem. Res. 2015, 48, 998–1006. 10.1021/ar500464j. PubMed DOI PMC

Cassone G.; Sponer J.; Trusso S.; Saija F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 2019, 21, 21205–21212. 10.1039/C9CP03101D. PubMed DOI

Mollica Nardo V.; Cassone G.; Ponterio R. C.; Saija F.; Sponer J.; Tommasini M.; Trusso S. Electric-Field-Induced Effects on the Dipole Moment and Vibrational Modes of the Centrosymmetric Indigo Molecule. J. Phys. Chem. A 2020, 124, 10856–10869. 10.1021/acs.jpca.0c09791. PubMed DOI

Aragonès A. C.; Haworth N. L.; Darwish N.; Ciampi S.; Bloomfield N. J.; Wallace G. G.; Diez-Perez I.; Coote M. L. Electrostatic catalysis of a Diels–Alder reaction. Nature 2016, 531, 88–91. 10.1038/nature16989. PubMed DOI

Shaik S.; Danovich D.; Joy J.; Wang Z.; Stuyver T. Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. J. Am. Chem. Soc. 2020, 142, 12551–12562. 10.1021/jacs.0c05128. PubMed DOI

Shaik S.; Mandal D.; Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8, 1091–1098. 10.1038/nchem.2651. PubMed DOI

Cassone G.; Pietrucci F.; Saija F.; Guyot F.; Saitta A. M. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chem. Sci. 2017, 8, 2329–2336. 10.1039/C6SC04269D. PubMed DOI PMC

Saggu M.; Levinson N. M.; Boxer S. G. Experimental Quantification of Electrostatics in X-H··· Hydrogen Bonds. J. Am. Chem. Soc. 2012, 134, 18986–18997. 10.1021/ja305575t. PubMed DOI PMC

Smith J. D.; Cappa C. D.; Wilson K. R.; Cohen R. C.; Geissler P. L.; Saykally R. J. Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 14171–14174. 10.1073/pnas.0506899102. PubMed DOI PMC

Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Effect of Electric Field Orientation on the Mechanical and Electrical Properties of Water Ices: An Ab-initio Study. J. Phys. Chem. B 2014, 118, 12717–12724. 10.1021/jp507376v. PubMed DOI

Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Liquid methanol under a static electric field. J. Chem. Phys. 2015, 142, 054502.10.1063/1.4907010. PubMed DOI

Cassone G.; Sofia A.; Rinaldi G.; Sponer J. Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study. J. Phys. Chem. C 2019, 123, 9202–9208. 10.1021/acs.jpcc.9b01037. DOI

Cassone G.; Sofia A.; Sponer J.; Saitta A. M.; Saija F. Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields. Molecules 2020, 25, 3371.10.3390/molecules25153371. PubMed DOI PMC

Saitta A. M.; Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 13768–13773. 10.1073/pnas.1402894111. PubMed DOI PMC

Cassone G.; Sponer J.; Sponer J. E.; Pietrucci F.; Saitta A. M.; Saija F. Synthesis of (d)-erythrose from glycolaldehyde aqueous solutions under electric field. Chem. Commun. 2018, 54, 3211–3214. 10.1039/C8CC00045J. PubMed DOI

Cassone G.; Sponer J.; Sponer J. E.; Saija F. Electrofreezing of Liquid Ammonia. J. Phys. Chem. Lett. 2022, 13, 9889–9894. 10.1021/acs.jpclett.2c02576. PubMed DOI PMC

Emsley J. Very strong hydrogen bonding. Chem. Soc. Rev. 1980, 9, 91–124. 10.1039/cs9800900091. DOI

Dannenberg J. J. An Introduction to Hydrogen Bonding By George A. Jeffrey (University of Pittsburgh). Oxford University Press: New York and Oxford. 1997. ix + 303 pp. $60.00. ISBN 0–19–509549–9. J. Am. Chem. Soc. 1998, 120, 5604–5604. 10.1021/ja9756331. DOI

Lane J. R.; Vaida V.; Kjaergaard H. G. Calculated electronic transitions of the water ammonia complex. J. Chem. Phys. 2008, 128, 034302.10.1063/1.2814163. PubMed DOI

Hunter E. P. L.; Lias S. G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656. 10.1063/1.556018. DOI

Bankura A.; Chandra A. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures. J. Chem. Phys. 2012, 136, 114509.10.1063/1.3691602. PubMed DOI

Chen M.; Zheng L.; Santra B.; Ko H.-Y.; DiStasio R. A. Jr; Klein M. L.; Car R.; Wu X. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 2018, 10, 413–419. 10.1038/s41557-018-0010-2. PubMed DOI

Song X.; Basheer C.; Zare R. N. Making ammonia from nitrogen and water microdroplets. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2301206120.10.1073/pnas.2301206120. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace