Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32722281
PubMed Central
PMC7435743
DOI
10.3390/molecules25153371
PII: molecules25153371
Knihovny.cz E-zdroje
- Klíčová slova
- ab initio molecular dynamics, aqueous solutions, chemical reactivity, electric fields, methanol, proton transfer,
- MeSH
- chemické modely MeSH
- methanol chemie MeSH
- simulace molekulární dynamiky MeSH
- statická elektřina MeSH
- voda chemie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- methanol MeSH
- voda MeSH
Intense electric fields applied on H-bonded systems are able to induce molecular dissociations, proton transfers, and complex chemical reactions. Nevertheless, the effects induced in heterogeneous molecular systems such as methanol-water mixtures are still elusive. Here we report on a series of state-of-the-art ab initio molecular dynamics simulations of liquid methanol-water mixtures at different molar ratios exposed to static electric fields. If, on the one hand, the presence of water increases the proton conductivity of methanol-water mixtures, on the other, it hinders the typical enhancement of the chemical reactivity induced by electric fields. In particular, a sudden increase of the protonic conductivity is recorded when the amount of water exceeds that of methanol in the mixtures, suggesting that important structural changes of the H-bond network occur. By contrast, the field-induced multifaceted chemistry leading to the synthesis of e.g., hydrogen, dimethyl ether, formaldehyde, and methane observed in neat methanol, in 75:25, and equimolar methanol-water mixtures, completely disappears in samples containing an excess of water and in pure water. The presence of water strongly inhibits the chemical reactivity of methanol.
CNR IPCF Viale F Stagno d'Alcontres 37 98158 Messina Italy
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Sorbonne Université Msuéum National d'Histoire Naturelle UMR CNRS 7590 IMPMC F 075005 Paris France
Zobrazit více v PubMed
Franks F., Reid D.S. In: Water-A Comprehensive Treatise. Franks F., editor. Volume 2. Plenum; New York, NY, USA: 1973. Chapter 5.
Pratt J.R., Chandler D. Effects of solute–solvent attractive forces on hydrophobic correlations. J. Chem. Phys. 1980;73:1980. doi: 10.1063/1.440541. DOI
Gurav N.D., Kulkarni A.D., Gejji S.P., Pathak R.K. CH3OH (H2O)n [n = 1–4] clusters in external electric fields. J. Chem. Phys. 2015;142:214309. doi: 10.1063/1.4921380. PubMed DOI
Dixit S., Crain J., Poon W.C.K., Finney J.L., Soper A.K. Molecular segregation observed in a concentrated alcohol–water solution. Nature. 2002;416:429–432. doi: 10.1038/416829a. PubMed DOI
Guo J.H., Luo Y., Augustsson A., Kashtonov S., Rubensson J.E., Shuh D.H., Agren H., Norgren J. Molecular Structure of Alcohol-Water Mixtures. Phys. Rev. Lett. 2003;91:157401. doi: 10.1103/PhysRevLett.91.157401. PubMed DOI
Dougan L., Bates S.P., Hargreaves R., Fox J.P., Crain J., Finney J.L., Reat V., Soper A.K. Methanol-water solutions: A bi-percolating liquid mixture. J. Chem. Phys. 2004;121:6456. doi: 10.1063/1.1789951. PubMed DOI
Lenton S., Rhys N.H., Towey J.J., Soper A.K., Dougan L. Temperature-Dependent Segregation in Alcohol-Water Binary Mixtures Is Driven by Water Clustering. J. Phys. Chem. B. 2018;122:7884–7894. doi: 10.1021/acs.jpcb.8b03543. PubMed DOI
Mallamace F., Corsaro C., Mallamace D., Vasi C., Vasi S., Stanley H.E. Dynamical properties of water-methanol solutions. J. Chem. Phys. 2016;144:064506. doi: 10.1063/1.4941414. PubMed DOI
Nakasaga M., Mochizuki K., Leloup V., Kosugi N. Local Structures of Methanol-Water Binary Solutions Studied by Soft X-ray Absorption Spectroscopy. J. Phys. Chem. B. 2014;118:4388–4396. doi: 10.1021/jp4091602. PubMed DOI
Galicia-Andres E., Pusztai L., Temleitner L., Pizio O. Microscopic structure of methanol–water mixtures: Synchrotron X-ray diffraction experiments and molecular dynamics simulations over the entire composition range. J. Mol. Liq. 2015;209:586–595. doi: 10.1016/j.molliq.2015.06.045. DOI
Sato T., Chiba A., Ryusuke N. Hydrophobic hydration and molecular association in methanol-water mixtures studied by microwave dielectric analysis. J. Chem. Phys. 2000;112:2924. doi: 10.1063/1.480865. DOI
Vezzu’ K., Negro E., He J., Bertasi F., Conti F., Nawn G., Paddison S.J., Di Noto V. Reorientational Relaxation and Hydrogen Bonding in Mixtures of Water and Methanol. J. Electrochem. Soc. 2018;165:H549–H560. doi: 10.1149/2.0491809jes. DOI
Ferrario M., Haughney M., McDonald I.R., Klein M.L. Molecular-dynamics simulation of aqueous mixtures: Methanol, acetone, and ammonia. J. Chem. Phys. 1990;93:5156. doi: 10.1063/1.458652. DOI
Tanaka H., Gubbins K.E. Structure and thermodynamic properties of water-methanol mixtures: Role of the water-water interaction. J. Chem. Phys. 1998;97:2626. doi: 10.1063/1.463051. DOI
Laaksonen A., Kusalik P.G., Svishchev I.M. Three-Dimensional Structure in Water-Methanol Mixtures. J. Phys. Chem. A. 1997;101:5910–5918. doi: 10.1021/jp970673c. DOI
Wensink E.J.W., Hoffmann A.C., van Maaren P.J., van der Spoel D. Dynamic properties of water-alcohol mixtures studied by computer simulation. J. Chem. Phys. 2003;119:7308. doi: 10.1063/1.1607918. DOI
Bako C.I., Megyes T., Balint S., Grosz T., Chihaia V. Water-methanol mixtures: Topology of hydrogen bonded network. Phys. Chem. Chem. Phys. 2008;10:5004–5011. doi: 10.1039/b808326f. PubMed DOI
Zhang N., Shen Z., Chen C., He G., Hao C. Effect of hydrogen bonding on self-diffusion in methanol/water liquid mixtures: A molecular dynamics simulation study. J. Mol. Phys. 2015;203:90–97. doi: 10.1016/j.molliq.2014.12.047. DOI
galicia-andres E., Dominguez A., Pusztai L., Pizio O. On the composition dependence of thermodynamic, dynamic and dielectric properties of water-methanol model mixtures. Molecular dynamics simulation results. Condens. Matter. Phys. 2015;18:43602. doi: 10.5488/CMP.18.43602. DOI
Soetens J.C., Bopp P.A. Water-Methanol Mixtures: Simulations of Mixing Properties over the Entire Range of Mole Fractions. J. Phys. Chem. B. 2015;119:8593–8599. doi: 10.1021/acs.jpcb.5b03344. PubMed DOI
Alberti M., Amat A., Aguilar A., Pirani F. Methanol–methanol and methanol-water systems: The intermolecular interactions controlling the transition from small clusters to the liquid phase. Phys. Chem. Chem. Phys. 2017;19:16765–16774. doi: 10.1039/C7CP02919E. PubMed DOI
Kacar G., de With G. Parametrizing hydrogen bond interactions in dissipative particle dynamics simulations: The case of water, methanol and their binary mixtures. J. Mol. Phys. 2020;302:112581. doi: 10.1016/j.molliq.2020.112581. DOI
van Erp T.S., Meijer E.J. Hydration of methanol in water. A DFT-based molecular dynamics study. Chem. Phys. Lett. 2001;333:290–296. doi: 10.1016/S0009-2614(00)01387-7. DOI
Silvestrelli P.G. Are There Immobilized Water Molecules around Hydrophobic Groups? Aqueous Solvation of Methanol from First Principles. J. Phys. Chem. B. 2009;113:10728–10731. doi: 10.1021/jp9044447. PubMed DOI
Chouduri J.R., Chandra A. Hydrogen bonded structure, polarity, molecular motion and frequency fluctuations at liquid-vapor interface of a water-methanol mixture: An ab initio molecular dynamics study. J. Chem. Phys. 2014;141:134703. doi: 10.1063/1.4896233. PubMed DOI
Morrone J.A., Haslinger K.E., Tuckerman M.E. Ab Initio Molecular Dynamics Simulation of the Structure and Proton Transport Dynamics of Methanol-Water Solutions. J. Phys. Chem. B. 2006;110:3712–3720. doi: 10.1021/jp0554036. PubMed DOI
Suresh S.J. Influence of electric field on the hydrogen bond network of methanol. J. Chem. Phys. 2007;126:134502. doi: 10.1063/1.2647105. PubMed DOI
Cassone G., Giaquinta P.V., Saija F., Saitta A.M. Liquid methanol under a static electric field. J. Chem. Phys. 2015;142:054502. doi: 10.1063/1.4907010. PubMed DOI
Saitta A.M., Saija F., Giaquinta P.V. Ab Initio Molecular Dynamics Study of Dissociation of Water under an Electric Field. Phys. Rev. Lett. 2012;108:207801. doi: 10.1103/PhysRevLett.108.207801. PubMed DOI
Cassone G., Giaquinta P.V., Saija F., Saitta A.M. Proton Conduction in Water Ices under an Electric Field. J. Phys. Chem. B. 2014;118:4419–4424. doi: 10.1021/jp5021356. PubMed DOI
Shafiei M., von Domaros M., Bratko D., Luzar A. Anisotropic structure and dynamics of water under static electric fields. J. Chem. Phys. 2019;150:074505. doi: 10.1063/1.5079393. PubMed DOI
Cassone G., Sponer J., Trusso S., Saija F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 2019;21:21205–21212. doi: 10.1039/C9CP03101D. PubMed DOI
Aragones A.C., Haworth N.L., Darwish N., Ciampi S., Bloomfield G.J., Wallace G.G., Diez-Perez I., Coote M.L. Electrostatic catalysis of a Diels-Alder reaction. Nature. 2016;531:88–91. doi: 10.1038/nature16989. PubMed DOI
Shaik S., Mandal D., Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016;8:1091–1098. doi: 10.1038/nchem.2651. PubMed DOI
Che F., Gray J.T., Ha S., Kruse N., Scott S.L., McEwen J.-S. Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catal. 2018;8:5153–5174. doi: 10.1021/acscatal.7b02899. DOI
Cassone G., Pietrucci F., Saija F., Guyot F., Saitta A.M. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chem. Sci. 2017;8:2329–2336. doi: 10.1039/C6SC04269D. PubMed DOI PMC
Cassone G., Pietrucci F., Saija F., Guyot F., Sponer J.E., Sponer J., Saitta A.M. Novel electrochemical route to cleaner fuel dimethyl ether. Sci. Rep. 2017;7:6901. doi: 10.1038/s41598-017-07187-8. PubMed DOI PMC
Kaila K., Ranson B.R. In: pH and Brain Function. Kaila K., Ransom B.R., editors. Wiley; New York, NY, USA: 1998.
He J., Di Noto V., Paddison S.J. The structure of water-methanol mixtures under an electric field: Ab initio molecular dynamics simulations. Chem. Phys. Lett. 2015;635:99–106. doi: 10.1016/j.cplett.2015.06.049. DOI
Hutter J., Iannuzzi M., Schiffmann F., VandeVondele J. CP2K: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2014;4:15. doi: 10.1002/wcms.1159. DOI
Vandevondele J., Krack M., Mohamed F., Parrinello M., Chassaing T., Hutter J. QUICKSTEP: Fast and accurate Density Functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 2005;167:103. doi: 10.1016/j.cpc.2004.12.014. DOI
King-Smith R.D., Vanderbilt D. Theory of polarization of crystalline solids. Phys. Rev. B. 1993;47:1651. doi: 10.1103/PhysRevB.47.1651. PubMed DOI
Resta R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994;66:899. doi: 10.1103/RevModPhys.66.899. DOI
Berry M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. 1984;392:45.
Umari P., Pasquarello A. Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 2002;89:157602. doi: 10.1103/PhysRevLett.89.157602. PubMed DOI
English N.J., Waldron J.C. Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges. Phys. Chem. Chem. Phys. 2015;17:12407–12440. doi: 10.1039/C5CP00629E. PubMed DOI
Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 2005;114:145–152. doi: 10.1007/s00214-005-0655-y. DOI
Becke A.D. Density-Functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of Density Functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected Density Functional Theory. J. Comp. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Lin I.-C., Seitsonen A.P., Tavernelli I., Rothlisberger U. Structure and dynamics of liquid water from ab initio molecular dynamics—comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals corrections. J. Chem. Theory Comput. 2012;8:3902–3910. doi: 10.1021/ct3001848. PubMed DOI
Bankura A., Karmakar A., Carnevale V., Chandra A., Klein M.L. Structure, dynamics, and spectral diffusion of water from first-principles molecular dynamics. J. Phys. Chem. C. 2014;118:29401–29411. doi: 10.1021/jp506120t. DOI
Gillan M.J., Alfé D., Michaelides A. Perspective: How good is DFT for water? J. Chem. Phys. 2016;144:130901. doi: 10.1063/1.4944633. PubMed DOI
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Car R., Parrinello M. Unified approach for molecular dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985;55:2471. doi: 10.1103/PhysRevLett.55.2471. PubMed DOI
Yamaguchi T., Hidaka K., Soper A.K. The structure of liquid methanol revisited: A neutron diffraction experiment at −80 °C and +25 °C. Mol. Phys. 1999;96:1159–1168. doi: 10.1080/00268979909483060. DOI
Yamaguchi T., Hidaka K., Soper A.K. The structure of liquid methanol revisited: A neutron diffraction experiment at −80 °C and +25 °C. Mol. Phys. 1999;97:603–605. doi: 10.1080/00268979909482859. DOI
Cassone G., Sofia A., Rinaldi G., Sponer J. Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study. J. Phys. Chem. C. 2019;123:9202–9208. doi: 10.1021/acs.jpcc.9b01037. DOI
Vanzo D., Bratko D., Luzar A. Nanoconfined water under electric field at constant chemical potential undergoes electrostriction. J. Chem. Phys. 2014;140:074710. doi: 10.1063/1.4865126. PubMed DOI
Stuve E.M. Ionization of water in interfacial electric fields: An electrochemical view. Chem. Phys. Lett. 2012;519–520:1–17. doi: 10.1016/j.cplett.2011.09.040. DOI
Lee W.K., Tsoi S., Whitener K.E., Stine R., Robinson J.T., Tobin J.S., Weerasinghe A., Sheehan P.E., Lyuksyutov S.F. Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Res. 2013;6:767–774. doi: 10.1007/s12274-013-0355-1. DOI
Hammadi Z., Descoins M., Salançon E., Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012;101:243110. doi: 10.1063/1.4770516. DOI
Ceriotti M., Cuny J., Parrinello M., Manolopoulos D.E. Nuclear quantum effects and hydrogen bond fluctuations in water. Proc. Natl. Acad. Sci. USA. 2013;110:15591–15596. doi: 10.1073/pnas.1308560110. PubMed DOI PMC
Marsalek O., Markland T.E. Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 2017;8:1545–1551. doi: 10.1021/acs.jpclett.7b00391. PubMed DOI
Gaiduk A.P., Gygi F., Galli G. Density and compressibility of liquid water and ice from first-principles simulations with hybrid functionals. J. Phys. Chem. Lett. 2015;6:2902–2908. doi: 10.1021/acs.jpclett.5b00901. PubMed DOI
Miceli G., de Gironcoli S., Pasquarello A. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions. J. Chem. Phys. 2015;142:034501. doi: 10.1063/1.4905333. PubMed DOI
Chen M., Zheng L., Santra B., Ko H.-Y., DiStasio R.A., Jr., Klein M.L., Car R., Wu X. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 2018;10:413–419. doi: 10.1038/s41557-018-0010-2. PubMed DOI
Fried S.D., Boxer S.G. Electric Fields and Enzyme Catalysis. Annu. Rev. Biochem. 2017;86:387–415. doi: 10.1146/annurev-biochem-061516-044432. PubMed DOI PMC
Murgida D.H., Hildebrandt P. Electron-Transfer Processes of Cytochrome c at Interfaces. New Insights by Surface-Enhanced Resonance Raman Spectroscopy. Acc. Chem. Res. 2004;37:854–861. doi: 10.1021/ar0400443. PubMed DOI
Saitta A.M., Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–13773. doi: 10.1073/pnas.1402894111. PubMed DOI PMC
Sowlati-Hashjin S., Matta C.F. The chemical bond in external electric fields: Energies, geometries, and vibrational Stark shifts of diatomic molecules. J. Chem. Phys. 2013;139:144101. doi: 10.1063/1.4820487. PubMed DOI
Papanikolaou P., Karafiloglou P. Investigating sigma bonds in an electric field from the Pauling’s perspective: The behavior of Cl-X and H-X (X = C,Si) bonds. Theor. Chem. Acc. 2010;126:213–222. doi: 10.1007/s00214-009-0650-9. DOI
Rincon L., Mora J.R., Torres F.J., Almeida R. On the activation of σ-bonds by electric fields: A Valence Bond perspective. Chem. Phys. 2016;477:1–7. doi: 10.1016/j.chemphys.2016.08.008. DOI
Stark J. Observation of the Separation of Spectral Lines by an Electric Field. Nature. 1913;92:401. doi: 10.1038/092401b0. DOI
Bishop D.M. The vibrational Stark effect. J. Chem. Phys. 1993;98:3179. doi: 10.1063/1.464090. DOI
Chattopadhyay A., Boxer S.G. Vibrational Stark Effect Spectroscopy. J. Am. Chem. Soc. 1995;117:1449–1450. doi: 10.1021/ja00109a038. DOI
The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions