Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields

. 2020 Jul 24 ; 25 (15) : . [epub] 20200724

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32722281

Intense electric fields applied on H-bonded systems are able to induce molecular dissociations, proton transfers, and complex chemical reactions. Nevertheless, the effects induced in heterogeneous molecular systems such as methanol-water mixtures are still elusive. Here we report on a series of state-of-the-art ab initio molecular dynamics simulations of liquid methanol-water mixtures at different molar ratios exposed to static electric fields. If, on the one hand, the presence of water increases the proton conductivity of methanol-water mixtures, on the other, it hinders the typical enhancement of the chemical reactivity induced by electric fields. In particular, a sudden increase of the protonic conductivity is recorded when the amount of water exceeds that of methanol in the mixtures, suggesting that important structural changes of the H-bond network occur. By contrast, the field-induced multifaceted chemistry leading to the synthesis of e.g., hydrogen, dimethyl ether, formaldehyde, and methane observed in neat methanol, in 75:25, and equimolar methanol-water mixtures, completely disappears in samples containing an excess of water and in pure water. The presence of water strongly inhibits the chemical reactivity of methanol.

Zobrazit více v PubMed

Franks F., Reid D.S. In: Water-A Comprehensive Treatise. Franks F., editor. Volume 2. Plenum; New York, NY, USA: 1973. Chapter 5.

Pratt J.R., Chandler D. Effects of solute–solvent attractive forces on hydrophobic correlations. J. Chem. Phys. 1980;73:1980. doi: 10.1063/1.440541. DOI

Gurav N.D., Kulkarni A.D., Gejji S.P., Pathak R.K. CH3OH (H2O)n [n = 1–4] clusters in external electric fields. J. Chem. Phys. 2015;142:214309. doi: 10.1063/1.4921380. PubMed DOI

Dixit S., Crain J., Poon W.C.K., Finney J.L., Soper A.K. Molecular segregation observed in a concentrated alcohol–water solution. Nature. 2002;416:429–432. doi: 10.1038/416829a. PubMed DOI

Guo J.H., Luo Y., Augustsson A., Kashtonov S., Rubensson J.E., Shuh D.H., Agren H., Norgren J. Molecular Structure of Alcohol-Water Mixtures. Phys. Rev. Lett. 2003;91:157401. doi: 10.1103/PhysRevLett.91.157401. PubMed DOI

Dougan L., Bates S.P., Hargreaves R., Fox J.P., Crain J., Finney J.L., Reat V., Soper A.K. Methanol-water solutions: A bi-percolating liquid mixture. J. Chem. Phys. 2004;121:6456. doi: 10.1063/1.1789951. PubMed DOI

Lenton S., Rhys N.H., Towey J.J., Soper A.K., Dougan L. Temperature-Dependent Segregation in Alcohol-Water Binary Mixtures Is Driven by Water Clustering. J. Phys. Chem. B. 2018;122:7884–7894. doi: 10.1021/acs.jpcb.8b03543. PubMed DOI

Mallamace F., Corsaro C., Mallamace D., Vasi C., Vasi S., Stanley H.E. Dynamical properties of water-methanol solutions. J. Chem. Phys. 2016;144:064506. doi: 10.1063/1.4941414. PubMed DOI

Nakasaga M., Mochizuki K., Leloup V., Kosugi N. Local Structures of Methanol-Water Binary Solutions Studied by Soft X-ray Absorption Spectroscopy. J. Phys. Chem. B. 2014;118:4388–4396. doi: 10.1021/jp4091602. PubMed DOI

Galicia-Andres E., Pusztai L., Temleitner L., Pizio O. Microscopic structure of methanol–water mixtures: Synchrotron X-ray diffraction experiments and molecular dynamics simulations over the entire composition range. J. Mol. Liq. 2015;209:586–595. doi: 10.1016/j.molliq.2015.06.045. DOI

Sato T., Chiba A., Ryusuke N. Hydrophobic hydration and molecular association in methanol-water mixtures studied by microwave dielectric analysis. J. Chem. Phys. 2000;112:2924. doi: 10.1063/1.480865. DOI

Vezzu’ K., Negro E., He J., Bertasi F., Conti F., Nawn G., Paddison S.J., Di Noto V. Reorientational Relaxation and Hydrogen Bonding in Mixtures of Water and Methanol. J. Electrochem. Soc. 2018;165:H549–H560. doi: 10.1149/2.0491809jes. DOI

Ferrario M., Haughney M., McDonald I.R., Klein M.L. Molecular-dynamics simulation of aqueous mixtures: Methanol, acetone, and ammonia. J. Chem. Phys. 1990;93:5156. doi: 10.1063/1.458652. DOI

Tanaka H., Gubbins K.E. Structure and thermodynamic properties of water-methanol mixtures: Role of the water-water interaction. J. Chem. Phys. 1998;97:2626. doi: 10.1063/1.463051. DOI

Laaksonen A., Kusalik P.G., Svishchev I.M. Three-Dimensional Structure in Water-Methanol Mixtures. J. Phys. Chem. A. 1997;101:5910–5918. doi: 10.1021/jp970673c. DOI

Wensink E.J.W., Hoffmann A.C., van Maaren P.J., van der Spoel D. Dynamic properties of water-alcohol mixtures studied by computer simulation. J. Chem. Phys. 2003;119:7308. doi: 10.1063/1.1607918. DOI

Bako C.I., Megyes T., Balint S., Grosz T., Chihaia V. Water-methanol mixtures: Topology of hydrogen bonded network. Phys. Chem. Chem. Phys. 2008;10:5004–5011. doi: 10.1039/b808326f. PubMed DOI

Zhang N., Shen Z., Chen C., He G., Hao C. Effect of hydrogen bonding on self-diffusion in methanol/water liquid mixtures: A molecular dynamics simulation study. J. Mol. Phys. 2015;203:90–97. doi: 10.1016/j.molliq.2014.12.047. DOI

galicia-andres E., Dominguez A., Pusztai L., Pizio O. On the composition dependence of thermodynamic, dynamic and dielectric properties of water-methanol model mixtures. Molecular dynamics simulation results. Condens. Matter. Phys. 2015;18:43602. doi: 10.5488/CMP.18.43602. DOI

Soetens J.C., Bopp P.A. Water-Methanol Mixtures: Simulations of Mixing Properties over the Entire Range of Mole Fractions. J. Phys. Chem. B. 2015;119:8593–8599. doi: 10.1021/acs.jpcb.5b03344. PubMed DOI

Alberti M., Amat A., Aguilar A., Pirani F. Methanol–methanol and methanol-water systems: The intermolecular interactions controlling the transition from small clusters to the liquid phase. Phys. Chem. Chem. Phys. 2017;19:16765–16774. doi: 10.1039/C7CP02919E. PubMed DOI

Kacar G., de With G. Parametrizing hydrogen bond interactions in dissipative particle dynamics simulations: The case of water, methanol and their binary mixtures. J. Mol. Phys. 2020;302:112581. doi: 10.1016/j.molliq.2020.112581. DOI

van Erp T.S., Meijer E.J. Hydration of methanol in water. A DFT-based molecular dynamics study. Chem. Phys. Lett. 2001;333:290–296. doi: 10.1016/S0009-2614(00)01387-7. DOI

Silvestrelli P.G. Are There Immobilized Water Molecules around Hydrophobic Groups? Aqueous Solvation of Methanol from First Principles. J. Phys. Chem. B. 2009;113:10728–10731. doi: 10.1021/jp9044447. PubMed DOI

Chouduri J.R., Chandra A. Hydrogen bonded structure, polarity, molecular motion and frequency fluctuations at liquid-vapor interface of a water-methanol mixture: An ab initio molecular dynamics study. J. Chem. Phys. 2014;141:134703. doi: 10.1063/1.4896233. PubMed DOI

Morrone J.A., Haslinger K.E., Tuckerman M.E. Ab Initio Molecular Dynamics Simulation of the Structure and Proton Transport Dynamics of Methanol-Water Solutions. J. Phys. Chem. B. 2006;110:3712–3720. doi: 10.1021/jp0554036. PubMed DOI

Suresh S.J. Influence of electric field on the hydrogen bond network of methanol. J. Chem. Phys. 2007;126:134502. doi: 10.1063/1.2647105. PubMed DOI

Cassone G., Giaquinta P.V., Saija F., Saitta A.M. Liquid methanol under a static electric field. J. Chem. Phys. 2015;142:054502. doi: 10.1063/1.4907010. PubMed DOI

Saitta A.M., Saija F., Giaquinta P.V. Ab Initio Molecular Dynamics Study of Dissociation of Water under an Electric Field. Phys. Rev. Lett. 2012;108:207801. doi: 10.1103/PhysRevLett.108.207801. PubMed DOI

Cassone G., Giaquinta P.V., Saija F., Saitta A.M. Proton Conduction in Water Ices under an Electric Field. J. Phys. Chem. B. 2014;118:4419–4424. doi: 10.1021/jp5021356. PubMed DOI

Shafiei M., von Domaros M., Bratko D., Luzar A. Anisotropic structure and dynamics of water under static electric fields. J. Chem. Phys. 2019;150:074505. doi: 10.1063/1.5079393. PubMed DOI

Cassone G., Sponer J., Trusso S., Saija F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 2019;21:21205–21212. doi: 10.1039/C9CP03101D. PubMed DOI

Aragones A.C., Haworth N.L., Darwish N., Ciampi S., Bloomfield G.J., Wallace G.G., Diez-Perez I., Coote M.L. Electrostatic catalysis of a Diels-Alder reaction. Nature. 2016;531:88–91. doi: 10.1038/nature16989. PubMed DOI

Shaik S., Mandal D., Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016;8:1091–1098. doi: 10.1038/nchem.2651. PubMed DOI

Che F., Gray J.T., Ha S., Kruse N., Scott S.L., McEwen J.-S. Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catal. 2018;8:5153–5174. doi: 10.1021/acscatal.7b02899. DOI

Cassone G., Pietrucci F., Saija F., Guyot F., Saitta A.M. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chem. Sci. 2017;8:2329–2336. doi: 10.1039/C6SC04269D. PubMed DOI PMC

Cassone G., Pietrucci F., Saija F., Guyot F., Sponer J.E., Sponer J., Saitta A.M. Novel electrochemical route to cleaner fuel dimethyl ether. Sci. Rep. 2017;7:6901. doi: 10.1038/s41598-017-07187-8. PubMed DOI PMC

Kaila K., Ranson B.R. In: pH and Brain Function. Kaila K., Ransom B.R., editors. Wiley; New York, NY, USA: 1998.

He J., Di Noto V., Paddison S.J. The structure of water-methanol mixtures under an electric field: Ab initio molecular dynamics simulations. Chem. Phys. Lett. 2015;635:99–106. doi: 10.1016/j.cplett.2015.06.049. DOI

Hutter J., Iannuzzi M., Schiffmann F., VandeVondele J. CP2K: Atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2014;4:15. doi: 10.1002/wcms.1159. DOI

Vandevondele J., Krack M., Mohamed F., Parrinello M., Chassaing T., Hutter J. QUICKSTEP: Fast and accurate Density Functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 2005;167:103. doi: 10.1016/j.cpc.2004.12.014. DOI

King-Smith R.D., Vanderbilt D. Theory of polarization of crystalline solids. Phys. Rev. B. 1993;47:1651. doi: 10.1103/PhysRevB.47.1651. PubMed DOI

Resta R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994;66:899. doi: 10.1103/RevModPhys.66.899. DOI

Berry M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. 1984;392:45.

Umari P., Pasquarello A. Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 2002;89:157602. doi: 10.1103/PhysRevLett.89.157602. PubMed DOI

English N.J., Waldron J.C. Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges. Phys. Chem. Chem. Phys. 2015;17:12407–12440. doi: 10.1039/C5CP00629E. PubMed DOI

Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 2005;114:145–152. doi: 10.1007/s00214-005-0655-y. DOI

Becke A.D. Density-Functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098. doi: 10.1103/PhysRevA.38.3098. PubMed DOI

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of Density Functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected Density Functional Theory. J. Comp. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Lin I.-C., Seitsonen A.P., Tavernelli I., Rothlisberger U. Structure and dynamics of liquid water from ab initio molecular dynamics—comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals corrections. J. Chem. Theory Comput. 2012;8:3902–3910. doi: 10.1021/ct3001848. PubMed DOI

Bankura A., Karmakar A., Carnevale V., Chandra A., Klein M.L. Structure, dynamics, and spectral diffusion of water from first-principles molecular dynamics. J. Phys. Chem. C. 2014;118:29401–29411. doi: 10.1021/jp506120t. DOI

Gillan M.J., Alfé D., Michaelides A. Perspective: How good is DFT for water? J. Chem. Phys. 2016;144:130901. doi: 10.1063/1.4944633. PubMed DOI

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI

Car R., Parrinello M. Unified approach for molecular dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985;55:2471. doi: 10.1103/PhysRevLett.55.2471. PubMed DOI

Yamaguchi T., Hidaka K., Soper A.K. The structure of liquid methanol revisited: A neutron diffraction experiment at −80 °C and +25 °C. Mol. Phys. 1999;96:1159–1168. doi: 10.1080/00268979909483060. DOI

Yamaguchi T., Hidaka K., Soper A.K. The structure of liquid methanol revisited: A neutron diffraction experiment at −80 °C and +25 °C. Mol. Phys. 1999;97:603–605. doi: 10.1080/00268979909482859. DOI

Cassone G., Sofia A., Rinaldi G., Sponer J. Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study. J. Phys. Chem. C. 2019;123:9202–9208. doi: 10.1021/acs.jpcc.9b01037. DOI

Vanzo D., Bratko D., Luzar A. Nanoconfined water under electric field at constant chemical potential undergoes electrostriction. J. Chem. Phys. 2014;140:074710. doi: 10.1063/1.4865126. PubMed DOI

Stuve E.M. Ionization of water in interfacial electric fields: An electrochemical view. Chem. Phys. Lett. 2012;519–520:1–17. doi: 10.1016/j.cplett.2011.09.040. DOI

Lee W.K., Tsoi S., Whitener K.E., Stine R., Robinson J.T., Tobin J.S., Weerasinghe A., Sheehan P.E., Lyuksyutov S.F. Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Res. 2013;6:767–774. doi: 10.1007/s12274-013-0355-1. DOI

Hammadi Z., Descoins M., Salançon E., Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012;101:243110. doi: 10.1063/1.4770516. DOI

Ceriotti M., Cuny J., Parrinello M., Manolopoulos D.E. Nuclear quantum effects and hydrogen bond fluctuations in water. Proc. Natl. Acad. Sci. USA. 2013;110:15591–15596. doi: 10.1073/pnas.1308560110. PubMed DOI PMC

Marsalek O., Markland T.E. Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 2017;8:1545–1551. doi: 10.1021/acs.jpclett.7b00391. PubMed DOI

Gaiduk A.P., Gygi F., Galli G. Density and compressibility of liquid water and ice from first-principles simulations with hybrid functionals. J. Phys. Chem. Lett. 2015;6:2902–2908. doi: 10.1021/acs.jpclett.5b00901. PubMed DOI

Miceli G., de Gironcoli S., Pasquarello A. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions. J. Chem. Phys. 2015;142:034501. doi: 10.1063/1.4905333. PubMed DOI

Chen M., Zheng L., Santra B., Ko H.-Y., DiStasio R.A., Jr., Klein M.L., Car R., Wu X. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 2018;10:413–419. doi: 10.1038/s41557-018-0010-2. PubMed DOI

Fried S.D., Boxer S.G. Electric Fields and Enzyme Catalysis. Annu. Rev. Biochem. 2017;86:387–415. doi: 10.1146/annurev-biochem-061516-044432. PubMed DOI PMC

Murgida D.H., Hildebrandt P. Electron-Transfer Processes of Cytochrome c at Interfaces. New Insights by Surface-Enhanced Resonance Raman Spectroscopy. Acc. Chem. Res. 2004;37:854–861. doi: 10.1021/ar0400443. PubMed DOI

Saitta A.M., Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–13773. doi: 10.1073/pnas.1402894111. PubMed DOI PMC

Sowlati-Hashjin S., Matta C.F. The chemical bond in external electric fields: Energies, geometries, and vibrational Stark shifts of diatomic molecules. J. Chem. Phys. 2013;139:144101. doi: 10.1063/1.4820487. PubMed DOI

Papanikolaou P., Karafiloglou P. Investigating sigma bonds in an electric field from the Pauling’s perspective: The behavior of Cl-X and H-X (X = C,Si) bonds. Theor. Chem. Acc. 2010;126:213–222. doi: 10.1007/s00214-009-0650-9. DOI

Rincon L., Mora J.R., Torres F.J., Almeida R. On the activation of σ-bonds by electric fields: A Valence Bond perspective. Chem. Phys. 2016;477:1–7. doi: 10.1016/j.chemphys.2016.08.008. DOI

Stark J. Observation of the Separation of Spectral Lines by an Electric Field. Nature. 1913;92:401. doi: 10.1038/092401b0. DOI

Bishop D.M. The vibrational Stark effect. J. Chem. Phys. 1993;98:3179. doi: 10.1063/1.464090. DOI

Chattopadhyay A., Boxer S.G. Vibrational Stark Effect Spectroscopy. J. Am. Chem. Soc. 1995;117:1449–1450. doi: 10.1021/ja00109a038. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions

. 2023 Sep 07 ; 14 (35) : 7808-7813. [epub] 20230825

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...