Novel electrochemical route to cleaner fuel dimethyl ether
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28761109
PubMed Central
PMC5537294
DOI
10.1038/s41598-017-07187-8
PII: 10.1038/s41598-017-07187-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Methanol, the simplest alcohol, and dimethyl ether, the simplest ether, are central compounds in the search for alternative "green" combustion fuels. In fact, they are generally considered as the cornerstones of the envisaged "Methanol Economy" scenario, as they are able to efficiently produce energy in an environmentally friendly manner. However, despite a massive amount of research in this field, the synthesis of dimethyl ether from liquid methanol has never so far been reported. Here we present a computational study, based on ab initio Molecular Dynamics, which suggests a novel synthesis route to methanol dehydration - leading thus to the dimethyl ether synthesis - through the application of strong electric fields. Besides proving the impressive catalytic effects afforded by the field, our calculations indicate that the obtained dimethyl ether is stable and that it can be progressively accumulated thanks to the peculiar chemical pathways characterising the methanol reaction network under electric field. These results suggest that the experimental synthesis of dimethyl ether from liquid methanol could be achieved, possibly in the proximity of field emitter tips.
CNR IPCF Viale Ferdinando Stagno d'Alcontres 37 98158 Messina Italy
Institute of Biophysics Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Olah, G. A., Goeppert, A. & Prakash, G. K. S. Beyond oil and gas: the methanol economy, 2nd updated and enlarged ed. (Wiley-VCH, Winheim, Germany, 2009).
Chang CD. Hydrocarbons from methanol. Catal. Rev.: Sci. and Eng. 1983;25:1–118. doi: 10.1080/01614948308078874. DOI
Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 2015;5:1922–1939. doi: 10.1021/acscatal.5b00007. DOI
de Wild PJ, Verhaak MJFM. Catalytic production of hydrogen from methanol. Catal. Today. 2000;60:3–10. doi: 10.1016/S0920-5861(00)00311-4. DOI
Dahl IM, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. J. Catal. 1994;149:458–464. doi: 10.1006/jcat.1994.1312. DOI
Xu M, Lunsford JH, Goodman DW, Battacharyya A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Appl. Catal. A: General. 1997;149:289–301. doi: 10.1016/S0926-860X(96)00275-X. DOI
Li W, et al. Upgrading of low-boiling fraction of bio-oil in supercritical methanol and reaction network. Bioresource Tech. 2011;102:4884–4889. doi: 10.1016/j.biortech.2011.01.053. PubMed DOI
Olah GA, Goeppert A, Prakash GKS. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 2009;74:487–498. doi: 10.1021/jo801260f. PubMed DOI
Kim J-H, Park KJ, Kim SJ, Joo O-S, Jung K-D. DME synthesis from synthesis gas on the admixed catalysts of Cu/ZnO/Al2O3 and ZSM-5. Appl. Catal. A: General. 2004;264:37–41. doi: 10.1016/j.apcata.2003.12.058. DOI
Yaripour F, Baghaei F, Schmidt I, Perregaard J. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts. Catal. Comm. 2005;6:542–549. doi: 10.1016/j.catcom.2005.05.003. DOI
Yaripour F, Baghaei F, Schmidt I, Perregaard J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts. Catal. Comm. 2005;6:147–152. doi: 10.1016/j.catcom.2004.11.012. DOI
Song W, Marcus DM, Fu H, Ehresmann JO, Haw JF. An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J. Am. Chem. Soc. 2002;124:3844–3845. doi: 10.1021/ja016499u. PubMed DOI
Aragones AC, et al. Electrostatic catalysis of a Diels-Alder reaction. Nature. 2016;531:88–91. doi: 10.1038/nature16989. PubMed DOI
Shaik S, Mandal D, Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016;8:1091–1098. doi: 10.1038/nchem.2651. PubMed DOI
Saitta AM, Saija F, Giaquinta PV. Ab initio molecular dynamics study of dissociation of water under an electric field. Phys. Rev. Lett. 2012;108:207801. doi: 10.1103/PhysRevLett.108.207801. PubMed DOI
Stuve EM. Ionization of water in interfacial electric fields: an electrochemical view. Chem. Phys. Lett. 2012;519–520:1–17. doi: 10.1016/j.cplett.2011.09.040. DOI
Hammadi Z, Descoins M, Salançon E, Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012;101:243110. doi: 10.1063/1.4770516. DOI
Lee W-K, et al. Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Res. 2013;6:767–774. doi: 10.1007/s12274-013-0355-1. DOI
Saitta AM, Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–13773. doi: 10.1073/pnas.1402894111. PubMed DOI PMC
Cassone G, Pietrucci F, Saija F, Guyot F, Saitta AM. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chemical Science. 2017;8:2329–2336. doi: 10.1039/C6SC04269D. PubMed DOI PMC
Herron JA, Morikawa Y, Mavrikakis M. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces. Proc. Natl. Acad. Sci. USA. 2016;113:E4937–E4945. doi: 10.1073/pnas.1604590113. PubMed DOI PMC
Cassone G, Giaquinta PV, Saija F, Saitta AM. Liquid methanol under a static electric field. J. Chem. Phys. 2015;142:054502. doi: 10.1063/1.4907010. PubMed DOI
Sellner B, Valiev M, Kathman SM. Charge and electric field fluctuations in aqueous NaCl electrolytes. J. Phys. Chem. B. 2013;117:10869–10882. doi: 10.1021/jp405578w. PubMed DOI
Reischl B, Köfinger J, Dellago C. The statistics of electric field fluctuations in liquid water. Mol. Phys. 2009;107:495–502. doi: 10.1080/00268970902865493. DOI
Bronstein Y, et al. Quantum versus classical protons in pure and salty ice under pressure. Phys. Rev. B. 2016;93:024104. doi: 10.1103/PhysRevB.93.024104. DOI
Pietrucci F, Saitta AM. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc. Natl. Acad. Sci. USA. 2015;112:15030–15035. doi: 10.1073/pnas.1512486112. PubMed DOI PMC
Laporte S, et al. Strong electric fields at a prototypical oxide/water interface probed by ab initio molecular dynamics: MgO(001) Phys. Chem. Chem. Phys. 2015;17:20382–20390. doi: 10.1039/C5CP02097B. PubMed DOI
Price D, Halley JW. A new model of the differential capacitance of the double layer. J. Electroanal. Chem. 1983;159:347–345. doi: 10.1016/S0022-0728(83)80216-2. DOI
Kreuzer J. Physics and chemistry in high electric fields. Surf. Sci. 1991;246:336–347. doi: 10.1016/0039-6028(91)90436-V. DOI
Schmickler W. Tunneling of electrons through thin layers of water. Surf. Sci. 1995;335:416–421. doi: 10.1016/0039-6028(95)00451-3. DOI
Balke N, et al. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. Nanotechnology. 2017;28:065704. doi: 10.1088/1361-6528/aa5370. PubMed DOI
Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012;84:1419–1475. doi: 10.1103/RevModPhys.84.1419. DOI
Bolhuis PG, Chandler D, Dellago C, Geissler PL. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annual Rev. of Phys. Chem. 2002;53:291–318. doi: 10.1146/annurev.physchem.53.082301.113146. PubMed DOI
Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M. Autoionization in liquid water. Science. 2001;291:2121–2124. doi: 10.1126/science.1056991. PubMed DOI
Olsson MHM, Mavri J, Warshel A. Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunnelling and dynamical effects in lipoxygenase and other systems. Phil. Trans. R. Soc. B. 2006;361:1417–1432. doi: 10.1098/rstb.2006.1880. PubMed DOI PMC
Löwdin P-O. On the nonorthogonality problem. Adv. Quantum Chem. 1970;5:185–199. doi: 10.1016/S0065-3276(08)60339-1. DOI
Giannozzi P, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009;21:395502–395537. PubMed
Car R, Parrinello M. Unified approach for molecular dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985;55:2471. doi: 10.1103/PhysRevLett.55.2471. PubMed DOI
Berry MV. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. 1984;392:45. doi: 10.1098/rspa.1984.0023. DOI
Umari P, Pasquarello A. Ab initio Molecular Dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 2002;89:157602. doi: 10.1103/PhysRevLett.89.157602. PubMed DOI
Haughney M, Ferrario M, McDonald IR. Molecular-dynamics simulation of liquid methanol. J. Phys. Chem. 1987;91:4934–4940. doi: 10.1021/j100303a011. DOI
Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD. Optimized pseudopotentials. Phys. Rev. B. 1990;44:13175. doi: 10.1103/PhysRevB.44.13175.3. PubMed DOI
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996) and Phys. Rev. Lett. 78, 1396 (1997). PubMed
Contreras-García J, et al. NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theo. Comp. 2012;7:625–632. doi: 10.1021/ct100641a. PubMed DOI PMC
A Computational Quantum-Based Perspective on the Molecular Origins of Life's Building Blocks
Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields