Novel electrochemical route to cleaner fuel dimethyl ether

. 2017 Jul 31 ; 7 (1) : 6901. [epub] 20170731

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28761109
Odkazy

PubMed 28761109
PubMed Central PMC5537294
DOI 10.1038/s41598-017-07187-8
PII: 10.1038/s41598-017-07187-8
Knihovny.cz E-zdroje

Methanol, the simplest alcohol, and dimethyl ether, the simplest ether, are central compounds in the search for alternative "green" combustion fuels. In fact, they are generally considered as the cornerstones of the envisaged "Methanol Economy" scenario, as they are able to efficiently produce energy in an environmentally friendly manner. However, despite a massive amount of research in this field, the synthesis of dimethyl ether from liquid methanol has never so far been reported. Here we present a computational study, based on ab initio Molecular Dynamics, which suggests a novel synthesis route to methanol dehydration - leading thus to the dimethyl ether synthesis - through the application of strong electric fields. Besides proving the impressive catalytic effects afforded by the field, our calculations indicate that the obtained dimethyl ether is stable and that it can be progressively accumulated thanks to the peculiar chemical pathways characterising the methanol reaction network under electric field. These results suggest that the experimental synthesis of dimethyl ether from liquid methanol could be achieved, possibly in the proximity of field emitter tips.

Zobrazit více v PubMed

Olah, G. A., Goeppert, A. & Prakash, G. K. S. Beyond oil and gas: the methanol economy, 2nd updated and enlarged ed. (Wiley-VCH, Winheim, Germany, 2009).

Chang CD. Hydrocarbons from methanol. Catal. Rev.: Sci. and Eng. 1983;25:1–118. doi: 10.1080/01614948308078874. DOI

Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 2015;5:1922–1939. doi: 10.1021/acscatal.5b00007. DOI

de Wild PJ, Verhaak MJFM. Catalytic production of hydrogen from methanol. Catal. Today. 2000;60:3–10. doi: 10.1016/S0920-5861(00)00311-4. DOI

Dahl IM, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. J. Catal. 1994;149:458–464. doi: 10.1006/jcat.1994.1312. DOI

Xu M, Lunsford JH, Goodman DW, Battacharyya A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Appl. Catal. A: General. 1997;149:289–301. doi: 10.1016/S0926-860X(96)00275-X. DOI

Li W, et al. Upgrading of low-boiling fraction of bio-oil in supercritical methanol and reaction network. Bioresource Tech. 2011;102:4884–4889. doi: 10.1016/j.biortech.2011.01.053. PubMed DOI

Olah GA, Goeppert A, Prakash GKS. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 2009;74:487–498. doi: 10.1021/jo801260f. PubMed DOI

Kim J-H, Park KJ, Kim SJ, Joo O-S, Jung K-D. DME synthesis from synthesis gas on the admixed catalysts of Cu/ZnO/Al2O3 and ZSM-5. Appl. Catal. A: General. 2004;264:37–41. doi: 10.1016/j.apcata.2003.12.058. DOI

Yaripour F, Baghaei F, Schmidt I, Perregaard J. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts. Catal. Comm. 2005;6:542–549. doi: 10.1016/j.catcom.2005.05.003. DOI

Yaripour F, Baghaei F, Schmidt I, Perregaard J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts. Catal. Comm. 2005;6:147–152. doi: 10.1016/j.catcom.2004.11.012. DOI

Song W, Marcus DM, Fu H, Ehresmann JO, Haw JF. An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J. Am. Chem. Soc. 2002;124:3844–3845. doi: 10.1021/ja016499u. PubMed DOI

Aragones AC, et al. Electrostatic catalysis of a Diels-Alder reaction. Nature. 2016;531:88–91. doi: 10.1038/nature16989. PubMed DOI

Shaik S, Mandal D, Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016;8:1091–1098. doi: 10.1038/nchem.2651. PubMed DOI

Saitta AM, Saija F, Giaquinta PV. Ab initio molecular dynamics study of dissociation of water under an electric field. Phys. Rev. Lett. 2012;108:207801. doi: 10.1103/PhysRevLett.108.207801. PubMed DOI

Stuve EM. Ionization of water in interfacial electric fields: an electrochemical view. Chem. Phys. Lett. 2012;519–520:1–17. doi: 10.1016/j.cplett.2011.09.040. DOI

Hammadi Z, Descoins M, Salançon E, Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012;101:243110. doi: 10.1063/1.4770516. DOI

Lee W-K, et al. Robust reduction of graphene fluoride using an electrostatically biased scanning probe. Nano Res. 2013;6:767–774. doi: 10.1007/s12274-013-0355-1. DOI

Saitta AM, Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–13773. doi: 10.1073/pnas.1402894111. PubMed DOI PMC

Cassone G, Pietrucci F, Saija F, Guyot F, Saitta AM. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chemical Science. 2017;8:2329–2336. doi: 10.1039/C6SC04269D. PubMed DOI PMC

Herron JA, Morikawa Y, Mavrikakis M. Ab initio molecular dynamics of solvation effects on reactivity at electrified interfaces. Proc. Natl. Acad. Sci. USA. 2016;113:E4937–E4945. doi: 10.1073/pnas.1604590113. PubMed DOI PMC

Cassone G, Giaquinta PV, Saija F, Saitta AM. Liquid methanol under a static electric field. J. Chem. Phys. 2015;142:054502. doi: 10.1063/1.4907010. PubMed DOI

Sellner B, Valiev M, Kathman SM. Charge and electric field fluctuations in aqueous NaCl electrolytes. J. Phys. Chem. B. 2013;117:10869–10882. doi: 10.1021/jp405578w. PubMed DOI

Reischl B, Köfinger J, Dellago C. The statistics of electric field fluctuations in liquid water. Mol. Phys. 2009;107:495–502. doi: 10.1080/00268970902865493. DOI

Bronstein Y, et al. Quantum versus classical protons in pure and salty ice under pressure. Phys. Rev. B. 2016;93:024104. doi: 10.1103/PhysRevB.93.024104. DOI

Pietrucci F, Saitta AM. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc. Natl. Acad. Sci. USA. 2015;112:15030–15035. doi: 10.1073/pnas.1512486112. PubMed DOI PMC

Laporte S, et al. Strong electric fields at a prototypical oxide/water interface probed by ab initio molecular dynamics: MgO(001) Phys. Chem. Chem. Phys. 2015;17:20382–20390. doi: 10.1039/C5CP02097B. PubMed DOI

Price D, Halley JW. A new model of the differential capacitance of the double layer. J. Electroanal. Chem. 1983;159:347–345. doi: 10.1016/S0022-0728(83)80216-2. DOI

Kreuzer J. Physics and chemistry in high electric fields. Surf. Sci. 1991;246:336–347. doi: 10.1016/0039-6028(91)90436-V. DOI

Schmickler W. Tunneling of electrons through thin layers of water. Surf. Sci. 1995;335:416–421. doi: 10.1016/0039-6028(95)00451-3. DOI

Balke N, et al. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. Nanotechnology. 2017;28:065704. doi: 10.1088/1361-6528/aa5370. PubMed DOI

Marzari N, Mostofi AA, Yates JR, Souza I, Vanderbilt D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012;84:1419–1475. doi: 10.1103/RevModPhys.84.1419. DOI

Bolhuis PG, Chandler D, Dellago C, Geissler PL. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annual Rev. of Phys. Chem. 2002;53:291–318. doi: 10.1146/annurev.physchem.53.082301.113146. PubMed DOI

Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M. Autoionization in liquid water. Science. 2001;291:2121–2124. doi: 10.1126/science.1056991. PubMed DOI

Olsson MHM, Mavri J, Warshel A. Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunnelling and dynamical effects in lipoxygenase and other systems. Phil. Trans. R. Soc. B. 2006;361:1417–1432. doi: 10.1098/rstb.2006.1880. PubMed DOI PMC

Löwdin P-O. On the nonorthogonality problem. Adv. Quantum Chem. 1970;5:185–199. doi: 10.1016/S0065-3276(08)60339-1. DOI

Giannozzi P, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009;21:395502–395537. PubMed

Car R, Parrinello M. Unified approach for molecular dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985;55:2471. doi: 10.1103/PhysRevLett.55.2471. PubMed DOI

Berry MV. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. 1984;392:45. doi: 10.1098/rspa.1984.0023. DOI

Umari P, Pasquarello A. Ab initio Molecular Dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 2002;89:157602. doi: 10.1103/PhysRevLett.89.157602. PubMed DOI

Haughney M, Ferrario M, McDonald IR. Molecular-dynamics simulation of liquid methanol. J. Phys. Chem. 1987;91:4934–4940. doi: 10.1021/j100303a011. DOI

Rappe AM, Rabe KM, Kaxiras E, Joannopoulos JD. Optimized pseudopotentials. Phys. Rev. B. 1990;44:13175. doi: 10.1103/PhysRevB.44.13175.3. PubMed DOI

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996) and Phys. Rev. Lett. 78, 1396 (1997). PubMed

Contreras-García J, et al. NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theo. Comp. 2012;7:625–632. doi: 10.1021/ct100641a. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...