One-step electric-field driven methane and formaldehyde synthesis from liquid methanol
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28451337
PubMed Central
PMC5363374
DOI
10.1039/c6sc04269d
PII: c6sc04269d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The reaction pathways connecting methanol to methane and formaldehyde are among the most emblematic in chemistry because of their outstanding interest in the fields of energy, synthesis, and bio- and geo-chemistry. Despite of its fundamental nature, the one-pot synthesis of formaldehyde and methane stemming from methanol has never been reported before. Here we present a study, based on ab initio molecular dynamics and free-energy methods, in which the simultaneous oxidation and reduction (i.e., the disproportionation) of liquid methanol into methane and formaldehyde has been achieved at ambient temperature through the application of a static electric field. Because strong electric fields can be generated in the proximity of field emitter tips, this finding shows that the challenge of experimentally disproportionating methanol into formaldehyde and methane could be attempted. We show that the methanol "solvent" molecules play a major role in this process and that the chemical pathway connecting methanol to the detected products in the bulk liquid phase is very different from its reproduced gas-phase counterpart. Finally, we demonstrate that switching on an external electric field drastically modifies the reaction network of methanol, lowering some activation barriers, stabilizing the methane and formaldehyde products, and opening otherwise difficult-to-achieve chemical routes.
CNR IPCF Viale Ferdinando Stagno d'Alcontres 37 98158 Messina Italy Email
Institute of Biophysics Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic Email
Zobrazit více v PubMed
Chang C. D. Catal. Rev.: Sci. Eng. 1983;25:1–118.
Tian P., Wei Y., Ye M., Liu Z. ACS Catal. 2015;5:1922–1939.
de Wild P. J., Verhaak M. J. F. M. Catal. Today. 2000;60:3–10.
Dahl I. M., Kolboe S. J. Catal. 1994;149:458–464.
Xu M., Lunsford J. H., Goodman D. N., Battacharyya A. Appl. Catal., A. 1997;149:289–301.
Li W., Pan C., Zhang Q., Liu Z., Peng J., Chen P., Lou H. Bioresour. Technol. 2011;102:4884–4889. PubMed
Olah G. A., Goeppert A. and Prakash G. K. S., Beyond Oil and Gas: The Methanol Economy, Wiley-VCH, Winheim, Germany, 2009.
Gesser H. D., Hunter N. R., Prakash C. B. Chem. Rev. 1985;85:235–244.
Wolf D. Angew. Chem., Int. Ed. 1998;37:3351–3353. PubMed
Gerberich H. R. and Seaman G. C., Formaldehyde in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley and Sons, New York, USA, 1994.
Waters T., O'Hair R. A. J., Wedd A. G. J. Am. Chem. Soc. 2002;125:3384–3396. PubMed
Döbler J., Pritzsche M., Sauer J. J. Am. Chem. Soc. 2005;127:10861–10868. PubMed
House M., Carley A. F., Bowker M. J. Catal. 2007;252:88–96.
Yoshizawa K., Kagawa Y. J. Phys. Chem. A. 2000;104:9347–9355.
Beale A. M., M Jacques S. D., Sacaliuc-Parvalescu E., O'Brien M. G., Barnes P., Weckhuysen B. M. Appl. Catal., A. 2009;363:143–152.
Nagy A., Mestl G., Rühle T., Weinberg G., Schlögl R. J. Catal. 1998;179:548–559.
Chen A. K., Masel R. Surf. Sci. 1995;343:17–23.
Carley A. F., Davies P. R., Mariotti G. G., Read S. Surf. Sci. 1996;364:L525–L529.
Chuah G., Kruse N., Block J., Abend G. J. Phys., Colloq. 1988;49:215–220.
Zhang H., Li X., Zhu F., Bo Z., Cen K., Tu X. Int. J. Hydrogen Energy. 2015;40:15901–15912.
Rice S. F., Hunter T. B., Rydén Å. C., Hanush R. G. Ind. Eng. Chem. Res. 1996;35:2161–2171.
Olah G. A., Mathew T., Surya Prakash G. K., Rasul G. J. Am. Chem. Soc. 2016;138:1717–1722. PubMed
de Marcellus P., Meinert C., Myrgorodska I., Nahon L., Buhse T., Le Sergent d’Hendecourt L., Meierhenrich U. J. Proc. Natl. Acad. Sci. U. S. A. 2015;112:965–970. PubMed PMC
Meinert C., Myrgorodska I., de Marcellus P., Buhse T., Nahon L., Hoffmann S. V., Le Sergent d’Hendecourt L., Meierhenrich U. J. Science. 2016;352:208–212. PubMed
Aragones A. C., Haworth N. L., Darwish N., Ciampi S., Bloomfield N. J., Wallace G. G., Diez-Perez I., Coote M. L. Nature. 2016;531:88–91. PubMed
Schreiner E., Nair N. N., Marx D. J. Am. Chem. Soc. 2008;130:2768–2770. PubMed
Goldman N., Reed J. E., Fried L. E., Kuo I.-F. W., Maiti A. Nat. Chem. 2010;2:949–954. PubMed
Lee M.-S., Scandolo S. Nat. Commun. 2011;2:185. PubMed
Saitta A. M., Saija F., Giaquinta P. V. Phys. Rev. Lett. 2012;108:207801. PubMed
Stuve E. M. Chem. Phys. Lett. 2012;519–520:1–17.
Hammadi Z., Descoins M., Salanon E., Morin R. Appl. Phys. Lett. 2012;101:243110.
Saitta A. M., Saija F. Proc. Natl. Acad. Sci. U. S. A. 2014;111:13768–13773. PubMed PMC
Pietrucci F., Saitta A. M. Proc. Natl. Acad. Sci. U. S. A. 2015;112:15030–15035. PubMed PMC
Car R., Parrinello M. Phys. Rev. Lett. 1985;55:2471. PubMed
Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1996;77:3865. PubMed
Torrie G. M., Valleau J. P. J. Comput. Phys. 1977;23:187–199.
Cassone G., Giaquinta P. V., Saija F., Saitta A. M. J. Chem. Phys. 2015;142:054502. PubMed
Price D., Halley J. W. J. Electroanal. Chem. 1983;159:347.
Kreuzer J. Surf. Sci. 1991;246:336–347.
Schmickler W. Surf. Sci. 1995;335:416–421.
Lee W.-K. Nano Res. 2013;6:767–774.
Laporte S., Finocchi F., Paulatto L., Blanchard M., Balan E., Guyot F., Saitta A. M. Phys. Chem. Chem. Phys. 2015;17:20382–20390. PubMed
Sellner B., Valiev M., Kathman S. M. J. Phys. Chem. B. 2013;117:10869–10882. PubMed
Reischl B., Köfinger J., Dellago C. Mol. Phys. 2009;107:495–502.
Bronstein Y., Depondt P., Bove L. E., Gaal R., Saitta A. M., Finocchi F. Phys. Rev. B: Condens. Matter Mater. Phys. 2016;93:024104.
Wannier G. H. Phys. Rev. 1937;52:191–197.
Kohn W. Phys. Rev. 1959;115:809–821.
Marzari N., Vanderbilt D. Phys. Rev. B: Condens. Matter Mater. Phys. 1997;56:12847–12865.
Marzari N., Mostofi A. A., Yates J. R., Souza I., Vanderbilt D. Rev. Mod. Phys. 2012;84:1419–1475.
Mostofi A. A., Yates J. R., Lee Y.-S., Souza I., Vanderbilt D., Marzari N. Comput. Phys. Commun. 2008;178:685–699.
Choudhuri J. R., Vanzo D., Madden P. A., Salanne M., Bratko D., Luzar A. ACS Nano. 2016;10:8536–8544. PubMed
Laio A., Parrinello M. Proc. Natl. Acad. Sci. U. S. A. 2001;99:12562–12566. PubMed PMC
Bolhuis P. G., Chandler D., Dellago C., Geissler P. L. Annu. Rev. Phys. Chem. 2002;53:291–318. PubMed
The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions
Electrofreezing of Liquid Ammonia
A Computational Quantum-Based Perspective on the Molecular Origins of Life's Building Blocks
Ab Initio Molecular Dynamics Study of Methanol-Water Mixtures under External Electric Fields