A Computational Quantum-Based Perspective on the Molecular Origins of Life's Building Blocks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 NR016964
NINR NIH HHS - United States
PubMed
35892991
PubMed Central
PMC9394336
DOI
10.3390/e24081012
PII: e24081012
Knihovny.cz E-zdroje
- Klíčová slova
- ab initio molecular dynamics, astrobiology, density functional theory, metadynamics, origins of life, prebiotic chemistry,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The search for the chemical origins of life represents a long-standing and continuously debated enigma. Despite its exceptional complexity, in the last decades the field has experienced a revival, also owing to the exponential growth of the computing power allowing for efficiently simulating the behavior of matter-including its quantum nature-under disparate conditions found, e.g., on the primordial Earth and on Earth-like planetary systems (i.e., exoplanets). In this minireview, we focus on some advanced computational methods capable of efficiently solving the Schro¨dinger equation at different levels of approximation (i.e., density functional theory)-such as ab initio molecular dynamics-and which are capable to realistically simulate the behavior of matter under the action of energy sources available in prebiotic contexts. In addition, recently developed metadynamics methods coupled with first-principles simulations are here reviewed and exploited to answer to old enigmas and to propose novel scenarios in the exponentially growing research field embedding the study of the chemical origins of life.
Institute of Biophysics of the Czech Academy of Sciences Kràlovopolskà 135 61265 Brno Czech Republic
Zobrazit více v PubMed
Watson J.D., Crick F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Miller S.L. A Production of Amino Acids Under Possible Primitive Earth Conditions. Science. 1953;117:528–529. doi: 10.1126/science.117.3046.528. PubMed DOI
Eschenmoser A. The search for the chemistry of life’s origin. Tetrahedron. 2007;63:12821–12843. doi: 10.1016/j.tet.2007.10.012. DOI
Sutherland J., Whitfieid J. Prebiotic chemistry: A bioorganic perspective. Tetrahedron. 1997;53:11493–11527. doi: 10.1016/S0040-4020(97)00438-9. DOI
Miller S.L. The mechanism of synthesis of amino acids by electric discharges. Biochim. Biophys. Acta. 1957;23:480–489. doi: 10.1016/0006-3002(57)90366-9. PubMed DOI
Miller S.L., Urey H.C. Organic Compound Synthesis on the Primitive Earth: Several questions about the origin of life have been answered, but much remains to be studied. Science. 1959;130:245–251. doi: 10.1126/science.130.3370.245. PubMed DOI
Oró J. Comets and the Formation of Biochemical Compounds on the Primitive Earth. Nature. 1961;190:389–390. doi: 10.1038/190389a0. PubMed DOI
Oró J., Kimball A. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 1961;94:217–227. doi: 10.1016/0003-9861(61)90033-9. PubMed DOI
Oró J. Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions. Nature. 1961;191:1193–1194. doi: 10.1038/1911193a0. PubMed DOI
Johnson A.P., Cleaves H.J., Dworkin J.P., Glavin D.P., Lazcano A., Bada J.L. The Miller volcanic spark discharge experiment. Science. 2008;322:404. doi: 10.1126/science.1161527. PubMed DOI
Parker E.T., Cleaves H.J., Dworkin J.P., Glavin D.P., Callahan M., Aubrey A., Lazcano A., Bada J.L. Primordial synthesis of amines and amino acids in a 1958 Miller H 2 S-rich spark discharge experiment. Proc. Natl. Acad. Sci. USA. 2011;108:5526–5531. doi: 10.1073/pnas.1019191108. PubMed DOI PMC
Patel B.H., Percivalle C., Ritson D.J., Duffy C.D., Sutherland J.D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 2015;7:301–307. doi: 10.1038/nchem.2202. PubMed DOI PMC
Saladino R., Botta G., Bizzarri B.M., Di Mauro E., Garcia Ruiz J.M. A Global Scale Scenario for Prebiotic Chemistry: Silica-Based Self-Assembled Mineral Structures and Formamide. Biochemistry. 2016;55:2806–2811. doi: 10.1021/acs.biochem.6b00255. PubMed DOI PMC
Šponer J.E., Šponer J., Nováková O., Brabec V., Šedo O., Zdráhal Z., Costanzo G., Pino S., Saladino R., Di Mauro E. Emergence of the First Catalytic Oligonucleotides in a Formamide-Based Origin Scenario. Chem. A Eur. J. 2016;22:3572–3586. doi: 10.1002/chem.201503906. PubMed DOI
Benner S.A., Bell E.A., Biondi E., Brasser R., Carell T., Kim H., Mojzsis S.J., Omran A., Pasek M.A., Trail D. When Did Life Likely Emerge on Earth in an RNA-First Process? ChemSystemsChem. 2020;2:e1900035. doi: 10.1002/syst.201900035. DOI
Martins Z., Price M.C., Goldman N., Sephton M.A., Burchell M.J. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues. Nat. Geosci. 2013;6:1045–1049. doi: 10.1038/ngeo1930. DOI
Saladino R., Carota E., Botta G., Kapralov M., Timoshenko G.N., Rozanov A.Y., Krasavin E., Di Mauro E. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. USA. 2015;112:E2746–E2755. doi: 10.1073/pnas.1422225112. PubMed DOI PMC
Ferus M., Laitl V., Knizek A., Kubelík P., Sponer J., Kára J., Sponer J.E., Lefloch B., Cassone G., Civiš S. HNCO-based synthesis of formamide in planetary atmospheres. Astron. Astrophys. 2018;616:A150. doi: 10.1051/0004-6361/201833003. DOI
Ferus M., Nesvorný D., Šponer J., Kubelík P., Michalčíková R., Shestivská V., Šponer J.E., Civiš S. High-energy chemistry of formamide: A unified mechanism of nucleobase formation. Proc. Natl. Acad. Sci. USA. 2015;112:657–662. doi: 10.1073/pnas.1412072111. PubMed DOI PMC
Ferus M., Pietrucci F., Saitta A.M., Knížek A., Kubelík P., Ivanek O., Shestivska V., Civiš S. Formation of nucleobases in a Miller–Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA. 2017;114:4306–4311. doi: 10.1073/pnas.1700010114. PubMed DOI PMC
Saija F., Cassone G., editors. Prebiotic Photochemistry: From Urey–Miller-like Experiments to Recent Findings. Royal Society of Chemistry; Cambridge, UK: 2021. (Comprehensive Series in Photochemical & Photobiological Sciences). DOI
Gilbert W. Origin of life—The RNA world. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI
Lazcano A., Miller S. The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time. Cell. 1996;85:793–798. doi: 10.1016/S0092-8674(00)81263-5. PubMed DOI
Sutherland J.D. The Origin of Life-Out of the Blue. Angew. Chem. Int. Ed. 2016;55:104–121. doi: 10.1002/anie.201506585. PubMed DOI
Krishnamurthy R. Experimentally investigating the origin of DNA/RNA on early Earth. Nat. Commun. 2018;9:5175. doi: 10.1038/s41467-018-07212-y. PubMed DOI PMC
Cleaves H.J., Chalmers J.H., Lazcano A., Miller S.L., Bada J.L. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 2008;38:105–115. doi: 10.1007/s11084-007-9120-3. PubMed DOI
Parker E.T., Zhou M., Burton A.S., Glavin D.P., Dworkin J.P., Krishnamurthy R., Fernandez F.M., Bada J.L. A Plausible Simultaneous Synthesis of Amino Acids and Simple Peptides on the Primordial Earth. Angew. Chem. Int. Ed. 2014;53:8132–8136. doi: 10.1002/anie.201403683. PubMed DOI
Breslow R. On the mechanism of the formose reaction. Tetrahedron Lett. 1959;1:22–26. doi: 10.1016/S0040-4039(01)99487-0. DOI
Shapiro R. Prebiotic ribose synthesis: A critical analysis. Orig. Life Evol. Biosph. 1988;18:71–85. doi: 10.1007/BF01808782. PubMed DOI
de Marcellus P., Meinert C., Myrgorodska I., Nahon L., Buhse T., d’Hendecourt L.L.S., Meierhenrich U.J. Aldehydes and sugars from evolved precometary ice analogs: Importance of ices in astrochemical and prebiotic evolution. Proc. Natl. Acad. Sci. USA. 2015;112:965–970. doi: 10.1073/pnas.1418602112. PubMed DOI PMC
Saladino R., Botta G., Pino S., Costanzo G., Di Mauro E. Genetics first or metabolism first? The formamide clue. Chem. Soc. Rev. 2012;41:5526–5565. doi: 10.1039/c2cs35066a. PubMed DOI
Goldman N. Computational Approaches for Chemistry under Extreme Conditions. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 2019.
Sponer J.E., Szabla R., Gora R.W., Saitta A.M., Pietrucci F., Saija F., Di Mauro E., Saladino R., Ferus M., Civis S., et al. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys. Chem. Chem. Phys. 2016;18:20047–20066. doi: 10.1039/C6CP00670A. PubMed DOI
Schoffstall A.M. Prebiotic phosphorylation of nucleosides in formamide. Orig. Life. 1976;7:399–412. doi: 10.1007/BF00927935. PubMed DOI
Yamada H., Okamoto T. A One-step Synthesis of Purine Ring from Formamide. Chem. Pharm. Bull. 1972;20:623–624. doi: 10.1248/cpb.20.623. PubMed DOI
Goldman N., Reed E.J., Fried L.E., William Kuo I.F., Maiti A. Synthesis of glycine-containing complexes in impacts of comets on early Earth. Nat. Chem. 2010;2:949–954. doi: 10.1038/nchem.827. PubMed DOI
Wang L.P., Titov A., McGibbon R., Liu F., Pande V.S., Martinez T.J. Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 2014;6:1044–1048. doi: 10.1038/nchem.2099. PubMed DOI PMC
Saitta A.M., Saija F. Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. USA. 2014;111:13768–13773. doi: 10.1073/pnas.1402894111. PubMed DOI PMC
Cassone G., Saija F., Sponer J., Sponer J.E., Ferus M., Krus M., Ciaravella A., Jiménez-Escobar A., Cecchi-Pestellini C. Dust Motions in Magnetized Turbulence: Source of Chemical Complexity. Astrophys. J. 2018;866:L23. doi: 10.3847/2041-8213/aae529. DOI
Cassone G., Sponer J., Sponer J.E., Pietrucci F., Saitta A.M., Saija F. Synthesis of d-erythrose from glycolaldehyde aqueous solutions under electric field. Chem. Commun. 2018;54:3211–3214. doi: 10.1039/C8CC00045J. PubMed DOI
Cassone G., Šponer J., Saija F., Di Mauro E., Marco S. A., Šponer J.E. Stability of 2’,3’ and 3’,5’ cyclic nucleotides in formamide and in water: A theoretical insight into the factors controlling the accumulation of nucleic acid building blocks in a prebiotic pool. Phys. Chem. Chem. Phys. 2017;19:1817–1825. doi: 10.1039/C6CP07993H. PubMed DOI
Ferus M., Pietrucci F., Saitta A.M., Ivanek O., Knizek A., Kubelík P., Krus M., Juha L., Dudzak R., Dostál J., et al. Prebiotic synthesis initiated in formaldehyde by laser plasma simulating high-velocity impacts. Astron. Astrophys. 2019;626:A52. doi: 10.1051/0004-6361/201935435. DOI
Shaik S., Ramanan R., Danovich D., Mandal D. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev. 2018;47:5125–5145. doi: 10.1039/C8CS00354H. PubMed DOI
Joy J., Stuyver T., Shaik S. Oriented External Electric Fields and Ionic Additives Elicit Catalysis and Mechanistic Crossover in Oxidative Addition Reactions. J. Am. Chem. Soc. 2020;142:3836–3850. doi: 10.1021/jacs.9b11507. PubMed DOI
Shaik S., Stuyver T., editors. Effects of Electric Fields on Structure and Reactivity. The Royal Society of Chemistry; Cambridge, UK: 2021. pp. 1–428. (Theoretical and Computational Chemistry Series). DOI
Herlem G., Alhedabi T., Picaud F. From Anodic Oxidation of Aliphatic α-Amino Acids to Polypeptides by Quantum Electrochemistry Approach: Beyond Miller–Urey Experiments. J. Am. Chem. Soc. 2019;141:14230–14238. doi: 10.1021/jacs.9b05910. PubMed DOI
Umari P., Pasquarello A. Ab initio Molecular Dynamics in a Finite Homogeneous Electric Field. Phys. Rev. Lett. 2002;89:157602. doi: 10.1103/PhysRevLett.89.157602. PubMed DOI
King-Smith R.D., Vanderbilt D. Theory of polarization of crystalline solids. Phys. Rev. B. 1993;47:1651–1654. doi: 10.1103/PhysRevB.47.1651. PubMed DOI
Resta R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994;66:899–915. doi: 10.1103/RevModPhys.66.899. DOI
Nunes R.W., Vanderbilt D. Real-Space Approach to Calculation of Electric Polarization and Dielectric Constants. Phys. Rev. Lett. 1994;73:712–715. doi: 10.1103/PhysRevLett.73.712. PubMed DOI
Nunes R.W., Gonze X. Berry-phase treatment of the homogeneous electric field perturbation in insulators. Phys. Rev. B. 2001;63:155107. doi: 10.1103/PhysRevB.63.155107. DOI
Resta R. Quantum-Mechanical Position Operator in Extended Systems. Phys. Rev. Lett. 1997;80:1800–1803. doi: 10.1103/PhysRevLett.80.1800. PubMed DOI
Wannier G.H. Wave Functions and Effective Hamiltonian for Bloch Electrons in an Electric Field. Phys. Rev. 1960;117:432–439. doi: 10.1103/PhysRev.117.432. DOI
Nenciu G. Dynamics of band electrons in electric and magnetic fields: Rigorous justification of the effective Hamiltonians. Rev. Mod. Phys. 1991;63:91–127. doi: 10.1103/RevModPhys.63.91. DOI
Berry M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci. 1984;392:45–57. doi: 10.1098/rspa.1984.0023. DOI
Cassone G., Sponer J., Saija F. Ab Initio Molecular Dynamics Studies of the Electric-Field-Induced Catalytic Effects on Liquids. Top. Catal. 2022;65:40–58. doi: 10.1007/s11244-021-01487-0. DOI
Otani M., Sugino O. First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Phys. Rev. B. 2006;73:115407. doi: 10.1103/PhysRevB.73.115407. DOI
Gonze X., Ghosez P., Godby R.W. Density-Polarization Functional Theory of the Response of a Periodic Insulating Solid to an Electric Field. Phys. Rev. Lett. 1995;74:4035–4038. doi: 10.1103/PhysRevLett.74.4035. PubMed DOI
Gonze X., Ghosez P., Godby R.W. Density-Functional Theory of Polar Insulators. Phys. Rev. Lett. 1996;78:294–297. doi: 10.1103/PhysRevLett.78.294. PubMed DOI
Reed E.J., Fried L.E., Joannopoulos J.D. A Method for Tractable Dynamical Studies of Single and Double Shock Compression. Phys. Rev. Lett. 2003;90:235503. doi: 10.1103/PhysRevLett.90.235503. PubMed DOI
Car R., Parrinello M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985;55:2471–2474. doi: 10.1103/PhysRevLett.55.2471. PubMed DOI
Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G.L., Cococcioni M., Dabo I., et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI
Kühne T.D., Iannuzzi M., Del Ben M., Rybkin V.V., Seewald P., Stein F., Laino T., Khaliullin R.Z., Schütt O., Schiffmann F., et al. CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020;152:194103. doi: 10.1063/5.0007045. PubMed DOI
VandeVondele J., Krack M., Mohamed F., Parrinello M., Chassaing T., Hutter J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005;167:103–128. doi: 10.1016/j.cpc.2004.12.014. DOI
Cassone G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J. Phys. Chem. Lett. 2020;11:8983–8988. doi: 10.1021/acs.jpclett.0c02581. PubMed DOI
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Laio A., e Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA. 2002;99:12562–12566. doi: 10.1073/pnas.202427399. PubMed DOI PMC
Branduardi D., Gervasio F.L., Parrinello M. From A to B in free energy space. J. Chem. Phys. 2007;126:054103. doi: 10.1063/1.2432340. PubMed DOI
Pietrucci F., Saitta A.M. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios. Proc. Natl. Acad. Sci. USA. 2015;112:15030–15035. doi: 10.1073/pnas.1512486112. PubMed DOI PMC
Pietrucci F. Strategies for the exploration of free energy landscapes: Unity in diversity and challenges ahead. Rev. Phys. 2017;2:32–45. doi: 10.1016/j.revip.2017.05.001. DOI
Bonomi M., Branduardi D., Bussi G., Camilloni C., Provasi D., Raiteri P., Donadio D., Marinelli F., Pietrucci F., Broglia R.A., et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 2009;180:1961–1972. doi: 10.1016/j.cpc.2009.05.011. DOI
Tribello G.A., Bonomi M., Branduardi D., Camilloni C., Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI
Criado-Reyes J., Bizzarri B.M., García-Ruiz J.M., Saladino R., Di Mauro E. The role of borosilicate glass in Miller–Urey experiment. Sci. Rep. 2021;11:21009. doi: 10.1038/s41598-021-00235-4. PubMed DOI PMC
Lazcano A., Bada J.L. The 1953 Stanley L. Miller experiment: Fifty years of prebiotic organic chemistry. Orig. Life Evol. Biosph. 2003;33:235–242. doi: 10.1023/A:1024807125069. PubMed DOI
Saladino R., Carota E., Botta G., Kapralov M., Timoshenko G.N., Rozanov A., Krasavin E., Di Mauro E. First Evidence on the Role of Heavy Ion Irradiation of Meteorites and Formamide in the Origin of Biomolecules. Orig. Life Evol. Biosph. 2016;46:515–521. doi: 10.1007/s11084-016-9495-0. PubMed DOI
Šponer J.E., Mládek A., Šponer J., Fuentes-Cabrera M. Formamide-Based Prebiotic Synthesis of Nucleobases: A Kinetically Accessible Reaction Route. J. Phys. Chem. A. 2012;116:720–726. doi: 10.1021/jp209886b. PubMed DOI
Saitta A.M., Saija F., Pietrucci F., Guyot F. Reply to Bada and Cleaves: Ab initio free-energy landscape of Miller-like prebiotic reactions. Proc. Natl. Acad. Sci. USA. 2015;112:E343–E344. doi: 10.1073/pnas.1421035112. PubMed DOI PMC
Ricardo A., Carrigan M.A., Olcott A.N., Benner S.A. Borate Minerals Stabilize Ribose. Science. 2004;303:196. doi: 10.1126/science.1092464. PubMed DOI
Meinert C., Myrgorodska I., de Marcellus P., Buhse T., Nahon L., Hoffmann S.V., d’Hendecourt L.L.S., Meierhenrich U.J. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science. 2016;352:208–212. doi: 10.1126/science.aad8137. PubMed DOI
Egholm M., Buchardt O., Christensen L., Behrens C., Freier S., Driver D., Berg R., Kim S., Norden B., Nielsen P. PNA hybridizes to complementary oligonucleotides obeying the watson-crick hydrogen-bonding rules. Nature. 1993;365:566–568. doi: 10.1038/365566a0. PubMed DOI
Eschenmoser A. The TNA-family of nucleic acid systems: Properties and prospects. Orig. Life Evol. Biosph. 2004;34:277–306. doi: 10.1023/B:ORIG.0000016450.59665.f4. PubMed DOI
Yu H., Zhang S., Chaput J.C. Darwinian evolution of an alternative genetic system provides support for TNA as an RNA progenitor. Nat. Chem. 2012;4:183–187. doi: 10.1038/nchem.1241. PubMed DOI
Houlihan G., Arangundy-Franklin S., Porebski B.T., Subramanian N., Taylor A.I., Holliger P. Discovery and evolution of RNA and XNA reverse transcriptase function and fidelity. Nat. Chem. 2020;12:683–690. doi: 10.1038/s41557-020-0502-8. PubMed DOI PMC
Cassone G., Pietrucci F., Saija F., Guyot F., Saitta A.M. One-step electric-field driven methane and formaldehyde synthesis from liquid methanol. Chem. Sci. 2017;8:2329–2336. doi: 10.1039/C6SC04269D. PubMed DOI PMC
Jalbout A.F., Abrell L., Adamowicz L., Polt R., Apponi A., Ziurys L. Sugar Synthesis from a Gas-Phase Formose Reaction. Astrobiology. 2007;7:433–442. doi: 10.1089/ast.2006.0083. PubMed DOI
Saitta A.M., Saija F., Giaquinta P.V. Ab Initio Molecular Dynamics Study of Dissociation of Water under an Electric Field. Phys. Rev. Lett. 2012;108:207801. doi: 10.1103/PhysRevLett.108.207801. PubMed DOI
Cassone G., Sofia A., Rinaldi G., Sponer J. Catalyst-Free Hydrogen Synthesis from Liquid Ethanol: An ab Initio Molecular Dynamics Study. J. Phys. Chem. C. 2019;123:9202–9208. doi: 10.1021/acs.jpcc.9b01037. DOI
Cassone G., Giaquinta P.V., Saija F., Saitta A.M. Effect of Electric Field Orientation on the Mechanical and Electrical Properties of Water Ices: An Ab-initio Study. J. Phys. Chem. B. 2014;118:12717–12724. doi: 10.1021/jp507376v. PubMed DOI
Cassone G., Calogero G., Sponer J., Saija F. Mobilities of iodide anions in aqueous solutions for applications in natural dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2018;20:13038–13046. doi: 10.1039/C8CP01155A. PubMed DOI
Cassone G., Pietrucci F., Saija F., Guyot F., Sponer J., Sponer J.E., Saitta A.M. Novel electrochemical route to cleaner fuel dimethyl ether. Sci. Rep. 2017;7:6901. doi: 10.1038/s41598-017-07187-8. PubMed DOI PMC
Shaik S., Mandal D., Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016;8:1091–1098. doi: 10.1038/nchem.2651. PubMed DOI
Aragonès A.C., Haworth N.L., Darwish N., Ciampi S., Bloomfield N.J., Wallace G.G., Diez-Perez I., Coote M.L. Electrostatic catalysis of a Diels–Alder reaction. Nature. 2016;531:88–91. doi: 10.1038/nature16989. PubMed DOI
Woods P.M., Kelly G., Viti S., Slater B., Brown W.A., Puletti F., Burke D.J., Raza Z. On the formation of glycolaldehyde in dense molecular cores. Astrophys. J. 2012;750:19. doi: 10.1088/0004-637X/750/1/19. DOI
Sekiguchi O., Uggerud E. Fragmentation of Deprotonated Glycolaldehyde in the Gas Phase and Relevance to the Formose Reaction. J. Phys. Chem. A. 2013;117:11293–11296. doi: 10.1021/jp4053715. PubMed DOI
Fried S.D., Boxer S.G. Measuring Electric Fields and Noncovalent Interactions Using the Vibrational Stark Effect. Accounts Chem. Res. 2015;48:998–1006. doi: 10.1021/ar500464j. PubMed DOI PMC
Laage D., Elsaesser T., Hynes J.T. Perspective: Structure and ultrafast dynamics of biomolecular hydration shells. Struct. Dyn. 2017;4:044018. doi: 10.1063/1.4981019. PubMed DOI PMC
Fukui K., Yonezawa T., Shingu H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. 1953;20:722–725. doi: 10.1063/1.1700523. DOI
Claeys P., Morbidelli A. Late Heavy Bombardment. In: Gargaud M., Amils R., Quintanilla J.C., Cleaves H.J.J., Irvine W.M., Pinti D.L., Viso M., editors. Encyclopedia of Astrobiology. Springer; Berlin/Heidelberg, Germany: 2011. pp. 909–912. DOI
Chyba C., Sagan C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature. 1992;355:125–132. doi: 10.1038/355125a0. PubMed DOI
Festou M., Keller H.U., Weaver H.A. Comets II. University of Arizona Press; Tucson, AZ, USA: 2004.
DiSanti M.A., Bonev B.P., Villanueva G.L., Mumma M.J. Highly Depleted Ethane and Mildly Depleted Methanol in Comet 21P/Giacobini-Zinner: Application of a New Empirical v2-band Model for CH3OH near 50 K. Astrophys. J. 2013;763:1. doi: 10.1088/0004-637X/763/1/1. DOI
Crovisier J., Bockelée-Morvan D. Remote Observations of the Composition of Cometary Volatiles. Space Sci. Rev. 1999;90:19–32. doi: 10.1023/A:1005217224240. DOI
Ehrenfreund P., Irvine W., Becker L., Blank J., Brucato J.R., Colangeli L., Derenne S., Despois D., Dutrey A., Fraaije H., et al. Astrophysical and astrochemical insights into the origin of life. Exo-Astrobiology. 2002;518:9–14.
Ehrenfreund P., Charnley S.B. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Annu. Rev. Astron. Astrophys. 2000;38:427–483. doi: 10.1146/annurev.astro.38.1.427. DOI
Mumma M., DiSanti M., Dello Russo N., Magee-Sauer K., Gibb E., Novak R. Remote infrared observations of parent volatiles in comets: A window on the early solar system. Adv. Space Res. 2003;31:2563–2575. doi: 10.1016/S0273-1177(03)00578-7. DOI
Bockelée-Morvan D., Lis D.C., Wink J.E., Despois D., Crovisier J., Bachiller R., Benford D.J., Biver N., Colom P., Davies J.K., et al. New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astron. Astrophys. 2000;353:1101–1114.
Oró J., Gibert J., Lichtenstein H., Wikstrom S., Flory D.A. Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite. Nature. 1971;230:105–106. doi: 10.1038/230105a0. PubMed DOI
Ioppolo S., Fedoseev G., Chuang K.J., Cuppen H.M., Clements A.R., Jin M., Garrod R.T., Qasim D., Kofman V., van Dishoeck E.F., et al. A non-energetic mechanism for glycine formation in the interstellar medium. Nat. Astron. 2021;5:197–205. doi: 10.1038/s41550-020-01249-0. DOI
Goldman N., Tamblyn I. Prebiotic Chemistry within a Simple Impacting Icy Mixture. J. Phys. Chem. A. 2013;117:5124–5131. doi: 10.1021/jp402976n. PubMed DOI
Ferus M., Rimmer P., Cassone G., Knížek A., Civiš S., Šponer J.E., Ivanek O., Šponer J., Saeidfirozeh H., Kubelík P., et al. One-Pot Hydrogen Cyanide-Based Prebiotic Synthesis of Canonical Nucleobases and Glycine Initiated by High-Velocity Impacts on Early Earth. Astrobiology. 2020;20:1476–1488. doi: 10.1089/ast.2020.2231. PubMed DOI
Sugahara H., Mimura K. Glycine oligomerization up to triglycine by shock experiments simulating comet impacts. Geochem. J. 2014;48:51–62. doi: 10.2343/geochemj.2.0285. DOI
Sugahara H., Mimura K. Peptide synthesis triggered by comet impacts: A possible method for peptide delivery to the early Earth and icy satellites. Icarus. 2015;257:103–112. doi: 10.1016/j.icarus.2015.04.029. DOI
Osinski G., Cockell C., Pontefract A., Sapers H. The Role of Meteorite Impacts in the Origin of Life. Astrobiology. 2020;20:1121–1149. doi: 10.1089/ast.2019.2203. PubMed DOI PMC
Elsila J.E., Glavin D.P., Dworkin J.P. Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 2009;44:1323–1330. doi: 10.1111/j.1945-5100.2009.tb01224.x. DOI
Singh S.V., Dilip H., Meka J.K., Thiruvenkatam V., Jayaram V., Muruganantham M., Sivaprahasam V., Rajasekhar B.N., Bhardwaj A., Mason N.J., et al. New Signatures of Bio-Molecular Complexity in the Hypervelocity Impact Ejecta of Icy Moon Analogues. Life. 2022;12:508. doi: 10.3390/life12040508. PubMed DOI PMC
Burchell M.J., Cole M.J., McDonnell J.A.M., Zarnecki J.C. Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury. Meas. Sci. Technol. 1999;10:41–50. doi: 10.1088/0957-0233/10/1/011. DOI
Mohammadi E., Petera L., Saeidfirozeh H., Knížek A., Kubelík P., Dudžák R., Krůs M., Juha L., Civiš S., Coulon R., et al. Formic Acid, a Ubiquitous but Overlooked Component of the Early Earth Atmosphere. Chem. A Eur. J. 2020;26:12075–12080. doi: 10.1002/chem.202000323. PubMed DOI
Ferus M., Civiš S., Mládek A., Šponer J., Juha L., Šponer J.E. On the Road from Formamide Ices to Nucleobases: IR-Spectroscopic Observation of a Direct Reaction between Cyano Radicals and Formamide in a High-Energy Impact Event. J. Am. Chem. Soc. 2012;134:20788–20796. doi: 10.1021/ja310421z. PubMed DOI
Rivilla V.M., Jiménez-Serra I., Martín-Pintado J., Briones C., Rodríguez-Almeida L.F., Rico-Villas F., Tercero B., Zeng S., Colzi L., de Vicente P., et al. Discovery in space of ethanolamine, the simplest phospholipid head group. Proc. Natl. Acad. Sci. USA. 2021;118:e2101314118. doi: 10.1073/pnas.2101314118. PubMed DOI PMC
Pino S., Di Mauro E., Costanzo G., Saladino R., Šedo O., Zdráhal Z., Šponer J., Šponer J.E. Stabilization of Short Oligonucleotides in the Prebiotic Mix: The Potential Role of Amino Alcohols. ChemSystemsChem. 2019;1:e1900006. doi: 10.1002/syst.201900006. DOI
Eyring H. The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935;3:107–115. doi: 10.1063/1.1749604. DOI
Evans M.G., Polanyi M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 1935;31:875–894. doi: 10.1039/tf9353100875. DOI