Formic Acid, a Ubiquitous but Overlooked Component of the Early Earth Atmosphere
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-03314S
Grantová Agentura České Republiky
PubMed
32293757
DOI
10.1002/chem.202000323
Knihovny.cz E-zdroje
- Klíčová slova
- CO2 reduction, formic acid, hydrothermal synthesis, laser chemistry, prebiotic synthesis,
- Publikační typ
- časopisecké články MeSH
Terrestrial volcanism has been one of the dominant geological forces shaping our planet since its earliest existence. Its associated phenomena, like atmospheric lightning and hydrothermal activity, provide a rich energy reservoir for chemical syntheses. Based on our laboratory simulations, we propose that on the early Earth volcanic activity inevitably led to a remarkable production of formic acid through various independent reaction channels. Large-scale availability of atmospheric formic acid supports the idea of the high-temperature accumulation of formamide in this primordial environment.
Faculty of Science Charles University Albertov 2030 12843 Prague Czech Republic
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61265 Brno Czech Republic
Institute of Physics Czech Academy of Sciences Na Slovance 1999 2 18221 Prague 8 Czech Republic
Zobrazit více v PubMed
J. D. Sutherland, Angew. Chem. Int. Ed. 2016, 55, 104-121;
Angew. Chem. 2016, 128, 108-126.
R. Saladino, G. Botta, S. Pino, G. Costanzo, E. Di Mauro, Chem. Soc. Rev. 2012, 41, 5526-5565.
S. A. Benner, H.-J. Kim, M. A. Carrigan, Acc. Chem. Res. 2012, 45, 2025-2034.
S. L. Miller, Science 1953, 117, 528-529;
S. L. Miller, H. C. Urey, Science 1959, 130, 245-251.
Note that the yield of formic acid formation in the original Miller-Urey experiment is an order of magnitude higher than that of the main amino acid products including glycine, alanine, aspartic acid, and glutamic acid.
S. Becker, I. Thoma, A. Deutsch, T. Gehrke, P. Mayer, H. Zipse, T. Carell, Science 2016, 352, 833-836;
S. Becker, J. Feldmann, S. Wiedemann, H. Okamura, C. Schneider, K. Iwan, A. Crisp, M. Rossa, T. Amatov, T. Carell, Science 2019, 366, 76-82.
J. E. Šponer, J. Šponer, O. Nováková, V. Brabec, O. Šedo, Z. Zdráhal, G. Costanzo, S. Pino, R. Saladino, E. Di Mauro, Chem. Eur. J. 2016, 22, 3572-3586;
G. Cassone, J. Šponer, F. Saija, E. Di Mauro, A. M. Saitta, J. E. Šponer, Phys. Chem. Chem. Phys. 2017, 19, 1817-1825.
M. Lorin, C. R. Acad. Sci. 1864, 59, 64;
O. Kröcher, M. Elsener, E. Jacob, Appl. Catal. B 2009, 88, 66-82.
J. A. Brandes, N. Z. Boctor, G. D. Cody, B. A. Cooper, R. M. Hazen, H. S. Yoder, Nature 1998, 395, 365-367;
K. Zahnle, L. Schaefer, B. Fegley, CSH Perspect. Biol. 2010, 2, 17.
National Center for Biotechnology Information. PubChem Database. Ammonium formate, CID=2723923, https://pubchem.ncbi.nlm.nih.gov/compound/Ammonium-formate (accessed on April 9, 2020).
H. Schulz, Appl. Catal. A 1999, 186, 3-12.
G. Proskurowski, M. D. Lilley, J. S. Seewald, G. L. Fruh-Green, E. J. Olson, J. E. Lupton, S. P. Sylva, D. S. Kelley, Science 2008, 319, 604-607;
D. I. Foustoukos, W. E. Seyfried, Science 2004, 304, 1002-1005.
B. K. D. Pearce, R. E. Pudritz, Astrophys. J. 2015, 807, 85.
M. E. Berndt, D. E. Allen, W. E. Seyfried, Geology 1996, 24, 351-354;
T. M. McCollom, J. S. Seewald, Geochim. Cosmochim. Acta 2001, 65, 3769-3778;
N. G. Holm, J. L. Charlou, Earth Planet. Sci. Lett. 2001, 191, 1-8.
T. M. McCollom, Proc. Natl. Acad. Sci. USA 2016, 113, 13965-13970;
N. G. Holm, C. Oze, O. Mousis, J. H. Waite, A. Guilbert-Lepoutre, Astrobiology 2015, 15, 587-600.
J. Horita, M. E. Berndt, Science 1999, 285, 1055-1057.
C. Koeberl, W. U. Reimold, I. McDonald, M. Rosing, Search for Petrographic and Geochemical Evidence for the Late Heavy Bombardment on Earth in Early Archean Rocks from Isua, Greenland (Eds.: I. Gilmour, C. Koeberl), Springer, Heidelberg, 2000, pp. 73-97.
L. Schaefer, B. Fegley, Icarus 2007, 186, 462-483;
V. R. Oberbeck, J. Marshall, T. Shen, J. Mol. Evol. 1991, 32, 296-303.
S. L. Miller, G. Schlesinger, Adv. Space Res. 1983, 3, 47-53;
R. D. Hill, Orig. Life Evol. Biosph. 1992, 22, 277-285.
A. G. Allen, P. J. Baxter, C. J. Ottley, Bull. Volcanol. 2000, 62, 8-19.
M. Ferus, F. Pietrucci, A. M. Saitta, A. Knížek, P. Kubelík, O. Ivanek, V. Shestivska, S. Civiš, Proc. Natl. Acad. Sci. USA 2017, 114, 4306-4311.
J. Koukal in Recording and Comparison of Lightning Spectra (in Czech: Záznam a komparace spektra blesku), astro.cz, https://www.astro.cz/clanky/ostatni/zaznam-a-komparace-spektra-blesku.html?hledat=spektra%20blesku, 2016.
R. C. Millikan, K. S. Pitzer, J. Chem. Phys. 1957, 27, 1305-1308.
V. A. Rakov, M. A. Uman, Lightning: Physics and Effects, Cambridge University Press Cambridge, 2003.
E. Franzblau, C. J. Popp, J. Geophys. Res. 1989, 94, 11089-11104.
R. D. Hill, R. G. Rinker, H. D. Wilson, J. Atmos. Sci. 1980, 37, 179-192.
D. Nna Mvondo, R. Navarro-González, C. P. McKay, P. Coll, F. Raulin, Adv. Space Res. 2001, 27, 217-223.
R. Stribling, S. L. Miller, Orig. Life Evol. Biosph. 1987, 17, 261-273.
J. P. Pinto, G. R. Gladston, Y. L. Yung, Science 1980, 210, 183-185.
A. Roldan, N. Hollingsworth, A. Roffey, H. U. Islam, J. B. M. Goodall, C. R. A. Catlow, J. A. Darr, W. Bras, G. Sankar, K. B. Holt, G. Hogarth, N. H. de Leeuw, Chem. Commun. 2015, 51, 7501-7504.
Minerals of the spinel group are characterized with the general formula of AB2C4, where A, B and C stand for cations and anions, respectively. In case of thiospinels C=S (sulfur).
R. M. Hazen, Am. J. Sci. 2013, 313, 807-843.
V. Sojo, A. Ohno, S. E. McGlynn, Y. M. A. Yamada, R. Nakamura, Life 2019, 9, 16.
D. J. Vaughan, J. R. Craig, Am. Mineral. 1985, 70, 1036-1043.
B. J. Skinner, F. S. Grimaldi, R. C. Erd, Am. Mineral. 1964, 49, 543-555.
J. D. Grice, R. B. Ferguson, Can. Mineral. 1974, 12, 248-252.
N. H. Sleep, A. Meibom, T. Fridriksson, R. G. Coleman, D. K. Bird, Proc. Natl. Acad. Sci. USA 2004, 101, 12818-12823.
N. T. Arndt, E. G. Nisbet, Annu. Rev. Earth Planet. Sci. 2012, 40, 521-549.
K. Jungwirth, A. Cejnarová, L. Juha, B. Králiková, J. Krása, E. Krouský, P. Krupičková, L. Láska, K. Mašek, T. Mocek, M. Pfeifer, A. Präg, O. Renner, K. Rohlena, B. Rus, J. Skála, P. Straka, J. Ullschmied, Phys. Plasmas 2001, 8, 2495-2501.
Z. J. Zhang, X. Y. Chen, J. Alloys Compd. 2009, 488, 339-345.
X.-F. Tang, Z.-G. Yang, J.-H. Liang, RSC Adv. 2016, 6, 88168-88173.
A Computational Quantum-Based Perspective on the Molecular Origins of Life's Building Blocks