Possibility of realizing superionic ice VII in external electric fields of planetary bodies

. 2020 May ; 6 (21) : eaaz2915. [epub] 20200522

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32494738

In a superionic (SI) ice phase, oxygen atoms remain crystallographically ordered while protons become fully diffusive as a result of intramolecular dissociation. Ice VII's importance as a potential candidate for a SI ice phase has been conjectured from anomalous proton diffusivity data. Theoretical studies indicate possible SI prevalence in large-planet mantles (e.g., Uranus and Neptune) and exoplanets. Here, we realize sustainable SI behavior in ice VII by means of externally applied electric fields, using state-of-the-art nonequilibrium ab initio molecular dynamics to witness at first hand the protons' fluid dance through a dipole-ordered ice VII lattice. We point out the possibility of SI ice VII on Venus, in its strong permanent electric field.

Zobrazit více v PubMed

Dunaeva A. N., Antsyshkin D. V., Kuskov O. L., Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices. Sol. Syst. Res. 44, 222–243 (2010).

Salzmann C. G., Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150, 060901 (2019). PubMed

Amaya A. J., Pathak H., Modak V. P., Laksmomo H., Loh N. D., Sellberg J. A., Sierra R. G., McQueen T. A., Hayes M. J., Williams G. J., Messerschmidt M., Boutet S., Bogan M. J., Nilsson A., Stan C. A., Wyslozil B. E., How cubic can ice be? J. Phys. Chem. Lett. 8, 3216–3222 (2017). PubMed

Zhu W., Huang Y., Zhu C., Wu H.-H., Wang L., Bai J., Yang J., Francisco J. S., Zhao J., Yuan L.-F., Zeng X. C., Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram. Nat. Commun. 10, 1925 (2019). PubMed PMC

Cavazzoni C., Chiarotti G. H., Scandolo S., Tosatti E., Bernasconi M., Parrinello M., Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999). PubMed

Goldman N., Fried L., Kuo I.-F., Mundy C. J., Bonding in the superionic phase of water. Phys. Rev. Lett. 94, 217801 (2005). PubMed

French M., Mattsson T. R., Nettelmann N., Redmer R., Equation of state and phase diagram of water at ultrahigh pressures as in planetary interiors. Phys. Rev. B 79, 054107 (2009).

Redmer R., Mattsson T. R., Nettelmann N., French M., The phase diagram of water and the magnetic fields of uranus and neptune. Icarus 211, 798–803 (2011).

Sun J., Clark B. K., Torquato S., Car R., The phase diagram of high-pressure superionic ice. Nat. Commun. 6, 8156 (2015). PubMed PMC

Katoh E., Yamawaki H., Fujihisa H., Sakashita M., Aoki K., Protonic diffusion in high-pressure ice VII. Science 295, 1264–1266 (2002). PubMed

Okada T., Iitaka T., Yagi T., Aoki K., Electrical conductivity of ice VII. Sci. Rep. 4, 5778 (2014). PubMed PMC

Noguchi N., Okuchi T., Self-diffusion of protons in H2O ice VII at high pressures: Anomaly around 10 GPa. J. Chem. Phys. 144, 234503 (2016). PubMed

Sugimura E., Komabayashi T., Ohta K., Hirose K., Ohishi Y., Dubrovinsky L. S., Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012). PubMed

Hemley R. J., Jephcoat A. P., Mao H. K., Zha C. S., Finger L. W., Cox D. E., Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330, 737–740 (1987).

Goncharov A. F., Struzhkin V. V., Somayazulu M. S., Hemley R. J., Mao H. K., Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase. Science 273, 218–220 (1996). PubMed

Loubeyre P., Le Toullec R., Wolanin E., Hanfland M., Hausermann D., Modulated phases and proton centring in ice observed by x-ray diffraction up to 170 GPa. Nature 397, 503–506 (1999).

Lee K. K. M., Benedetti L. R., Jeanloz R., Celliers P. M., Eggert J. H., Hicks D. G., Moon S. J., Mackinnon A., Da Silva L. B., Bradley D. K., Unites W., Collins G. W., Henry E., Koenig M., Benuzzi-Mounaix A., Pasley J., Neely D., Laser-driven shock experiments on precompressed water: Implications for “icy” giant planets. J. Chem. Phys. 125, 014701 (2006). PubMed

Stanley S., Bloxham J., Numerical dynamo models of uranus’ and neptune’s magnetic fields. Icarus 184, 556–572 (2006).

Stanley S., Bloxham J., Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004). PubMed

Tian B. Y., Stanley S., Interior structure of water planets: Implications for their dynamo source regions. Astrophys. J. 768, 156 (2013).

Nettelmann N., Helled R., Fortney J., Redmer R., New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77, 143–151 (2013).

Encrenaz T., Water in the Solar System. Annu. Rev. Astron. Astrophys. 46, 57–87 (2008).

Millot M., Hamel S., Rygg J. R., Celliers P. M., Collins G. W., Coppari F., Fratanduono D. E., Jeanloz R., Swift D. C., Eggert J. H., Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018).

Millot M., Coppari F., Rygg J. R., Barrios A. C., Hamel S., Swift D. C., Eggert J. H., Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019). PubMed

Collinson G. A., Frahm R. A., Glocer A., Coates A. J., Grebowsky J. M., Barabash S., Domagal-Goldman S. D., Fedorov A., Futaana Y., Gilbert L. K., Khazanov G., Nordheim T. A., Mitchell D., Moore T. E., Peterson W. K., Winningham J. D., Zhang T. L., The electric wind of Venus: A global and persistent “polar wind”-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophys. Res. Lett. 43, 5926–5934 (2016).

W. F. Libby, P. Corneil, ‘Water on Venus?’, in ‘Planetary Atmospheres’, Sagan, et al., Ed. (I.A.U. Publications, 1971).

Kuhs W. F., Finney J. L., Vettier C., Bliss D. V., Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction. J. Chem. Phys. 81, 3612–3623 (1984).

Nelmes R. J., Loveday J. S., Marshall W. G., Hamel G., Besson J. M., Klotz S., Multisite disordered structure of ice VII to 20 GPa. Phys. Rev. Lett. 81, 2719–2722 (1998).

Guthrie M., Boehler R., Molaison J. J., Haberl B., dos Santos A. M., Tulk C., Structure and disorder in ice VII on the approach to hydrogen-bond symmetrization. Phys. Rev. B. 99, 184112 (2019).

Futera Z., English N. J., Pressure dependence of structural properties of ice VII: Ab initio molecular-dynamics study. J. Chem. Phys. 148, 204505 (2018). PubMed

Futera Z., English N. J., Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initiomolecular dynamics. J. Chem. Phys. 147, 031102 (2017). PubMed

English N. J., MacElroy J. M. D., Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields. J. Chem. Phys. 119, 11806–11813 (2003).

Saitta A. M., Saija F., Giaquinta P. V., Ab initio molecular dynamics study of dissociation of water under an electric field. Phys. Rev. Lett. 108, 207801 (2012). PubMed

Cassone G., Giaquinta P. V., Saija F., Saitta A. M., Effect of electric field orientation on the mechanical and electrical properties of water ices: An ab-initio study. J. Phys. Chem. B 118, 12717–12724 (2014). PubMed

English N. J., Waldron C. J., Perspectives on external electric fields in molecular simulation: Progress prospects and challenges. Phys. Chem. Chem. Phys. 17, 12407–12440 (2015). PubMed

Klotz S., Komatsu K., Pietrucci F., Kagi H., Ludl A.-A., Machida S., Hattori T., Sano-Furukawa A., Bove L. E., Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds. Sci. Rep. 6, 32040 (2016). PubMed PMC

Sellner B., Valiev M., Kathmann S. M., Charge and electric field fluctuations in aqueous NaCl electrolytes. J. Phys. Chem. B 117, 10869–10882 (2013). PubMed

Poirier J. P., Sotin C., Peyronneau J., Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede. Nature 292, 225–227 (1981).

Shprits Y. Y., Menietti J. D., Drozdov A. Y., Horne R. B., Woodfield E. E., Groene J. B., de Soria-Santacruz M., Averkamp T. F., Garrett H., Paranicas C., Gurnett D. A., Strong whistler mode waves observed in the vicinity of Jupiter’s moons. Nat. Commun. 9, 3131 (2018). PubMed PMC

Becke A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). PubMed

Klimeš J., Bowler D. R., Michaelides A., Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010). PubMed

Dion M., Rydberg H., Schröder E., Langreth D. C., Lundqvist B. I., van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004). PubMed

Román-Pérez G., Soler J. M., Efficient implementation of a van der waals density functional: Application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009). PubMed

Wang J., Roman-Pérez G., Soler J. M., Artacho E., Fernández-Serra M.-V., Density, structure, and dynamics of water: The effect of van der Waals interactions. J. Chem. Phys. 134, 024516 (2011). PubMed

Zhang C., Wu J., Galli G., Gygi F., Structural and vibrational properties of liquid water from van der Waals density functionals. J. Chem. Theory Comput. 7, 3054–3061 (2011). PubMed

Corsetti F., Artacho E., Soler J. M., Alexandre S. S., Fernández-Serra M.-V., Room temperature compressibility and diffusivity of liquid water from first principles. J. Chem. Phys. 139, 194502 (2013). PubMed

Bankura A., Karmakar A., Carnevale V., Chandra A., Klein M. L., Structure, dynamics, and spectral diffusion of water from first-principles molecular dynamics. J. Phys. Chem. C 118, 29401–29411 (2014).

English N. J., Structural properties of liquid water and ice Ih from Ab-initio molecular dynamics with a non-local correlation functional. Energies 8, 9383–9391 (2015).

Gillan M. J., Alfe D., Michaelides A., Perspective: How good is DFT for water? J. Chem. Phys. 144, 130901 (2016). PubMed

Futera Z., Celli M., del Rosso L., Burnham C. J., Ulivi L., English N. J., Vibrational modes of hydrogen hydrates: A first-principles molecular dynamics and Raman spectra study. J. Phys. Chem. C 121, 3690–3696 (2017).

Goedecker S., Teter M., Hutter J., Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996). PubMed

Hutter J., Iannuzzi M., Schiffmann F., VandeVondele J., CP2K: Atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

Kühne T. D., Krack M., Mohamed F. R., Parrinello M., Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007). PubMed

Kühne T. D., Krack M., Parrinello M., Static and dynamical properties of liquid water from first principles by a novel Car-Parrinello-like approach. J. Chem. Theory Comput. 5, 235–241 (2009). PubMed

Umari P., Pasquarello A., Ab initio molecular dynamics in a finite homogeneous electric field. Phys. Rev. Lett. 89, 157602 (2002). PubMed

Saitta A. M., Saija F., Miller experiments in atomistic computer simulations. Proc. Natl. Acad. Sci. U.S.A. 111, 13768–13773 (2014). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Reactivity-Enhancing Role of Water Clusters in Ammonia Aqueous Solutions

. 2023 Sep 07 ; 14 (35) : 7808-7813. [epub] 20230825

Electrofreezing of Liquid Ammonia

. 2022 Oct 27 ; 13 (42) : 9889-9894. [epub] 20221018

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...