Hydrogen Bonds under Electric Fields with Quantum Accuracy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40298002
PubMed Central
PMC12067437
DOI
10.1021/acs.jpca.5c01095
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Hydrogen bonds (H-bonds) are pivotal in various chemical and biological systems and exhibit complex behavior under external perturbations. This study investigates the structural, vibrational, and energetic properties of prototypical H-bonded dimers, water (H2O)2, hydrogen fluoride (HF)2, hydrogen sulfide (H2S)2, and ammonia (NH3)2 - and the respective monomers under static and homogeneous electric fields (EFs) using the accurate explicitly correlated singles and doubles coupled cluster method (CCSD) for equilibrium geometries and harmonic vibrational frequencies and the perturbative triples CCSD(T) method for energies. As for the vibrational response of the H2O, HF, H2S, and NH3 monomers, it turns out that dipole derivatives primarily govern the geometry relaxation. Perturbation theory including cubic anharmonicity can reproduce CCSD results on the vibrational Stark effect, except for NH3, where deviations arise due to its floppiness. The field-induced modifications in H-bond lengths, vibrational Stark effects, binding energies, and charge-transfer mechanisms in monomers and dimers are elucidated. Symmetry-adapted perturbation theory (SAPT) analysis on dimers reveals that electrostatics dominates the stabilization of H-bonds across all field strengths, while induction contributions increase significantly with stronger fields, particularly in systems with more polarizable atoms. Our results reveal a universal strengthening of intermolecular interactions at moderate to strong field intensities with significant variability among dimers due to inherent differences in molecular polarizability and charge distribution. Notably, a direct correlation is observed between the binding energies and the vibrational Stark effect of the stretching mode of the H-bond donor molecule, both in relation to the charge-transfer energy term, across all of the investigated dimers. All of these findings provide insights into the EF-driven modulation of H-bonds, highlighting implications for catalysis, hydrogen-based technologies, and biological processes.
Zobrazit více v PubMed
Steiner T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed. 2002, 41, 48–76. 10.1002/1521-3773%2820020104%2941%3A1<48%3A%3AAID-ANIE48>3.0.CO%3B2-U. PubMed DOI
Pettersson L. G. M.; Henchman R. H.; Nilsson A. Water—the most anomalous liquid. Chem. Rev. 2016, 116, 7459–7462. 10.1021/acs.chemrev.6b00363. PubMed DOI
Arunan E.; Desiraju G. R.; Klein R. A.; Sadlej J.; Scheiner S.; Alkorta I.; Clary D. C.; Crabtree R. H.; Dannenberg J. J.; et al. Definition of the hydrogen bond (iupac recommendations 2011). Pure Appl. Chem. 2011, 83, 1637–1641. 10.1351/PAC-REC-10-01-02. DOI
Grabowski S. J. Hydrogen bond types which do not fit accepted definitions. Chem. Commun. 2024, 60, 6239–6255. 10.1039/D4CC01769B. PubMed DOI
van der Lubbe S. C. C.; Guerra C. F. The nature of hydrogen bonds: A delineation of the role of different energy components on hydrogen bond strengths and lengths. Chem. Asian J. 1919, 14, 2760–2769. 10.1002/asia.201900717. PubMed DOI PMC
Cobar E. A.; Horn P. R.; Bergman R. G.; Head-Gordon M. Examination of the hydrogen-bonding networks in small water clusters (n = 2–5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis. Phys. Chem. Chem. Phys. 2012, 14, 15328–15339. 10.1039/c2cp42522j. PubMed DOI
Flór M.; Wilkins D. M.; de la Puente M.; Laage D.; Cassone G.; Hassanali A.; Roke S. Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects. Science 2024, 386, eads436910.1126/science.ads4369. PubMed DOI
Vladilo G.; Hassanali A. Hydrogen bonds and life in the universe. Life 2018, 8, 1.10.3390/life8010001. PubMed DOI PMC
Liu Y.; Wang L.; Zhao L.; Zhang Y.; Li Z.-T.; Huang F. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications. Chem. Soc. Rev. 2024, 53, 1592–1623. 10.1039/D3CS00705G. PubMed DOI
Ma B.; Lin H.; Li M.; Yu X.; Li X.; Du X.; Yang G.; Zheng C.; Tao S. Hydrogen-bond-induced cathode engineering interface achieving high-efficiency organic solar cells. J. Mater. Chem. C 2022, 10, 6358–6364. 10.1039/D1TC05129F. DOI
Kraytsberg A.; Ein-Eli Y. Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 2014, 28, 7303–7330. 10.1021/ef501977k. DOI
Scaletti C.; Russell P. P. S.; Hebel K. J.; Rickard M. M.; Boob M.; Danksagmüller F.; Taylor S. A.; Pogorelov T. V.; Gruebele M. Hydrogen bonding heterogeneity correlates with protein folding transition state passage time as revealed by data sonification. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e231909412110.1073/pnas.2319094121. PubMed DOI PMC
Herschlag D.; Pinney M. M. Hydrogen bonds: Simple after all?. Biochemistry 2018, 57, 3338–3352. 10.1021/acs.biochem.8b00217. PubMed DOI
Petroff C. A.; Cassone G.; Šponer J.; Hutchison G. R. Intrinsically polar piezoelectric self-assembled oligopeptide monolayers. Adv. Mater. 2021, 33, 200748610.1002/adma.202007486. PubMed DOI
Balke N.; Jesse S.; Carmichael B.; Okatan M. B.; Kravchenko I. I.; Kalinin S. V.; Tselev A. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. Nanotechnology 2017, 28, 06570410.1088/1361-6528/aa5370. PubMed DOI
Hammadi Z.; Descoins M.; Salançon E.; Morin R. Proton and light ion nanobeams from field ionization of water. Appl. Phys. Lett. 2012, 101, 24311010.1063/1.4770516. DOI
Stuve E. M. Ionization of water in interfacial electric fields: An electrochemical view. Chem. Phys. Lett. 2012, 519–520, 1–17. 10.1016/j.cplett.2011.09.040. DOI
Aragonès A. C.; Haworth N. L.; Darwish N.; Ciampi S.; Bloomfield N. J.; Wallace G. G.; Diez-Perez I.; Coote M. L. Electrostatic catalysis of a diels–alder reaction. Nature 2016, 531, 88–91. 10.1038/nature16989. PubMed DOI
Shaik S.; Mandal D.; Ramanan R. Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 2016, 8, 1091–1098. 10.1038/nchem.2651. PubMed DOI
Song Z.; Liang C.; Gong K.; Zhao S.; Yuan X.; Zhang X.; Xie J. Harnessing the high interfacial electric fields on water microdroplets to accelerate menshutkin reactions. J. Am. Chem. Soc. 2023, 145, 26003–26008. 10.1021/jacs.3c11650. PubMed DOI
Huang X.; Tang C.; Li J.; Chen L.-C.; Zheng J.; Zhang P.; Le J.; Li R.; Li X.; Liu J.; et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw307210.1126/sciadv.aaw3072. PubMed DOI PMC
Nibali V. C.; Maiti S.; Saija F.; Heyden M.; Cassone G. Electric-field induced entropic effects in liquid water. J. Chem. Phys. 2023, 158, 18450110.1063/5.0139460. PubMed DOI
Cassone G.; Sponer J.; Trusso S.; Saija F. Ab initio spectroscopy of water under electric fields. Phys. Chem. Chem. Phys. 2019, 21, 21205–21212. 10.1039/C9CP03101D. PubMed DOI
Elgabarty H.; Kaliannan N. K.; Kühne T. D. Enhancement of the local asymmetry in the hydrogen bond network of liquid water by an ultrafast electric field pulse. Sci. Rep. 2019, 9, 1000210.1038/s41598-019-46449-5. PubMed DOI PMC
Shafiei M.; von Domaros M.; Bratko D.; Luzar A. Anisotropic structure and dynamics of water under static electric fields. J. Chem. Phys. 2019, 150, 07450510.1063/1.5079393. PubMed DOI
Futera Z.; English N. J. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics. J. Chem. Phys. 2017, 147, 03110210.1063/1.4994694. PubMed DOI
Cassone G.; Martelli F. Electrofreezing of liquid water at ambient conditions. Nat. Commun. 2024, 15, 1856.10.1038/s41467-024-46131-z. PubMed DOI PMC
Cassone G.; Sponer J.; Sponer J. E.; Saija F. Electrofreezing of liquid ammonia. J. Phys. Chem. Lett. 2022, 13, 9889–9894. 10.1021/acs.jpclett.2c02576. PubMed DOI PMC
Cassone G.; Saija F.; Sponer J.; Shaik S. The reactivity-enhancing role of water clusters in ammonia aqueous solutions. J. Phys. Chem. Lett. 2023, 14, 7808–7813. 10.1021/acs.jpclett.3c01810. PubMed DOI PMC
Munaò G.; Saija F.; Cassone G. The structure of water–ammonia mixtures from classical and abinitio molecular dynamics. J. Chem. Phys. 2024, 161, 09450310.1063/5.0220328. PubMed DOI
Pullanchery S.; Kulik S.; Schönfeldová T.; Egan C. K.; Cassone G.; Hassanali A.; Roke S. ph drives electron density fluctuations that enhance electric field-induced liquid flow. Nat. Commun. 2024, 15, 5951.10.1038/s41467-024-50030-8. PubMed DOI PMC
Saitta A. M.; Saija F.; Giaquinta P. V. Ab initio molecular dynamics study of dissociation of water under an electric field. Phys. Rev. Lett. 2012, 108, 20780110.1103/PhysRevLett.108.207801. PubMed DOI
Cassone G. Nuclear quantum effects largely influence molecular dissociation and proton transfer in liquid water under an electric field. J. Phys. Chem. Lett. 2020, 11, 8983–8988. 10.1021/acs.jpclett.0c02581. PubMed DOI
Chattopadhyay A.; Boxer S. G. Vibrational stark effect spectroscopy. J. Am. Chem. Soc. 1995, 117, 1449–1450. 10.1021/ja00109a038. DOI
Saggu M.; Levinson N. M.; Boxer S. G. Experimental quantification of electrostatics in x–h··· hydrogen bonds. J. Am. Chem. Soc. 2012, 134, 18986–18997. 10.1021/ja305575t. PubMed DOI PMC
Fried S. D.; Boxer S. G. Measuring electric fields and noncovalent interactions using the vibrational stark effect. Acc. Chem. Res. 2015, 48, 998–1006. 10.1021/ar500464j. PubMed DOI PMC
Geissler P. L.; Dellago C.; Chandler D.; Hutter J.; Parrinello M. Autoionization in liquid water. Science 2001, 291, 2121–2124. 10.1126/science.1056991. PubMed DOI
Ruiz-López S. C. M. F. The reaction field of a water molecule in liquid water: Comparison of different quantum/classical models. J. Chem. Phys. 2001, 115, 5220–5227. 10.1063/1.1389094. DOI
Smith J. D.; Cappa C. D.; Wilson K. R.; Cohen R. C.; Geissler P. L.; Saykally R. J. Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 14171–14174. 10.1073/pnas.0506899102. PubMed DOI PMC
Ruiz-López M. F.; Martins-Costa M. T. C.; Francisco J. S.; Anglada J. M. Tight electrostatic regulation of the oh production rate from the photolysis of hydrogen peroxide adsorbed on surfaces. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e210611711810.1073/pnas.2106117118. PubMed DOI PMC
Bernhard Sellner M. V.; Kathmann S. M. Charge and electric field fluctuations in aqueous nacl electrolytes. J. Phys. Chem. B 2013, 117, 10869–10882. 10.1021/jp405578w. PubMed DOI
Sellner B.; Kathmann S. M. A matter of quantum voltages. J. Chem. Phys. 2014, 141, 18C53410.1063/1.4898797. PubMed DOI
Lee J. K.; Samanta D.; Zare R. N. Micrometer-sized water droplets induce spontaneous reduction. J. Am. Chem. Soc. 2019, 141, 10585–10589. 10.1021/jacs.9b03227. PubMed DOI
Hanqing Xiong R. N. Z.; Lee J. K.; Min W. Strong electric field observed at the interface of aqueous microdroplets. J. Phys. Chem. Lett. 2020, 11, 7423–7428. 10.1021/acs.jpclett.0c02061. PubMed DOI
Xiaowei Song C. B.; Zare R. N. Making ammonia from nitrogen and water microdroplets. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e230120612010.1073/pnas.2301206120. PubMed DOI PMC
Martins-Costa M. T. C.; Ruiz-López M. F. Electrostatics and chemical reactivity at the air–water interface. J. Am. Chem. Soc. 2023, 145, 1400–1406. 10.1021/jacs.2c12089. PubMed DOI
Gong K.; Nandy A.; Song Z.; Li Q.-S.; Hassanali A.; Cassone G.; Banerjee S.; Xie J. Revisiting the enhanced chemical reactivity in water microdroplets: The case of a Diels–Alder reaction. J. Am. Chem. Soc. 2024, 146, 31585–31596. 10.1021/jacs.4c09400. PubMed DOI
Eatoo M. A.; Mishra H. Busting the myth of spontaneous formation of H2O2 at the air–water interface: contributions of the liquid–solid interface and dissolved oxygen exposed. Chem. Sci. 2024, 15, 3093–3103. 10.1039/D3SC06534K. PubMed DOI PMC
Verduci R.; Creazzo F.; Tavella F.; Abate S.; Ampelli C.; Luber S.; Perathoner S.; Cassone G.; Centi G.; D’Angelo G. Water structure in the first layers on tio2: A key factor for boosting solar-driven water-splitting performances. J. Am. Chem. Soc. 2024, 146, 18061–18073. 10.1021/jacs.4c05042. PubMed DOI
Hermansson K. Electric-field effects on the oh vibrational frequency and infrared absorption intensity for water. J. Chem. Phys. 1993, 99, 861–868. 10.1063/1.465349. DOI
Jabłoński M. Red and blue shifted hydridic bonds. J. Comput. Chem. 2014, 35, 1739–1747. 10.1002/jcc.23678. PubMed DOI
Datar A.; Wright C.; Matthews D. A. Theoretical investigation of the x-ray stark effect in small molecules. J. Phys. Chem. A 2023, 127, 1576–1587. 10.1021/acs.jpca.2c08311. PubMed DOI
Scheele T.; Neudecker T. Investigating the accuracy of density functional methods for molecules in electric fields. J. Chem. Phys. 2023, 159, 12411110.1063/5.0164372. PubMed DOI
Bryenton K. R.; Adeleke A. A.; Dale S. G.; Johnson E. R. Delocalization error: The greatest outstanding challenge in density-functional theory. WIREs Comput. Mol. Sci. 2023, 13, e163110.1002/wcms.1631. DOI
Cohen A. J.; Mori-Sánchez P.; Yang W. Insights into current limitations of density functional theory. Science 2008, 321, 792–794. 10.1126/science.1158722. PubMed DOI
Mori-Sánchez P.; Cohen A. J.; Yang W. Many-electron self-interaction error in approximate density functionals. J. Chem. Phys. 2006, 125, 20110210.1063/1.2403848. PubMed DOI
van Gisbergen S. J. A.; Schipper P. R. T.; Gritsenko O. V.; Baerends E. J.; Snijders J. G.; Champagne B.; Kirtman B. Electric field dependence of the exchange-correlation potential in molecular chains. Phys. Rev. Lett. 1999, 83, 694–697. 10.1103/PhysRevLett.83.694. DOI
Torre M. F.; Amadeo A.; Cassone G.; Tommasini M.; Mráziková K.; Saija F. Water dimer under electric fields: An ab initio investigation up to quantum accuracy. J. Phys. Chem. A 2024, 128, 5490–5499. 10.1021/acs.jpca.4c01553. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.. Gaussian16 Revision C.01; Gaussian Inc.: Wallingford CT, 2016.
Turney J. M.; Simmonett A. C.; Parrish R. M.; Hohenstein E. G.; Evangelista F. A.; Fermann J. T.; Mintz B. J.; Burns L. A.; Wilke J. J.; Abrams M. L.; et al. Psi4: an open-source ab initio electronic structure program. WIREs Computational Molecular Science 2012, 2, 556–565. 10.1002/wcms.93. DOI
Čížek J.On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules. In Advances in Chemical Physics; John Wiley & Sons, Ltd, 1969; pp 35–89, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470143599.ch2.
Purvis I.; George D.; Bartlett R. J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910–1918. 10.1063/1.443164. DOI
Scuseria G. E.; Janssen C. L.; Schaefer I.; Henry F. An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 1988, 89, 7382–7387. 10.1063/1.455269. DOI
Scuseria G. E.; Schaefer I.; Henry F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?. J. Chem. Phys. 1989, 90, 3700–3703. 10.1063/1.455827. DOI
Noga J.; Bartlett R. J. The full CCSDT model for molecular electronic structure. J. Chem. Phys. 1987, 86, 7041–7050. 10.1063/1.452353. DOI
Scuseria G. E.; Schaefer H. F. A new implementation of the full ccsdt model for molecular electronic structure. Chem. Phys. Lett. 1988, 152, 382–386. 10.1016/0009-2614(88)80110-6. DOI
Watts J. D.; Gauss J.; Bartlett R. J. Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients. J. Chem. Phys. 1993, 98, 8718–8733. 10.1063/1.464480. DOI
Helgaker T.; Klopper W.; Koch H.; Noga J. Basis-set convergence of correlated calculations on water. J. Chem. Phys. 1997, 106, 9639–9646. 10.1063/1.473863. DOI
Halkier A.; Helgaker T.; Jo̷rgensen P.; Klopper W.; Olsen J. Basis-set convergence of the energy in molecular hartree–fock calculations. Chem. Phys. Lett. 1999, 302, 437–446. 10.1016/S0009-2614(99)00179-7. DOI
Jeziorski B.; Moszynski R.; Szalewicz K. Perturbation theory approach to intermolecular potential energy surfaces of van der waals complexes. Chem. Rev. 1994, 94, 1887–1930. 10.1021/cr00031a008. DOI
Parker T. M.; Burns L. A.; Parrish R. M.; Ryno A. G.; Sherrill C. D. Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J. Chem. Phys. 2014, 140, 09410610.1063/1.4867135. PubMed DOI
Stone A. J.; Misquitta A. J. Charge-transfer in symmetry-adapted perturbation theory. Chem. Phys. Lett. 2009, 473, 201–205. 10.1016/j.cplett.2009.03.073. DOI
Smith B. J.; Swanton D. J.; Pople J. A.; Schaefer I.; Henry F.; Radom L. Transition structures for the interchange of hydrogen atoms within the water dimer. J. Chem. Phys. 1990, 92, 1240–1247. 10.1063/1.458133. DOI
Perkins M. A.; Barlow K. R.; Dreux K. M.; Tschumper G. S. Anchoring the hydrogen sulfide dimer potential energy surface to juxtapose (h2s)2 with (h2o)2. J. Chem. Phys. 2020, 152, 21430610.1063/5.0008929. PubMed DOI
Lane J. R. Ccsdtq optimized geometry of water dimer. J. Chem. Theory. Comput. 2013, 9, 316–323. 10.1021/ct300832f. PubMed DOI
Altun A.; Neese F.; Bistoni G. Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study. Beilstein J. Org. Chem. 2018, 14, 919–929. 10.3762/bjoc.14.79. PubMed DOI PMC
Jing A.; Szalewicz K.; van der Avoird A. Ammonia dimer: extremely fluxional but still hydrogen bonded. Nat. Commun. 2022, 13, 1470.10.1038/s41467-022-28862-z. PubMed DOI PMC
Mollica Nardo V.; Cassone G.; Ponterio R. C.; Saija F.; Sponer J.; Tommasini M.; Trusso S. Electric-field-induced effects on the dipole moment and vibrational modes of the centrosymmetric indigo molecule. J. Phys. Chem. A 2020, 124, 10856–10869. 10.1021/acs.jpca.0c09791. PubMed DOI
McWeeny R. Natural units in atomic and molecular physics. Nature 1973, 243, 196.10.1038/243196a0. DOI
Buckingham A. D. Solvent effects in infra-red spectroscopy. Proc. R. Soc. London, Ser. A 1958, 248, 169–182. 10.1098/rspa.1958.0237. DOI
Bishop D. M. The vibrational stark effect. J. Chem. Phys. 1993, 98, 3179–3184. 10.1063/1.464090. DOI
Cassone G.; Sofia A.; Rinaldi G.; Sponer J. Catalyst-free hydrogen synthesis from liquid ethanol: An ab initio molecular dynamics study. J. Phys. Chem. C 2019, 123, 9202–9208. 10.1021/acs.jpcc.9b01037. DOI
Cassone G.; Giaquinta P. V.; Saija F.; Saitta A. M. Liquid methanol under a static electric field. J. Chem. Phys. 2015, 142, 05450210.1063/1.4907010. PubMed DOI
Klopper W.; van Duijneveldt-van de Rijdt J. G. C. M.; van Duijneveldt F. B. Computational determination of equilibrium geometry and dissociation energy of the water dimer. Phys. Chem. Chem. Phys. 2000, 2, 2227–2234. 10.1039/a910312k. DOI
Tschumper G. S.; Leininger M. L.; Hoffman B. C.; Valeev E. F.; Schaefer I.; Henry F.; Quack M. Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses. J. Chem. Phys. 2002, 116, 690–701. 10.1063/1.1408302. DOI
Odutola J. A.; Dyke T. R. Partially deuterated water dimers: Microwave spectra and structure. J. Chem. Phys. 1980, 72, 5062–5070. 10.1063/1.439795. DOI
Dyke T. R.; Muenter J. S. Microwave spectrum and structure of hydrogen bonded water dimer. J. Chem. Phys. 1974, 60, 2929–2930. 10.1063/1.1681463. DOI
Jäger S.; Khatri J.; Meyer P.; Henkel S.; Schwaab G.; Nandi A.; Pandey P.; Barlow K. R.; Perkins M. A.; Tschumper G. S.; Bowman J. M.; van der Avoird A.; Havenith M. On the nature of hydrogen bonding in the H2S dimer. Nat. Commun. 2024, 15, 9540.10.1038/s41467-024-53444-6. PubMed DOI PMC
Řezáč J.; Hobza P. Ab initio quantum mechanical description of noncovalent interactions at its limits: Approaching the experimental dissociation energy of the HF dimer. J. Chem. Theory Comput. 2014, 10, 3066–3073. 10.1021/ct500047x. PubMed DOI
Howard B. J.; Dyke T. R.; Klemperer W. The molecular beam spectrum and the structure of the hydrogen fluoride dimer. J. Chem. Phys. 1984, 81, 5417–5425. 10.1063/1.447641. DOI
Zhang Z.; Vögele J.; Mráziková K.; Kruse H.; Cang X.; Wöhnert J.; Krepl M.; Šponer J. Phosphorothioate substitutions in rna structure studied by molecular dynamics simulations, qm/mm calculations, and nmr experiments. J. Phys. Chem. B 2021, 125, 825–840. 10.1021/acs.jpcb.0c10192. PubMed DOI