Intrinsically Polar Piezoelectric Self-Assembled Oligopeptide Monolayers

. 2021 Apr ; 33 (17) : e2007486. [epub] 20210323

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33759260

Flexible, biocompatible piezoelectric materials are of considerable research interest for a variety of applications, but many suffer from low response or high cost to manufacture. Herein, novel piezoelectric force and touch sensors based on self-assembled monolayers of oligopeptides are presented, which produce large piezoelectric voltage response and are easily manufactured without the need for electrical poling. While the devices generate modest piezoelectric charge constants (d33 ) of up to 9.8 pC N-1 , they exhibit immense piezoelectric voltage constants (g33 ) up to 2 V m N-1 . Furthermore, a flexible device prototype is demonstrated that produces open-circuit voltages of nearly 6 V under gentle bending motion. Improvements in peptide selection and device construction promise to further improve the already outstanding voltage response and open the door to numerous practical applications.

Zobrazit více v PubMed

J. F. Tressler, S. Alkoy, R. E. Newnham, J. Electroceram. 1998, 2, 257.

J. Briscoe, S. Dunn, Nano Energy 2015, 14, 15.

K. Uchino, J. Electroceram. 2007, 20, 301.

K. S. Ramadan, D. Sameoto, S. Evoy, Smart Mater. Struct. 2014, 23, 033001.

D. Kim, S. A. Han, J. H. Kim, J.-H. Lee, S.-W. Kim, S.-W. Lee, Adv. Mater. 2020, 32, 1906989.

C. Dagdeviren, P. Joe, O. L. Tuzman, K.-I. Park, K. J. Lee, Y. Shi, Y. Huang, J. A. Rogers, Extreme Mech. Lett. 2016, 9, 269.

H. Li, C. Tian, Z. D. Deng, Appl. Phys. Rev. 2014, 1, 041301.

O. Stetsovych, P. Mutombo, M. Švec, M. Šámal, J. Nejedlý, I. Císařová, H. Vázquez, M. Moro-Lagares, J. Berger, J. Vacek, I. G. Stará, I. Starý, P. Jelínek, J. Am. Chem. Soc. 2018, 140, 940.

J.-H. Lee, K. Heo, K. Schulz-Schönhagen, J. H. Lee, M. S. Desai, H.-E. Jin, S.-W. Lee, ACS Nano 2018, 12, 8138.

E. S. Hosseini, L. Manjakkal, D. Shakthivel, R. Dahiya, ACS Appl. Mater. Interfaces 2020, 12, 9008.

S. Guerin, J. O'Donnell, E. U. Haq, C. McKeown, C. Silien, F. M. F. Rhen, T. Soulimane, S. A. M. Tofail, D. Thompson, Phys. Rev. Lett. 2019, 122, 047701.

B. Y. Lee, J. Zhang, C. Zueger, W.-J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh, S.-W. Lee, Nat. Nanotechnol. 2012, 7, 351.

E. K. Akdogan, M. Allahverdi, A. Safari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 746.

A. Safari, E. K. Akdogan, Ferroelectrics 2006, 331, 153.

S. Guerin, A. Stapleton, D. Chovan, R. Mouras, M. Gleeson, C. McKeown, M. R. Noor, C. Silien, F. M. F. Rhen, A. L. Kholkin, N. Liu, T. Soulimane, S. A. M. Tofail, D. Thompson, Nat. Mater. 2017, 17, 180.

X. Chen, H. O. T. Ware, E. Baker, W. Chu, J. Hu, C. Sun, Procedia CIRP 2017, 65, 157.

ANSI/IEEE Std 176-1987 1988, 1-66.

B. P. Kumar, H. Kumar, D. Kharat, Mater. Sci. Eng., B 2006, 127, 130.

W. Wan, J. Luo, C. e. Huang, J. Yang, Y. Feng, W.-X. Yuan, Y. Ouyang, D. Chen, T. Qiu, Ceram. Int. 2018, 44, 5086.

A. Zak, W. Gan, W. A. Majid, M. Darroudi, T. Velayutham, Ceram. Int. 2011, 37, 1653.

S. Bairagi, S. Ghosh, S. W. Ali, Sci. Rep. 2020, 10, 12121.

S. Maiti, S. Kumar Karan, J. Lee, A. Kumar Mishra, B. Bhusan Khatua, J. Kon Kim, Nano Energy 2017, 42, 282.

S. K. Ghosh, D. Mandal, Appl. Phys. Lett. 2016, 109, 103701.

S. K. Ghosh, D. Mandal, Appl. Phys. Lett. 2017, 110, 123701.

X. Quan, J. D. Madura, G. R. Hutchison, arXiv:1706.08993, 2017.

N. C. Miller, H. M. Grimm, W. S. Horne, G. R. Hutchison, Nanoscale Adv. 2019, 1, 4834.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103.

X. Quan, C. W. Marvin, L. Seebald, G. R. Hutchison, J. Phys. Chem. C 2013, 117, 16783.

C. W. Marvin, H. M. Grimm, N. C. Miller, W. S. Horne, G. R. Hutchison, J. Phys. Chem. B 2017, 121, 10269.

M.-M. Yang, Z.-D. Luo, Z. Mi, J. Zhao, S. P. E, M. Alexe, Nature 2020, 584, 377.

N. N. D. Gayatri, G. Hutchison, ChemRxiv:9985205, 2019.

H. D. Chen, K. R. Udayakumar, L. E. Cross, J. J. Bernstein, L. C. Niles, J. Appl. Phys. (Melville, NY, U. S.) 1995, 77, 3349.

W. Goh, K. Yao, C. Ong, Appl. Phys. A: Mater. Sci. Process. 2005, 81, 1089.

C. A. Petroff, T. F. Bina, G. R. Hutchison, ACS Appl. Energy Mater. 2019, 2, 6484.

J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 15.

J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103.

R. D. King-Smith, D. Vanderbilt, Phys. Rev. B 1993, 47, 1651.

R. Resta, Rev. Mod. Phys. 1994, 66, 899.

M. V. Berry, Proc. R. Soc. London, Ser. A 1984, 392, 45.

P. Umari, A. Pasquarello, Phys. Rev. Lett. 2002, 89, 157602.

M. Krack, Theor. Chem. Acc. 2005, 114, 145.

A. D. Becke, Phys. Rev. A 1988, 38, 3098.

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

I.-C. Lin, A. P. Seitsonen, I. Tavernelli, U. Rothlisberger, J. Chem. Theory Comput. 2012, 8, 3902.

A. Bankura, A. Karmakar, V. Carnevale, A. Chandra, M. L. Klein, J. Phys. Chem. C 2014, 118, 29401.

M. J. Gillan, D. Alfè, A. Michaelides, J. Chem. Phys. 2016, 144, 130901.

G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 2007, 126, 014101.

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminf. 2012, 4, 17.

T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald, F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze, J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik, M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller, R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter, A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass, I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele, M. Krack, J. Hutter, J. Chem. Phys. 2020, 152, 194103.

J. D. Hunter, Comput. Sci. Eng. 2007, 9, 90.

S. Van Der Walt, S. C. Colbert, G. Varoquaux, Comput. Sci. Eng. 2011, 13, 22.

W. McKinney, in Proc. 9th Python in Science Conf. (Eds: S. van der Walt, J. Millman), 2010, pp. 56-61.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, Nat. Methods 2020, 17, 261.

S. Seabold, J. Perktold, in Proc. 9th Python in Science Conf. (Eds: S. van der Walt, J. Millman), 2010, pp. 92-96.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hydrogen Bonds under Electric Fields with Quantum Accuracy

. 2025 May 08 ; 129 (18) : 4077-4092. [epub] 20250429

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...