A comparative ultrastructure study of storage cells in the eutardigrade Richtersius coronifer in the hydrated state and after desiccation and heating stress
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30096140
PubMed Central
PMC6086413
DOI
10.1371/journal.pone.0201430
PII: PONE-D-18-06367
Knihovny.cz E-zdroje
- MeSH
- anatomické struktury zvířat * fyziologie ultrastruktura MeSH
- bezobratlí * fyziologie ultrastruktura MeSH
- reakce na tepelný šok * MeSH
- vysoušení * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tardigrades represent an invertebrate phylum with no circulatory or respiratory system. Their body cavity is filled with free storage cells of the coelomocyte-type, which are responsible for important physiological functions. We report a study comparing the ultrastructure of storage cells in anhydrobiotic and hydrated specimens of the eutardigrade Richtersius coronifer. We also analysed the effect of temperature stress on storage cell structure. Firstly, we verified two types of ultrastructurally different storage cells, which differ in cellular organelle complexity, amount and content of reserve material and connection to oogenetic stage. Type I cells were found to differ ultrastructurally depending on the oogenetic stage of the animal. The main function of these cells is energy storage. Storage cells of Type I were also observed in the single male that was found among the analysed specimens. The second cell type, Type II, found only in females, represents young undifferentiated cells, possibly stem cells. The two types of cells also differ with respect to the presence of nucleolar vacuoles, which are related to oogenetic stages and to changes in nucleolic activity during oogenesis. Secondly, this study revealed that storage cells are not ultrastructurally affected by six months of desiccation or by heating following this desiccation period. However, heating of the desiccated animals (tuns) tended to reduce animal survival, indicating that long-term desiccation makes these animals more vulnerable to heat stress. We confirmed the degradative pathways during the rehydration process after desiccation and heat stress. Our study is the first to document two ultrastructurally different types of storage cells in tardigrades and reveals new perspectives for further studies of tardigrade storage cells.
Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
Department of Environmental Science and Bioscience Kristianstad University Kristianstad Sweden
Faculty of Medicine Charles University Prague Czech Republic
Institute of Physiology Academy of Sciences of the Czech Republic Prague Czech Republic
Silesian University of Technology Institute of Automatic Control Gliwice Poland
Zobrazit více v PubMed
Keilin D. The Leeuwenhoek Lecture. The problem of anabiosis and latent life: history and current concept. Proc. R. Soc. Lond. B. 1959; 150: 149–151. PubMed
Wright JC, Westh P, Ramløv H. Cryptobiosis in Tardigrada. Biol Rev 1992; 67:1–29.
Wright JC. Cryptobiosis 300 years on from van Leuwenhoek: What have we learned about tardigrades? Zool. Anz. 2001; 240:563–582.
Boothby TC, Tapia H, Brozena AH, Pielak GJ, Koshland G, Goldstein B. Tardigrades use intrinsically disordered proteins to survive desiccation. Molecular Cell. 2017; 65: 975–984 10.1016/j.molcel.2017.02.018 PubMed DOI PMC
Neuman Y. Cryptobiosis: A new theoretical perspective. Prog Biophys Mol Biol. 2006; 92 (2): 258–267 10.1016/j.pbiomolbio.2005.11.001 PubMed DOI
Wełnicz W, Grohme MA, Kaczmarek Ł, Schill RO, Frohme M. Anhydrobiosis in tardigrades: The last decade. J Ins Physiol. 2011; 57 (5): 577–83. PubMed
Węglarska B. Studies on the morphology of Macrobiotus richtersi Murray, 1911. Mem Ist Ital Idrobiol Supplement. 1975; 32: 445–464.
Dewel NA, Nelson DR, Dewel WC. Microscopic anatomy of invertebrates, Volume 12: Onychophora, Chilopoda and lesser Protostomia: Tardigrada. 1993; 143–183.
Węglarska B. On the encystation in tardigrada. Zool Polanie. 1957; 8: 315–322.
Ramazzotti G, Maucci W. Il Phylum Tardigrada. Mem Istit Ital Idrobiol. 1983; 41: 1–1012
Szymańska B. Interdependence between storage bodies and egg developmental stages in Macrobiotus richtersi Murray, 1911 (Tardigrada). A Biol Crac. 1994; XXXVI: 41–50.
Poprawa I. Ultrastructural changes of the storage cells during oogenesis in Dactylobiotus dispar (Murray, 1907) (Tardigrada: Eutardigrada). Zool Pol. 2006; 51/1-4: 13–18.
Jönsson KI, Rebecchi L. Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survival. J. Exp. Zool. 2002; 293: 578–584. PubMed
Hyra M, Rost-Roszkowska MM, Student S, Włodarczyk A, Deperas M, Janelt K et al. Body cavity cells of Parachela during their active life. Zool J. Lin Soc. 2016b; 178(4): 878–887.
Reuner A, Hengherr S, Brümmer F, Schill RO. Comparative studies on storage cells in tardigrades during starvation and anhydrobiosis. Curr. Zool. 2010; 56(2): 259–263
Czernekova M, Jönsson KI. Experimentally induced repeated anhydrobiosis in the eutardigrade Richtersius coronifer. PLOS ONE. 2016; 11(11): e0164062 10.1371/journal.pone.0164062 PubMed DOI PMC
Neumann S, Reuner A, Brummer F, Schill RO. DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol. 2009; 153: 425–429. 10.1016/j.cbpa.2009.04.611 PubMed DOI
Guidetti R, Jönsson KI. Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. Journal of Zoology, London. 2002; 257: 181–187.
Rebecchi L, Guidetti R, Borsari S, Altiero T, Bertolani R. Dynamics of longterm anhydrobiotic survival of lichen-dwelling tardigrades. Hydrobiol. 2006; 558, 23–30.
Rebecchi L, Boschini D, Cesari M, Lencioni V, Bertolani R, Guidetti R. Stress response of a boreo-alpine species of tardigrade, Borealibius zetlandicus (Eutardigrada, Hypsibiidae) J Limnol. 2009a; 68(1): 64–70.
Li X, Wang L. Effect of thermal acclimation on preferred temperature, avoidance temperature and lethal thermal maximum of Macrobiotus harmsworthi Murray (Tardigrada, Macrobiotidae). J Therm Biol. 2005; 30: 443–448
Hengherr S, Brümmer F, Schill RO. Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool. 2008; 275: 216–220.
Ramløv H, Westh P. Survival of the Cryptobiotic Eutardigrade Adorybiotus coronifer during cooling to -196°C: Effect of cooling rate, trehalose level, and short-term acclimation. Cryobiol. 1992; 29: 125–130.
Rahm PG. Biologische und physiologische Beitrage zur Kenntnis der Moosfauna. Z Allg Physiol. 1921; 20: 1–34
Ramløv H, Westh P. Cryptobiosis in eutardigrade Adorybiotus (Richtersius) coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz. 2001; 240: 517–523.
Rebecchi L, Cesari M, Altiero T, Frigieri A, Guidetti R. Survival and DNA degradation in anhydrobiotic tardigrades. J Exp Biol. 2009b; 212: 4033–4039. PubMed
Westh P, Ramløv H. Trehalose accumulation in tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool. 2001; 258: 303–311.
Rebecchi L, Altiero T, Guidetti R. Anhydrobiosis? The extreme limit of desiccation tolerance. ISJ. 2007; 4: 65–81.
Jönsson KI, Beltrán-Pardo EA, Haghdoost S, Wojcik A, Bermúdez-Cruz RM, Bernal Villegaz JE, Harms-Ringdahl M. J Limnol. 2013; 72: 73–79. PubMed
Rebecchi L, Rossi V, Altiero T, Bertolani R, Menozzi P. Reproductive modes and genetic polymorphism in the tardigrade Richtersius coronifer (Eutardigrada, Macrobiotidae). Invertebr Biol. 2003; 122 (1): 19–27.
Dastych H. West Spitsbergen Tardigrada. Acta Zoologica. 1985; 28/3, 169–214.
Jönsson KI, Rabbov E, Schill RO, Harms-Ringdahl M, Rettberg P. Tardigrades survive exposure to space in low Earth orbit. Cur Biol. 2008; 18 (17): 729–735. PubMed
Litwin JA. Light microscopic histochemistry on plastic sections. Prog Histo Cyto. 1985; 16: 1–84. PubMed
Poprawa I, Hyra M, Rost-Roszkowska MM. Germ cell clusters organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae). Protoplasma. 2014; 252(4):1019–1029 10.1007/s00709-014-0737-6 PubMed DOI
Poprawa I, Schlete-Wełnicz V, Hyra M. Ovary organization and oogenesis in the tardigrade Macrobiotus polonicus Pilato, Kaczmarek, Michalczyk and Lisi, 2003 (Eutardigrada, Macrobiotidae): ultrastructural and histochemical analysis. Protoplasma. 2015b; 252: 857–865. PubMed
Rost-Roszkowska MM, Poprawa I, Wojtowicz M, Kaczmarek Ł. Ultrastructural changes of the midgut epithelium in Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada: Eutardigrada) during oogenesis. Protoplasma. 2011; 248(2): 405–414. 10.1007/s00709-010-0186-9 PubMed DOI
Poprawa I, Hyra M, Kszuk-Jendrysik M, Rost-Roszkowska MM. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae). Micron. 2015a; 70: 26–33. PubMed
Czernekova M, Jönsson KI, Chajec L, Student S, Poprawa I. The structure of the desiccated Richtersius coronifer (Richters, 1903). Protoplasma. 2017; 254(3): 1367–1377. 10.1007/s00709-016-1027-2 PubMed DOI
Walz B. The morphology of cells and cell organelles in the anhydrobiotic tardigrade, Macrobiotus hufelandi. Protoplasma. 1979; 99: 19–30.
Regiorri F, Klionski DJ. Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol. 2005; 17(4): 415–22. 10.1016/j.ceb.2005.06.007 PubMed DOI
Hyra M, Poprawa I, Włodarczyk A, Student S, Sonakowska L, Kszuk-Jendrysyk M, et al. Ultrastructural changes in midgut epithelium of Hypsibius dujardini (Doyére, 1840) (Tardigrada, Eutardigrada, Hypsibiidae) in relation to oogenesis. Zool J Lin Soc. 2016a; 178(4): 987–906.
Lewis WH. Nucleolar vacuoles in living normal and malignant fibroblasts. Cancer Res. 1943; 531–536.
Johnson JM, Jones LE. Behavior of nucleoli and contracting nucleolar vacuoles in tobacco cells growing in microculture. Am J Bot. 1967; 54 (2): 189–198. PubMed
Stępiński D. Functional ultrastructure of the plant nucleolus. Protoplasma. 2014; 251(6): 1285–306. 10.1007/s00709-014-0648-6 PubMed DOI PMC
Jennane A, Thiry M, Diouri M, Goessens G. Fate of nucleolar vacuole during resumption of cell cycle in pea cotyledonary buds. Protoplasma. 2000; 210 (3): 172–178.
Kinchin IM. An observation on the storage cells of Ramazzottius (Hypsibiidae, Eutardigrada. Queeket J Microscopy. 1993; 37: 52–55.
Bertolani R. Tardigrada. Reproductive Biology of Invertebrates Vol. I: Oogenesis, Oviposition and Oosorption. John Wiley & Sons. Ltd; 1983.
Nelson DR, Guidetti R, Rebecchi L. Phylum Tardigrada In Thorp J.H., Covich A.P. Ecology and Classification of North American Freshwater Invertebrates. Academic Press; 2015; 347–380.
Halberg KA, Jørgensen A, Møbjerg N. Desiccation tolerance in the tardigrade Richtersius coronifer relies on muscle mediated structural reorganization. PLOS ONE. 2013; 8(12): 1–10. PubMed PMC
Rost-Roszkowska MM, Poprawa I, Hyra M, Marek-Swędzioł M, Kaczmarek Ł. The fine structure of the midgut epithelium in Xerobiotus pseudohufelandi (Iharos, 1966) (Tardigrada, Eutardigrada, Macrobiotidae). J. Limnol. 2013; 72 (1): 54–61.
Halim AS, Gomathysankar S, Noor NM, Mohamed M, Periayah MH. Potential applications of different types of adult stem cells toward medical interventions. Med Science. 2015; 4(2): 2277–8179.
Adamowicz A, Wojtaszek J. Morphology and phagocytotic activity of Coelomocytes in Dendrobaena veneta (Lumbricidae). Zool Pol. 2001; 46/1–4: 91–104.
Hatti SS. Coelomocyte studies of three species of earthworm viz Polypheretima elongta, Perionyx sansibaricus and Dichogaster bolaui. Indian J App Res. 2013; 3(7): 598–601.
Tahseen Q. Coelomocytes: Biology and possible immune functions in invertebrates with special remarks on nematodes. Int J Zool. 2009; 1–13.
Edds KT. Cell Biology of Echinoid Coelomocytes. J Invertebr Pathol. 1993; 61: 173–178.
Matranga V, Toia G, Bonaventura R, Müller WEG. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones. 2000; 5(2): 113–120. PubMed PMC
Adamowicz A. Morphology and ultrastructure of the earthworm Dedrobaena veneta (Lumbricidae) coelomocytes. Tissue Cell. 2005; 37: 125–133. 10.1016/j.tice.2004.11.002 PubMed DOI
Kasschau MR, Ngo TD, Sperber LM, Tran KL. Formation of filopodia in earthworm (Lumbricus terrestris) coelomocytes in response to osmotic stress. Zoology. 2007; 110: 66–76. 10.1016/j.zool.2006.07.002 PubMed DOI
Hetzel HR. Studies on holothurians coelomocytes. II. The origin on coelomocytes and the formation of brown bodies. Biol Bull. 1965; 128: 102–111.
Nguyen VT, Morange M, Bensaude O. Protein denaturation during heat shock and related stress. Escherichia coli ßgalactosidase and Photinus pyralis luciferase inactivation in mouse cells. J Biol Chem. 1989; 264 (18): 10487–10492. PubMed
Lepock JR, Frey HE, Ritchie KP. Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock. J Cell Biol. 1993; 122 (6): 1267–1276. PubMed PMC
Wolkers WF, Tablin F, Crowe JH. From anhydrobiosis to freeze-drying of eukaryotic cells. Comp Biochem Physiol Mol Integr Physiol. 2002; 131: 535–543. PubMed
Crowe JH, Hoekstra FA, Nguyen KHN, Crowe LM. Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochim Biophys Acta. 1996; 1280: 187–196. PubMed
Balogh B, Peter M, Glatz A, Gombos I, Torok Z, Horvath I, et al. Key role of lipids in heat stress management. FEBS letters. 2013; 587 (13): 1970–1980. 10.1016/j.febslet.2013.05.016 PubMed DOI
Womersley C, Thompson SN, Smith L. Anhydrobiosis in nematodes II: carbohydrate and lipid analysis in undesiccated and desiccate nematodes. J Nemat. 1982; 14(2): 145–153. PubMed PMC
Demeure Y, Freckman DW, Van Gundy SD. Anhydrobiotic coiling nematodes in soil. J Nematol. 1979; 11: 189–195. PubMed PMC
Womersley C. Biochemical and physiological aspects of anhydrobiosis. Comp Biochem. Physiol. 1981; 70B: 669–678.