Brain fMRI during orientation selective epidural spinal cord stimulation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P41 EB027061
NIBIB NIH HHS - United States
U01 NS103569
NINDS NIH HHS - United States
PubMed
33750822
PubMed Central
PMC7943775
DOI
10.1038/s41598-021-84873-8
PII: 10.1038/s41598-021-84873-8
Knihovny.cz E-zdroje
- MeSH
- epidurální prostor diagnostické zobrazování patofyziologie MeSH
- implantované elektrody MeSH
- krysa rodu Rattus MeSH
- magnetická rezonanční tomografie * MeSH
- míšní stimulace * MeSH
- poranění míchy * diagnostické zobrazování patofyziologie terapie MeSH
- potkani Sprague-Dawley MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Epidural spinal cord stimulation (ESCS) is widely used for chronic pain treatment, and is also a promising tool for restoring motor function after spinal cord injury. Despite significant positive impact of ESCS, currently available protocols provide limited specificity and efficiency partially due to the limited number of contacts of the leads and to the limited flexibility to vary the spatial distribution of the stimulation field in respect to the spinal cord. Recently, we introduced Orientation Selective (OS) stimulation strategies for deep brain stimulation, and demonstrated their selectivity in rats using functional MRI (fMRI). The method achieves orientation selectivity by controlling the main direction of the electric field gradients using individually driven channels. Here, we introduced a similar OS approach for ESCS, and demonstrated orientation dependent brain activations as detected by brain fMRI. The fMRI activation patterns during spinal cord stimulation demonstrated the complexity of brain networks stimulated by OS-ESCS paradigms, involving brain areas responsible for the transmission of the motor and sensory information. The OS approach may allow targeting ESCS to spinal fibers of different orientations, ultimately making stimulation less dependent on the precision of the electrode implantation.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
Department of Neurology Mayo Clinic Rochester MN USA
Department of Neurosurgery University of Minnesota Minneapolis MN USA
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN USA
Division of Biostatistics School of Public Health University of Minnesota Minneapolis MN USA
Zobrazit více v PubMed
Franken G, Debets J, Joosten EAJ. Dorsal root ganglion stimulation in experimental painful diabetic peripheral neuropathy: Burst vs conventional stimulation paradigm. Neuromodulation. 2019;22:943–950. doi: 10.1111/ner.12908. PubMed DOI PMC
Song JJ, Popescu A, Bell RL. Present and potential use of spinal cord stimulation to control chronic pain. Pain Physician. 2014;17:235–246. PubMed
Viswanath O, Urits I, Bouley E, Peck JM, Thompson W, Kaye AD. Evolving spinal cord stimulation technologies and clinical implications in chronic pain management. Curr. Pain Headache Rep. 2019;23:39. doi: 10.1007/s11916-019-0778-9. PubMed DOI
Melzack R, Wall PD. Pain mechanisms: A new theory. Science. 1965;150:971–979. doi: 10.1126/science.150.3699.971. PubMed DOI
Stancak A, Kozak J, Vrba I, Tintera J, Vrana J, Polacek H, Stancak M. Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur. J. Pain. 2008;12:137–148. doi: 10.1016/j.ejpain.2007.03.003. PubMed DOI
Kapural L. Spinal cord stimulation for intractable chronic pain. Curr. Pain Headache Rep. 2014;18:406. doi: 10.1007/s11916-014-0406-7. PubMed DOI
Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, Beck LA, Sayenko DG, Van Straaten MG, Drubach DI, Veith DD, Thoreson AR, Lopez C, Gerasimenko YP, Edgerton VR, Lee KH, Zhao KD. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 2018;24:1677–1682. doi: 10.1038/s41591-018-0175-7. PubMed DOI
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seanez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. doi: 10.1038/s41586-018-0649-2. PubMed DOI
De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg. 2013;80:642–649 e641. doi: 10.1016/j.wneu.2013.01.040. PubMed DOI
Deer TR, Jain S, Hunter C, Chakravarthy K. Neurostimulation for intractable chronic pain. Brain Sci. 2019 doi: 10.3390/brainsci9020023. PubMed DOI PMC
De Ridder D, Vanneste S, Plazier M, van der Loo E, Menovsky T. Burst spinal cord stimulation: Toward paresthesia-free pain suppression. Neurosurgery. 2010;66:986–990. doi: 10.1227/01.NEU.0000368153.44883.B3. PubMed DOI
Pluijms WA, van Kleef M, Honig WM, Janssen SP, Joosten EA. The effect of spinal cord stimulation frequency in experimental painful diabetic polyneuropathy. Eur. J. Pain. 2013;17:1338–1346. doi: 10.1002/j.1532-2149.2013.00318.x. PubMed DOI
Kriek N, Groeneweg JG, Stronks DL, de Ridder D, Huygen FJ. Preferred frequencies and waveforms for spinal cord stimulation in patients with complex regional pain syndrome: A multicentre, double-blind, randomized and placebo-controlled crossover trial. Eur. J. Pain. 2017;21:507–519. doi: 10.1002/ejp.944. PubMed DOI
Morales A, Yong RJ, Kaye AD, Urman RD. Spinal cord stimulation: Comparing traditional low-frequency tonic waveforms to novel high frequency and burst stimulation for the treatment of chronic low back pain. Curr. Pain Headache Rep. 2019;23:25. doi: 10.1007/s11916-019-0763-3. PubMed DOI
Deer TR, Grigsby E, Weiner RL, Wilcosky B, Kramer JM. A prospective study of dorsal root ganglion stimulation for the relief of chronic pain. Neuromodulation. 2013;16:67–71. doi: 10.1111/ner.12013. PubMed DOI
Lehto LJ, Filip P, Laakso H, Sierra A, Slopsema JP, Johnson MD, Eberly LE, Low WC, Grohn O, Tanila H, Mangia S, Michaeli S. Tuning neuromodulation effects by orientation selective deep brain stimulation in the rat medial frontal cortex. Front. Neurosci. 2018;12:899. doi: 10.3389/fnins.2018.00899. PubMed DOI PMC
Lehto LJ, Slopsema JP, Johnson MD, Shatillo A, Teplitzky BA, Utecht L, Adriany G, Mangia S, Sierra A, Low WC, Grohn O, Michaeli S. Orientation selective deep brain stimulation. J. Neural Eng. 2017;14:016016. doi: 10.1088/1741-2552/aa5238. PubMed DOI PMC
Lehto LJ, Canna A, Wu L, Sierra A, Zhurakovskaya E, Ma J, Pearce C, Shaio M, Filip P, Johnson MD, Low WC, Grohn O, Tanila H, Mangia S, Michaeli S. Orientation selective deep brain stimulation of the subthalamic nucleus in rats. Neuroimage. 2020;213:116750. doi: 10.1016/j.neuroimage.2020.116750. PubMed DOI PMC
Slopsema JP, Pena E, Patriat R, Lehto LJ, Grohn O, Mangia S, Harel N, Michaeli S, Johnson MD. Clinical deep brain stimulation strategies for orientation-selective pathway activation. J. Neural Eng. 2018;15:056029. doi: 10.1088/1741-2552/aad978. PubMed DOI PMC
Lee D, Gillespie E, Bradley K. Dorsal column steerability with dual parallel leads using dedicated power sources: A computational model. J. Vis. Exp. 2011 doi: 10.3791/2443. PubMed DOI PMC
Moffitt MA, Lee DC, Bradley K. In: Implantable Neural Prostheses 1. Biological and Medical Physics, Biomedical Engineering. Greenbaum E, Zhou D, editors. Berlin: Springer; 2009.
Veizi E, Hayek SM, North J, Brent Chafin T, Yearwood TL, Raso L, Frey R, Cairns K, Berg A, Brendel J, Haider N, McCarty M, Vucetic H, Sherman A, Chen L, Mekel-Bobrov N. Spinal cord stimulation (SCS) with anatomically guided (3D) neural targeting shows superior chronic axial low back pain relief compared to traditional SCS-LUMINA study. Pain Med. 2017;18:1534–1548. doi: 10.1093/pm/pnw286. PubMed DOI
Shah PK, Lavrov I. Spinal epidural stimulation strategies: Clinical implications of locomotor studies in spinal rats. Neuroscientist. 2017;23:664–680. doi: 10.1177/1073858417699554. PubMed DOI
Shah PK, Sureddi S, Alam M, Zhong H, Roy RR, Edgerton VR, Gerasimenko Y. Unique spatiotemporal neuromodulation of the lumbosacral circuitry shapes locomotor success after spinal cord injury. J. Neurotrauma. 2016;33:1709–1723. doi: 10.1089/neu.2015.4256. PubMed DOI PMC
Jia Z, Chen X, Tang W, Zhao D, Yu S. Atypical functional connectivity between the anterior cingulate cortex and other brain regions in a rat model of recurrent headache. Mol. Pain. 2019;15:1744806919842483. doi: 10.1177/1744806919842483. PubMed DOI PMC
Deogaonkar M, Sharma M, Oluigbo C, Nielson DM, Yang X, Vera-Portocarrero L, Molnar GF, Abduljalil A, Sederberg PB, Knopp M, Rezai AR. Spinal cord stimulation (SCS) and functional magnetic resonance imaging (fMRI): Modulation of cortical connectivity with therapeutic SCS. Neuromodulation. 2016;19:142–153. doi: 10.1111/ner.12346. PubMed DOI
Kiriakopoulos ET, Tasker RR, Nicosia S, Wood ML, Mikulis DJ. Functional magnetic resonance imaging: A potential tool for the evaluation of spinal cord stimulation: Technical case report. Neurosurgery. 1997;41:501–504. doi: 10.1097/00006123-199708000-00042. PubMed DOI
Moens M, Droogmans S, Spapen H, De Smedt A, Brouns R, Van Schuerbeek P, Luypaert R, Poelaert J, Nuttin B. Feasibility of cerebral magnetic resonance imaging in patients with externalised spinal cord stimulator. Clin. Neurol. Neurosurg. 2012;114:135–141. doi: 10.1016/j.clineuro.2011.09.013. PubMed DOI
Moens M, Sunaert S, Marien P, Brouns R, De Smedt A, Droogmans S, Van Schuerbeek P, Peeters R, Poelaert J, Nuttin B. Spinal cord stimulation modulates cerebral function: An fMRI study. Neuroradiology. 2012;54:1399–1407. doi: 10.1007/s00234-012-1087-8. PubMed DOI
Meuwissen KPV, van der Toorn A, Gu JW, Zhang TC, Dijkhuizen RM, Joosten EAJ. Active recharge burst and tonic spinal cord stimulation engage different supraspinal mechanisms: A functional magnetic resonance imaging study in peripherally injured chronic neuropathic rats. Pain Pract. 2020;20:510–521. doi: 10.1111/papr.12879. PubMed DOI
Pawela CP, Kramer JM, Hogan QH. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia. Neuroimage. 2017;147:10–18. doi: 10.1016/j.neuroimage.2016.11.046. PubMed DOI
Rattay F. Analysis of models for external stimulation of axons. IEEE Trans. Biomed. Eng. 1986;33:974–977. doi: 10.1109/TBME.1986.325670. PubMed DOI
Cuellar CA, Mendez AA, Islam R, Calvert JS, Grahn PJ, Knudsen B, Pham T, Lee KH, Lavrov IA. The role of functional neuroanatomy of the lumbar spinal cord in effect of epidural stimulation. Front. Neuroanat. 2017;11:82. doi: 10.3389/fnana.2017.00082. PubMed DOI PMC
Brown LT., Jr Projections and termination of the corticospinal tract in rodents. Exp. Brain Res. 1971;13:432–450. doi: 10.1007/bf00234340. PubMed DOI
Holsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation. 2002;5:25–31. doi: 10.1046/j.1525-1403.2002._2005.x. PubMed DOI
Holsheimer J, Buitenweg JR. Review: Bioelectrical mechanisms in spinal cord stimulation. Neuromodulation. 2015;18:161–170. doi: 10.1111/ner.12279. PubMed DOI
Oakley JC, Prager JP. Spinal cord stimulation: Mechanisms of action. Spine (Phila Pa 1976) 2002;27:2574–2583. doi: 10.1097/00007632-200211150-00034. PubMed DOI
Ronchi S, Fiscella M, Marchetti C, Viswam V, Müller J, Frey U, Hierlemann AR. Single-cell electrical stimulation using CMOS-based high-density microelectrode arrays. Front. Neurosci. 2019 doi: 10.3389/fnins.2019.00208. PubMed DOI PMC
Moreno-López Y, Olivares-Moreno R, Cordero-Erausquin M, Rojas-Piloni G. Sensorimotor integration by corticospinal system. Front Neuroanat. 2016 doi: 10.3389/fnana.2016.00024. PubMed DOI PMC
Hatsopoulos NG, Suminski AJ. Sensing with the motor cortex. Neuron. 2011;72(3):477–487. doi: 10.1016/j.neuron.2011.10.020. PubMed DOI PMC
Zhang TC, Janik JJ, Grill WM. Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Res. 2014;1569:19–31. doi: 10.1016/j.brainres.2014.04.039. PubMed DOI
Holsheimer J, Nuttin B, King GW, Wesselink WA, Gybels JM, de Sutter P. Clinical evaluation of paresthesia steering with a new system for spinal cord stimulation. Neurosurgery. 1998;42:541–547. doi: 10.1097/00006123-199803000-00022. PubMed DOI
Holsheimer J, Wesselink WA. Optimum electrode geometry for spinal cord stimulation: The narrow bipole and tripole. Med. Biol. Eng. Comput. 1997;35:493–497. doi: 10.1007/bf02525529. PubMed DOI
Sankarasubramanian V, Buitenweg JR, Holsheimer J, Veltink P. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation. J. Neural Eng. 2011;8:016010. doi: 10.1088/1741-2560/8/1/016010. PubMed DOI
Grahn PJ, Lavrov IA, Sayenko DG, Van Straaten MG, Gill ML, Strommen JA, Calvert JS, Drubach DI, Beck LA, Linde MB, Thoreson AR, Lopez C, Mendez AA, Gad PN, Gerasimenko YP, Edgerton VR, Zhao KD, Lee KH. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin. Proc. 2017;92:544–554. doi: 10.1016/j.mayocp.2017.02.014. PubMed DOI
Struijk JJ, Holsheimer J, Boom HB. Excitation of dorsal root fibers in spinal cord stimulation: A theoretical study. IEEE Trans. Biomed. Eng. 1993;40:632–639. doi: 10.1109/10.237693. PubMed DOI
Glover G. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage. 1999;9(4):416–429. doi: 10.1006/nimg.1998.0419. PubMed DOI
Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Grohn O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage. 2018;172:9–20. doi: 10.1016/j.neuroimage.2018.01.014. PubMed DOI
Tang S, Cuellar CA, Song P, Islam R, Huang C, Wen H, Knudsen BE, Gong P, Lok UW, Chen S, Lavrov IA. Changes in spinal cord hemodynamics reflect modulation of spinal network with different parameters of epidural stimulation. Neuroimage. 2020;221:117183. doi: 10.1016/j.neuroimage.2020.117183. PubMed DOI PMC
Song P, Cuellar CA, Tang S, Islam R, Wen H, Huang C, Manduca A, Trzasko JD, Knudsen BE, Lee KH, Chen S, Lavrov IA. Functional ultrasound imaging of spinal cord hemodynamic responses to epidural electrical stimulation: A feasibility study. Front. Neurol. 2019;10:279. doi: 10.3389/fneur.2019.00279. PubMed DOI PMC
Lehto LJ, Idiyatullin D, Zhang J, Utecht L, Adriany G, Garwood M, Grohn O, Michaeli S, Mangia S. MB-SWIFT functional MRI during deep brain stimulation in rats. Neuroimage. 2017;159:443–448. doi: 10.1016/j.neuroimage.2017.08.012. PubMed DOI PMC
Watson C, Paxinos G, Kayalioglu G, Heise C. In: Atlas of the Rat Spinal Cord. The Spinal Cord. Watson C, Paxinos G, Kayalioglu G, editors. New York: Academic Press; 2009. pp. 238–306.
Lempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology. 2015;122:1362–1376. doi: 10.1097/ALN.0000000000000649. PubMed DOI
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018. PubMed DOI PMC
Silva AC, Koretsky AP, Duyn JH. Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex. Magn. Reson. Med. 2007;57:1110–1118. doi: 10.1002/mrm.21246. PubMed DOI PMC