Brain fMRI during orientation selective epidural spinal cord stimulation

. 2021 Mar 09 ; 11 (1) : 5504. [epub] 20210309

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33750822

Grantová podpora
P41 EB027061 NIBIB NIH HHS - United States
U01 NS103569 NINDS NIH HHS - United States

Odkazy

PubMed 33750822
PubMed Central PMC7943775
DOI 10.1038/s41598-021-84873-8
PII: 10.1038/s41598-021-84873-8
Knihovny.cz E-zdroje

Epidural spinal cord stimulation (ESCS) is widely used for chronic pain treatment, and is also a promising tool for restoring motor function after spinal cord injury. Despite significant positive impact of ESCS, currently available protocols provide limited specificity and efficiency partially due to the limited number of contacts of the leads and to the limited flexibility to vary the spatial distribution of the stimulation field in respect to the spinal cord. Recently, we introduced Orientation Selective (OS) stimulation strategies for deep brain stimulation, and demonstrated their selectivity in rats using functional MRI (fMRI). The method achieves orientation selectivity by controlling the main direction of the electric field gradients using individually driven channels. Here, we introduced a similar OS approach for ESCS, and demonstrated orientation dependent brain activations as detected by brain fMRI. The fMRI activation patterns during spinal cord stimulation demonstrated the complexity of brain networks stimulated by OS-ESCS paradigms, involving brain areas responsible for the transmission of the motor and sensory information. The OS approach may allow targeting ESCS to spinal fibers of different orientations, ultimately making stimulation less dependent on the precision of the electrode implantation.

Zobrazit více v PubMed

Franken G, Debets J, Joosten EAJ. Dorsal root ganglion stimulation in experimental painful diabetic peripheral neuropathy: Burst vs conventional stimulation paradigm. Neuromodulation. 2019;22:943–950. doi: 10.1111/ner.12908. PubMed DOI PMC

Song JJ, Popescu A, Bell RL. Present and potential use of spinal cord stimulation to control chronic pain. Pain Physician. 2014;17:235–246. PubMed

Viswanath O, Urits I, Bouley E, Peck JM, Thompson W, Kaye AD. Evolving spinal cord stimulation technologies and clinical implications in chronic pain management. Curr. Pain Headache Rep. 2019;23:39. doi: 10.1007/s11916-019-0778-9. PubMed DOI

Melzack R, Wall PD. Pain mechanisms: A new theory. Science. 1965;150:971–979. doi: 10.1126/science.150.3699.971. PubMed DOI

Stancak A, Kozak J, Vrba I, Tintera J, Vrana J, Polacek H, Stancak M. Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur. J. Pain. 2008;12:137–148. doi: 10.1016/j.ejpain.2007.03.003. PubMed DOI

Kapural L. Spinal cord stimulation for intractable chronic pain. Curr. Pain Headache Rep. 2014;18:406. doi: 10.1007/s11916-014-0406-7. PubMed DOI

Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, Beck LA, Sayenko DG, Van Straaten MG, Drubach DI, Veith DD, Thoreson AR, Lopez C, Gerasimenko YP, Edgerton VR, Lee KH, Zhao KD. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 2018;24:1677–1682. doi: 10.1038/s41591-018-0175-7. PubMed DOI

Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seanez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65–71. doi: 10.1038/s41586-018-0649-2. PubMed DOI

De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg. 2013;80:642–649 e641. doi: 10.1016/j.wneu.2013.01.040. PubMed DOI

Deer TR, Jain S, Hunter C, Chakravarthy K. Neurostimulation for intractable chronic pain. Brain Sci. 2019 doi: 10.3390/brainsci9020023. PubMed DOI PMC

De Ridder D, Vanneste S, Plazier M, van der Loo E, Menovsky T. Burst spinal cord stimulation: Toward paresthesia-free pain suppression. Neurosurgery. 2010;66:986–990. doi: 10.1227/01.NEU.0000368153.44883.B3. PubMed DOI

Pluijms WA, van Kleef M, Honig WM, Janssen SP, Joosten EA. The effect of spinal cord stimulation frequency in experimental painful diabetic polyneuropathy. Eur. J. Pain. 2013;17:1338–1346. doi: 10.1002/j.1532-2149.2013.00318.x. PubMed DOI

Kriek N, Groeneweg JG, Stronks DL, de Ridder D, Huygen FJ. Preferred frequencies and waveforms for spinal cord stimulation in patients with complex regional pain syndrome: A multicentre, double-blind, randomized and placebo-controlled crossover trial. Eur. J. Pain. 2017;21:507–519. doi: 10.1002/ejp.944. PubMed DOI

Morales A, Yong RJ, Kaye AD, Urman RD. Spinal cord stimulation: Comparing traditional low-frequency tonic waveforms to novel high frequency and burst stimulation for the treatment of chronic low back pain. Curr. Pain Headache Rep. 2019;23:25. doi: 10.1007/s11916-019-0763-3. PubMed DOI

Deer TR, Grigsby E, Weiner RL, Wilcosky B, Kramer JM. A prospective study of dorsal root ganglion stimulation for the relief of chronic pain. Neuromodulation. 2013;16:67–71. doi: 10.1111/ner.12013. PubMed DOI

Lehto LJ, Filip P, Laakso H, Sierra A, Slopsema JP, Johnson MD, Eberly LE, Low WC, Grohn O, Tanila H, Mangia S, Michaeli S. Tuning neuromodulation effects by orientation selective deep brain stimulation in the rat medial frontal cortex. Front. Neurosci. 2018;12:899. doi: 10.3389/fnins.2018.00899. PubMed DOI PMC

Lehto LJ, Slopsema JP, Johnson MD, Shatillo A, Teplitzky BA, Utecht L, Adriany G, Mangia S, Sierra A, Low WC, Grohn O, Michaeli S. Orientation selective deep brain stimulation. J. Neural Eng. 2017;14:016016. doi: 10.1088/1741-2552/aa5238. PubMed DOI PMC

Lehto LJ, Canna A, Wu L, Sierra A, Zhurakovskaya E, Ma J, Pearce C, Shaio M, Filip P, Johnson MD, Low WC, Grohn O, Tanila H, Mangia S, Michaeli S. Orientation selective deep brain stimulation of the subthalamic nucleus in rats. Neuroimage. 2020;213:116750. doi: 10.1016/j.neuroimage.2020.116750. PubMed DOI PMC

Slopsema JP, Pena E, Patriat R, Lehto LJ, Grohn O, Mangia S, Harel N, Michaeli S, Johnson MD. Clinical deep brain stimulation strategies for orientation-selective pathway activation. J. Neural Eng. 2018;15:056029. doi: 10.1088/1741-2552/aad978. PubMed DOI PMC

Lee D, Gillespie E, Bradley K. Dorsal column steerability with dual parallel leads using dedicated power sources: A computational model. J. Vis. Exp. 2011 doi: 10.3791/2443. PubMed DOI PMC

Moffitt MA, Lee DC, Bradley K. In: Implantable Neural Prostheses 1. Biological and Medical Physics, Biomedical Engineering. Greenbaum E, Zhou D, editors. Berlin: Springer; 2009.

Veizi E, Hayek SM, North J, Brent Chafin T, Yearwood TL, Raso L, Frey R, Cairns K, Berg A, Brendel J, Haider N, McCarty M, Vucetic H, Sherman A, Chen L, Mekel-Bobrov N. Spinal cord stimulation (SCS) with anatomically guided (3D) neural targeting shows superior chronic axial low back pain relief compared to traditional SCS-LUMINA study. Pain Med. 2017;18:1534–1548. doi: 10.1093/pm/pnw286. PubMed DOI

Shah PK, Lavrov I. Spinal epidural stimulation strategies: Clinical implications of locomotor studies in spinal rats. Neuroscientist. 2017;23:664–680. doi: 10.1177/1073858417699554. PubMed DOI

Shah PK, Sureddi S, Alam M, Zhong H, Roy RR, Edgerton VR, Gerasimenko Y. Unique spatiotemporal neuromodulation of the lumbosacral circuitry shapes locomotor success after spinal cord injury. J. Neurotrauma. 2016;33:1709–1723. doi: 10.1089/neu.2015.4256. PubMed DOI PMC

Jia Z, Chen X, Tang W, Zhao D, Yu S. Atypical functional connectivity between the anterior cingulate cortex and other brain regions in a rat model of recurrent headache. Mol. Pain. 2019;15:1744806919842483. doi: 10.1177/1744806919842483. PubMed DOI PMC

Deogaonkar M, Sharma M, Oluigbo C, Nielson DM, Yang X, Vera-Portocarrero L, Molnar GF, Abduljalil A, Sederberg PB, Knopp M, Rezai AR. Spinal cord stimulation (SCS) and functional magnetic resonance imaging (fMRI): Modulation of cortical connectivity with therapeutic SCS. Neuromodulation. 2016;19:142–153. doi: 10.1111/ner.12346. PubMed DOI

Kiriakopoulos ET, Tasker RR, Nicosia S, Wood ML, Mikulis DJ. Functional magnetic resonance imaging: A potential tool for the evaluation of spinal cord stimulation: Technical case report. Neurosurgery. 1997;41:501–504. doi: 10.1097/00006123-199708000-00042. PubMed DOI

Moens M, Droogmans S, Spapen H, De Smedt A, Brouns R, Van Schuerbeek P, Luypaert R, Poelaert J, Nuttin B. Feasibility of cerebral magnetic resonance imaging in patients with externalised spinal cord stimulator. Clin. Neurol. Neurosurg. 2012;114:135–141. doi: 10.1016/j.clineuro.2011.09.013. PubMed DOI

Moens M, Sunaert S, Marien P, Brouns R, De Smedt A, Droogmans S, Van Schuerbeek P, Peeters R, Poelaert J, Nuttin B. Spinal cord stimulation modulates cerebral function: An fMRI study. Neuroradiology. 2012;54:1399–1407. doi: 10.1007/s00234-012-1087-8. PubMed DOI

Meuwissen KPV, van der Toorn A, Gu JW, Zhang TC, Dijkhuizen RM, Joosten EAJ. Active recharge burst and tonic spinal cord stimulation engage different supraspinal mechanisms: A functional magnetic resonance imaging study in peripherally injured chronic neuropathic rats. Pain Pract. 2020;20:510–521. doi: 10.1111/papr.12879. PubMed DOI

Pawela CP, Kramer JM, Hogan QH. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia. Neuroimage. 2017;147:10–18. doi: 10.1016/j.neuroimage.2016.11.046. PubMed DOI

Rattay F. Analysis of models for external stimulation of axons. IEEE Trans. Biomed. Eng. 1986;33:974–977. doi: 10.1109/TBME.1986.325670. PubMed DOI

Cuellar CA, Mendez AA, Islam R, Calvert JS, Grahn PJ, Knudsen B, Pham T, Lee KH, Lavrov IA. The role of functional neuroanatomy of the lumbar spinal cord in effect of epidural stimulation. Front. Neuroanat. 2017;11:82. doi: 10.3389/fnana.2017.00082. PubMed DOI PMC

Brown LT., Jr Projections and termination of the corticospinal tract in rodents. Exp. Brain Res. 1971;13:432–450. doi: 10.1007/bf00234340. PubMed DOI

Holsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation. 2002;5:25–31. doi: 10.1046/j.1525-1403.2002._2005.x. PubMed DOI

Holsheimer J, Buitenweg JR. Review: Bioelectrical mechanisms in spinal cord stimulation. Neuromodulation. 2015;18:161–170. doi: 10.1111/ner.12279. PubMed DOI

Oakley JC, Prager JP. Spinal cord stimulation: Mechanisms of action. Spine (Phila Pa 1976) 2002;27:2574–2583. doi: 10.1097/00007632-200211150-00034. PubMed DOI

Ronchi S, Fiscella M, Marchetti C, Viswam V, Müller J, Frey U, Hierlemann AR. Single-cell electrical stimulation using CMOS-based high-density microelectrode arrays. Front. Neurosci. 2019 doi: 10.3389/fnins.2019.00208. PubMed DOI PMC

Moreno-López Y, Olivares-Moreno R, Cordero-Erausquin M, Rojas-Piloni G. Sensorimotor integration by corticospinal system. Front Neuroanat. 2016 doi: 10.3389/fnana.2016.00024. PubMed DOI PMC

Hatsopoulos NG, Suminski AJ. Sensing with the motor cortex. Neuron. 2011;72(3):477–487. doi: 10.1016/j.neuron.2011.10.020. PubMed DOI PMC

Zhang TC, Janik JJ, Grill WM. Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Res. 2014;1569:19–31. doi: 10.1016/j.brainres.2014.04.039. PubMed DOI

Holsheimer J, Nuttin B, King GW, Wesselink WA, Gybels JM, de Sutter P. Clinical evaluation of paresthesia steering with a new system for spinal cord stimulation. Neurosurgery. 1998;42:541–547. doi: 10.1097/00006123-199803000-00022. PubMed DOI

Holsheimer J, Wesselink WA. Optimum electrode geometry for spinal cord stimulation: The narrow bipole and tripole. Med. Biol. Eng. Comput. 1997;35:493–497. doi: 10.1007/bf02525529. PubMed DOI

Sankarasubramanian V, Buitenweg JR, Holsheimer J, Veltink P. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation. J. Neural Eng. 2011;8:016010. doi: 10.1088/1741-2560/8/1/016010. PubMed DOI

Grahn PJ, Lavrov IA, Sayenko DG, Van Straaten MG, Gill ML, Strommen JA, Calvert JS, Drubach DI, Beck LA, Linde MB, Thoreson AR, Lopez C, Mendez AA, Gad PN, Gerasimenko YP, Edgerton VR, Zhao KD, Lee KH. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin. Proc. 2017;92:544–554. doi: 10.1016/j.mayocp.2017.02.014. PubMed DOI

Struijk JJ, Holsheimer J, Boom HB. Excitation of dorsal root fibers in spinal cord stimulation: A theoretical study. IEEE Trans. Biomed. Eng. 1993;40:632–639. doi: 10.1109/10.237693. PubMed DOI

Glover G. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage. 1999;9(4):416–429. doi: 10.1006/nimg.1998.0419. PubMed DOI

Paasonen J, Stenroos P, Salo RA, Kiviniemi V, Grohn O. Functional connectivity under six anesthesia protocols and the awake condition in rat brain. Neuroimage. 2018;172:9–20. doi: 10.1016/j.neuroimage.2018.01.014. PubMed DOI

Tang S, Cuellar CA, Song P, Islam R, Huang C, Wen H, Knudsen BE, Gong P, Lok UW, Chen S, Lavrov IA. Changes in spinal cord hemodynamics reflect modulation of spinal network with different parameters of epidural stimulation. Neuroimage. 2020;221:117183. doi: 10.1016/j.neuroimage.2020.117183. PubMed DOI PMC

Song P, Cuellar CA, Tang S, Islam R, Wen H, Huang C, Manduca A, Trzasko JD, Knudsen BE, Lee KH, Chen S, Lavrov IA. Functional ultrasound imaging of spinal cord hemodynamic responses to epidural electrical stimulation: A feasibility study. Front. Neurol. 2019;10:279. doi: 10.3389/fneur.2019.00279. PubMed DOI PMC

Lehto LJ, Idiyatullin D, Zhang J, Utecht L, Adriany G, Garwood M, Grohn O, Michaeli S, Mangia S. MB-SWIFT functional MRI during deep brain stimulation in rats. Neuroimage. 2017;159:443–448. doi: 10.1016/j.neuroimage.2017.08.012. PubMed DOI PMC

Watson C, Paxinos G, Kayalioglu G, Heise C. In: Atlas of the Rat Spinal Cord. The Spinal Cord. Watson C, Paxinos G, Kayalioglu G, editors. New York: Academic Press; 2009. pp. 238–306.

Lempka SF, McIntyre CC, Kilgore KL, Machado AG. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology. 2015;122:1362–1376. doi: 10.1097/ALN.0000000000000649. PubMed DOI

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018. PubMed DOI PMC

Silva AC, Koretsky AP, Duyn JH. Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex. Magn. Reson. Med. 2007;57:1110–1118. doi: 10.1002/mrm.21246. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...