Tuning Neuromodulation Effects by Orientation Selective Deep Brain Stimulation in the Rat Medial Frontal Cortex
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P41 EB015894
NIBIB NIH HHS - United States
R01 NS094206
NINDS NIH HHS - United States
U01 NS103569
NINDS NIH HHS - United States
PubMed
30618544
PubMed Central
PMC6300504
DOI
10.3389/fnins.2018.00899
Knihovny.cz E-zdroje
- Klíčová slova
- deep brain stimulation, depression, fMRI, infralimbic cortex, orientation selective,
- Publikační typ
- časopisecké články MeSH
Previous studies that focused on treating major depressive disorder with conventional deep brain stimulation (DBS) paradigms produced inconsistent results. In this proof-of-concept preclinical study in rats (n = 8), we used novel paradigms of orientation selective DBS for stimulating the complex circuitry crossing the infralimbic cortex, an area considered analogous to human subgenual cingulate cortex. Using functional MRI at 9.4 T, we monitored whole brain responses to varying the electrical field orientation of DBS within the infralimbic cortex. Substantial alterations of functional MRI responses in the amygdala, a major node connected to the infralimbic cortex implicated in the pathophysiology of depression, were observed. As expected, the activation cluster near the electrode was insensitive to the changes of the stimulation orientation. Hence, our findings substantiate the ability of orientation selective stimulation (OSS) to recruit neuronal pathways of distinct orientations relative to the position of the electrode, even in complex circuits such as those involved in major depressive disorder. We conclude that OSS is a promising approach for stimulating brain areas that inherently require individualisation of the treatment approach.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
Center for Magnetic Resonance Research University of Minnesota Minneapolis MN United States
Department of Biomedical Engineering University of Minnesota Minneapolis MN United States
Department of Neurosurgery University of Minnesota Minneapolis MN United States
Division of Biostatistics University of Minnesota Minneapolis MN United States
Zobrazit více v PubMed
Bari A. A., Thum J., Babayan D., Lozano A. M. (2018). “Current and expected advances in deep brain stimulation for movement disorders,” in Current Concepts in Movement Disorder Management, eds Niranjan A., Lunsford L. D., Richardson R. M. (Basel: Karger Publishers; ), 222–229. 10.1159/000481106 PubMed DOI
Beck A., Teboulle M. (2009). Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18 2419–2434. 10.1109/TIP.2009.2028250 PubMed DOI
Benabid A. L., Benazzouz A., Hoffmann D., Limousin P., Krack P., Pollak P. (1998). Long-term electrical inhibition of deep brain targets in movement disorders. Mov. Disord. 13 119–125. 10.1002/mds.870131321 PubMed DOI
Bergfeld I. O., Mantione M., Hoogendoorn M. L. C., Ruhé H. G., Notten P., Van Laarhoven J., et al. (2016). Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression. JAMA Psychiatry 73 456–464. 10.1001/jamapsychiatry.2016.0152 PubMed DOI
Chaturvedi A., Foutz T. J., McIntyre C. C. (2012). Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 5 369–377. 10.1016/j.brs.2011.05.002 PubMed DOI PMC
Diorio D., Viau V., Meaney M. J. (1993). The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J. Neurosci. 13 3839–3847. 10.1523/JNEUROSCI.13-09-03839.1993 PubMed DOI PMC
Dougherty D. D., Rezai A. R., Carpenter L. L., Howland R. H., Bhati M. T., O’Reardon J. P., et al. (2015). A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol. Psychiatry 78 240–248. 10.1016/j.biopsych.2014.11.023 PubMed DOI
Dunn J. F., Tuor U. I., Kmech J., Young N. A., Henderson A. K., Jackson J. C., et al. (2009). Functional brain mapping at 9.4 T using a new MRI-compatible electrode chronically implanted in rats. Magn. Reson. Med. 61 222–228. 10.1002/mrm.21803 PubMed DOI PMC
Edemann-Callesen H., Voget M., Empl L., Vogel M., Wieske F., Rummel J., et al. (2015). Medial forebrain bundle deep brain stimulation has symptom-specific anti-depressant effects in rats and as opposed to ventromedial prefrontal cortex stimulation interacts with the reward system. Brain Stimul. 8 714–723. 10.1016/j.brs.2015.02.009 PubMed DOI
Florence G., Sameshima K., Fonoff E. T., Hamani C. (2016). Deep brain stimulation: more complex than the inhibition of cells and excitation of fibers. Neuroscientist 22 332–345. 10.1177/1073858415591964 PubMed DOI
Gabbott P. L. A., Warner T. A., Jays P. R. L., Bacon S. J. (2003). Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res. 993 59–71. 10.1016/j.brainres.2003.08.056 PubMed DOI
Gradinaru V., Mogri M., Thompson K. R., Henderson J. M., Deisseroth K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science 324 354–359. 10.1126/science.1167093 PubMed DOI PMC
Greenberg B. D., Malone D. A., Friehs G. M., Rezai A. R., Kubu C. S., Malloy P. F., et al. (2006). Three-year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology 31 2384–2393. 10.1038/sj.npp.1301165 PubMed DOI
Hamani C., Amorim B. O., Wheeler A. L., Diwan M., Driesslein K., Covolan L., et al. (2014). Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits. Neurobiol. Dis. 71 205–214. 10.1016/j.nbd.2014.08.007 PubMed DOI PMC
Hamani C., Diwan M., Isabella S., Lozano A. M., Nobrega J. N. (2010a). Effects of different stimulation parameters on the antidepressant-like response of medial prefrontal cortex deep brain stimulation in rats. J. Psychiatr. Res. 44 683–687. 10.1016/j.jpsychires.2009.12.010 PubMed DOI
Hamani C., Diwan M., Macedo C. E., Brandão M. L., Shumake J., Gonzalez-Lima F., et al. (2010b). Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol. Psychiatry 67 117–124. 10.1016/j.biopsych.2009.08.025 PubMed DOI
Hamani C., Mayberg H., Stone S., Laxton A., Haber S., Lozano A. M. (2011). The subcallosal cingulate gyrus in the context of major depression. Biol. Psychiatry 69 301–308. 10.1016/j.biopsych.2010.09.034 PubMed DOI
Hamani C., Nóbrega J. N. (2010). Deep brain stimulation in clinical trials and animal models of depression. Eur. J. Neurosci. 32 1109–1117. 10.1111/j.1460-9568.2010.07414.x PubMed DOI
Hamani C., Nobrega J. N. (2012). Preclinical studies modeling deep brain stimulation for depression. Biol. Psychiatry 72 916–923. 10.1016/j.biopsych.2012.05.024 PubMed DOI PMC
Heidbreder C. A., Groenewegen H. J. (2003). The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev. 27 555–579. 10.1016/j.neubiorev.2003.09.003 PubMed DOI
Hoover W. B., Vertes R. P. (2007). Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 212 149–179. 10.1007/s00429-007-0150-4 PubMed DOI
Hurley K. M., Herbert H., Moga M. M., Saper C. B. (1991). Efferent projections of the infralimbic cortex of the rat. J. Comp. Neurol. 308 249–276. 10.1002/cne.903080210 PubMed DOI
Idiyatullin D., Corum C., Park J. Y., Garwood M. (2006). Fast and quiet MRI using a swept radiofrequency. J. Magn. Reson. 181 342–349. 10.1016/j.jmr.2006.05.014 PubMed DOI
Idiyatullin D., Corum C. A., Garwood M. (2015). Multi-Band-SWIFT. J. Magn. Reson. 251 19–25. 10.1016/j.jmr.2014.11.014 PubMed DOI PMC
Koenigs M., Grafman J. (2009). The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav. Brain Res. 201 239–243. 10.1016/j.bbr.2009.03.004 PubMed DOI PMC
Lai H.-Y., Younce J. R., Albaugh D. L., Kao Y.-C. J., Shih Y.-Y. I. (2014). Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus. Neuroimage 84 11–18. 10.1016/j.neuroimage.2013.08.026 PubMed DOI
Lehto L. J., Idiyatullin D., Zhang J., Utecht L., Adriany G., Garwood M., et al. (2017a). MB-SWIFT functional MRI during deep brain stimulation in rats. Neuroimage 159 443–448. 10.1016/j.neuroimage.2017.08.012 PubMed DOI PMC
Lehto L. J., Slopsema J. P., Johnson M. D., Shatillo A., Teplitzky B. A., Utecht L., et al. (2017b). Orientation selective deep brain stimulation. J. Neural Eng. 14:016016. 10.1088/1741-2552/aa5238 PubMed DOI PMC
Lim L. W., Prickaerts J., Huguet G., Kadar E., Hartung H., Sharp T., et al. (2015). Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transl. Psychiatry 5:e535. 10.1038/tp.2015.24 PubMed DOI PMC
Martens H. C. F., Toader E., Decré M. M. J., Anderson D. J., Vetter R., Kipke D. R., et al. (2011). Spatial steering of deep brain stimulation volumes using a novel lead design. Clin. Neurophysiol. 122 558–566. 10.1016/j.clinph.2010.07.026 PubMed DOI
Morishita T., Fayad S. M., Higuchi M. A., Nestor K. A., Foote K. D. (2014). Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics 11 475–484. 10.1007/s13311-014-0282-1 PubMed DOI PMC
Nambu A., Chiken S. (2015). “Mechanism of DBS: inhibition, excitation, or disruption?” in Deep Brain Stimulation for Neurological Disorders, ed. Itakura T. (Berlin: Springer; ), 13–20.
Okun M. S., Vitek J. L. (2004). Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. Mov. Disord. 19 375–389. 10.1002/mds.20037 PubMed DOI
Ostrander M. M., Richtand N. M., Herman J. P. (2003). Stress and amphetamine induce Fos expression in medial prefrontal cortex neurons containing glucocorticoid receptors. Brain Res. 990 209–214. 10.1016/j.brainres.2003.07.001 PubMed DOI
Paxinos G., Watson C. (1998). The Rat Brain Atlas in Stereotaxic Coordinates. San Diego, CA: Academic Press.
Rattay F. (1989). Analysis of models for extracellular fiber stimulation. IEEE Trans. Biomed. Eng. 36 676–682. 10.1109/10.32099 PubMed DOI
Rea E., Rummel J., Schmidt T. T., Hadar R., Heinz A., Mathé A. A., et al. (2014). Anti-anhedonic effect of deep brain stimulation of the prefrontal cortex and the dopaminergic reward system in a genetic rat model of depression: an intracranial self-stimulation paradigm study. Brain Stimul. 7 21–28. 10.1016/j.brs.2013.09.002 PubMed DOI
Saper C. B. (1982). Convergence of autonomic and limbic connections in the insular cortex of the rat. J. Comp. Neurol. 210 163–173. 10.1002/cne.902100207 PubMed DOI
Silva A. C., Koretsky A. P., Duyn J. H. (2007). Functional MRI impulse response for BOLD and CBV contrast in rat somatosensory cortex. Magn. Reson. Med. 57 1110–1118. 10.1002/mrm.21246 PubMed DOI PMC
Spiridon M., Fischl B., Kanwisher N. (2006). Location and spatial profile of category-specific regions in human extrastriate cortex. Hum. Brain Mapp. 27 77–89. 10.1002/hbm.20169 PubMed DOI PMC
Takagishi M., Chiba T. (1991). Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res. 566 26–39. 10.1016/0006-8993(91)91677-S PubMed DOI
Tsai D., John E., Chari T., Yuste R., Shepard K. (2015). High-channel-count, high-density microelectrode array for closed-loop investigation of neuronal networks. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015 7510–7513. 10.1109/EMBC.2015.7320129 PubMed DOI
Vertes R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51 32–58. 10.1002/syn.10279 PubMed DOI
Vertes R. P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142 1–20. 10.1016/j.neuroscience.2006.06.027 PubMed DOI
Warden D., Rush A. J., Trivedi M. H., Fava M., Wisniewski S. R. (2007). The STAR∗D project results: a comprehensive review of findings. Curr. Psychiatry Rep. 9 449–459. 10.1007/s11920-007-0061-3 PubMed DOI
Widge A. S., Deckersbach T., Eskandar E. N., Dougherty D. D. (2016). Deep brain stimulation for treatment-resistant psychiatric illnesses: what has gone wrong and what should we do next? Biol. Psychiatry 79 e9–e10. 10.1016/j.biopsych.2015.06.005 PubMed DOI
Youngerman B. E., Sheth S. A. (2017). Deep brain stimulation for treatment-resistant depression: optimizing interventions while preserving valid trial design. Ann. Transl. Med. 5(Suppl. 1):S1. 10.21037/atm.2017.03.40 PubMed DOI PMC