Restoration and Possible Upgrade of a Historical Motorcycle Part Using Powder Bed Fusion
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2022 / 26
Ministry of Education, Youth, and Sports
CZ.02.1.01/0.0/0.0/17_049/0008407
Structural and Investment Funds of the European Union and the state budget of CR
PubMed
35207999
PubMed Central
PMC8879024
DOI
10.3390/ma15041460
PII: ma15041460
Knihovny.cz E-zdroje
- Klíčová slova
- 3D scanning, SS316L, electronic speckle pattern interferometry, lattice structure, powder bed fusion, printing simulation, reverse engineer,
- Publikační typ
- časopisecké články MeSH
Reverse engineering is the process of creating a digital version of an existing part without any knowledge in advance about the design intent. Due to 3D printing, the reconstructed part can be rapidly fabricated for prototyping or even for practical usage. To showcase this combination, this study presents a workflow on how to restore a motorcycle braking pedal from material SS316L with the Powder Bed Fusion (PBF) technology. Firstly, the CAD model of the original braking pedal was created. Before the actual PBF printing, the braking pedal printing process was simulated to identify the possible imperfections. The printed braking pedal was then subjected to quality control in terms of the shape distortion from its CAD counterpart and strength assessments, conducted both numerically and physically. As a result, the exterior shape of the braking pedal was restored. Additionally, by means of material assessments and physical tests, it was able to prove that the restored pedal was fully functional. Finally, an approach was proposed to optimize the braking pedal with a lattice structure to utilize the advantages the PBF technology offers.
Zobrazit více v PubMed
Ngo T., Kashani A., Imbalzano G., Nguyen K., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI
Additive Manufacturing—General Principles—Terminology. International Organization for Standardization; Geneva, Switzerland: 2015.
Kruth J., Mercelis P., Van Vaerenbergh J., Froyen L., Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005;11:26–36. doi: 10.1108/13552540510573365. DOI
Maconachie T., Leary M., Lozanovski B., Zhang X., Qian M., Faruque O., Brandt M. SLM lattice structures: Properties, performance, applications and challenges. Mater. Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137. DOI
Xiao R., Feng X., Fan R., Chen S., Song J., Gao L., Lu Y. 3D printing of titanium-coated gradient composite lattices for lightweight mandibular prosthesis. Compos. Part B Eng. 2020;193:108057. doi: 10.1016/j.compositesb.2020.108057. DOI
Moon S., Tan Y., Hwang J., Yoon Y. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. Int. J. Precis. Eng. Manuf.-Green Technol. 2014;1:223–228. doi: 10.1007/s40684-014-0028-x. DOI
Egan P., Gonella V., Engensperger M., Ferguson S., Shea K. Computationally designed lattices with tuned properties for tissue engineering using 3D printing. PLoS ONE. 2017;12:e0182902. doi: 10.1371/journal.pone.0182902. PubMed DOI PMC
Egan P., Wang X., Greutert H., Shea K., Wuertz-Kozak K., Ferguson S. Mechanical and Biological Characterization of 3D Printed Lattices. 3D Print. Addit. Manuf. 2019;6:73–81. doi: 10.1089/3dp.2018.0125. DOI
Matta A., Raju D., Suman K. The Integration of CAD/CAM and Rapid Prototyping in Product Development: A Review. Mater. Today Proc. 2015;2:3438–3445. doi: 10.1016/j.matpr.2015.07.319. DOI
Raffo A., Barrowclough O., Muntingh G. Reverse engineering of CAD models via clustering and approximate implicitization. Comput. Aided Geom. Des. 2020;80:101876. doi: 10.1016/j.cagd.2020.101876. DOI
Helle R., Lemu H. A case study on use of 3D scanning for reverse engineering and quality control. Mater. Today Proc. 2021;45:5255–5262. doi: 10.1016/j.matpr.2021.01.828. DOI
Saiga K., Ullah A., Kubo A., Tashi A Sustainable Reverse Engineering Process. Procedia CIRP. 2021;98:517–522. doi: 10.1016/j.procir.2021.01.144. DOI
Zhang J., Yu Z. Overview of 3D printing technologies for reverse engineering product design. Autom. Control. Comput. Sci. 2016;50:91–97. doi: 10.3103/S0146411616020073. DOI
Ninpetch P., Kowitwarangkul P., Mahathanabodee S., Chalermkarnnon P., Ratanadecho P. A review of computer simulations of metal 3D printing. AIP Conf. Proc. 2020;2279:050002.
Sharp B. Electronic speckle pattern interferometry (ESPI) Opt. Lasers Eng. 1989;11:241–255. doi: 10.1016/0143-8166(89)90062-6. DOI
Rickert T. Residual Stress Measurement by ESPI Hole-Drilling. Procedia CIRP. 2016;45:203–206. doi: 10.1016/j.procir.2016.02.256. DOI
Yang L., Xie X., Zhu L., Wu S., Wang Y. Review of electronic speckle pattern interferometry (ESPI) for three dimensional displacement measurement. Chin. J. Mech. Eng. 2014;27:1–13. doi: 10.3901/CJME.2014.01.001. DOI
Indian Motocycle Company . Parts List, Indian Scout, 1920–1928. Indian Motocycle Company; Springfield, MA, USA: 1928. pp. 72–73.
Ma N., Nakacho K., Ohta T., Ogawa N., Maekawa A., Huang H., Murakawa H. Inherent Strain Method for Residual Stress Measurement and Welding Distortion Prediction; Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering; Busan, Korea. 19–24 June 2016;
Simufact Engineering GmbH . Simufact Additive Tutorial. Simufact Engineering GmbH; Hamburg, Germany: 2020.
Halama R., Kourousis K., Pagáč M., Paška Z. Cyclic plasticity of additively manufactured metals. In: Motlagh H.J., Roostaei A.A., editors. Cyclic Plasticity of Metals: Modeling Fundamentals and Applications. Elsevier; Amsterdam, The Netherlands: 2022. pp. 397–433. DOI
Halama R., Gál P., Pagáč M., Govindaraj B., Kocich R., Kunčická L. On Cyclic Hardening/Softening Behaviour of Conventional and 3D Printed SS316L. In: Fusek M., editor. Book of Full Papers—Experimental Stress Analysis EAN2020, 19.—22.10.2020. Online, VŠB-TU Ostrava; Ostrava, Czech Republic: 2020. pp. 98–106.
Korinek M., Halama R., Fojtik F., Pagac M., Krcek J., Krzikalla D., Kocich R., Kuncicka L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2020;14:33. doi: 10.3390/ma14010033. PubMed DOI PMC
Gogolewski D., Bartkowiak T., Kozior T., Zmarzły P. Multiscale Analysis of Surface Texture Quality of Models Manufactured by Laser Powder-Bed Fusion Technology and Machining from 316L Steel. Materials. 2021;14:2794. doi: 10.3390/ma14112794. PubMed DOI PMC
Kozior T., Bochnia J. The Influence of Printing Orientation on Surface Texture Parameters in Powder Bed Fusion Technology with 316L Steel. Micromachines. 2020;11:639. doi: 10.3390/mi11070639. PubMed DOI PMC
Mesicek J., Ma Q.-P., Hajnys J., Zelinka J., Pagac M., Petru J., Mizera O. Abrasive Surface Finishing on SLM 316L Parts Fabricated with Recycled Powder. Appl. Sci. 2021;11:2869. doi: 10.3390/app11062869. DOI
Hlinka J., Kraus M., Hajnys J., Pagac M., Petrů J., Brytan Z., Tański T. Complex Corrosion Properties of AISI 316L Steel Prepared by 3D Printing Technology for Possible Implant Applications. Materials. 2020;13:1527. doi: 10.3390/ma13071527. PubMed DOI PMC
Halama R., Pagac M., Paska Z., Pavlicek P., Chen X. Ratcheting behaviour of 3D printed and conventionally produced SS316L material; Proceedings of the ASME Pressure Vessels and Piping Conference; San Antonio, TX, USA. 14–19 July 2019;
Nazir A., Abate K., Kumar A., Jeng J. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019;104:3489–3510. doi: 10.1007/s00170-019-04085-3. DOI
Peng C., Tran P., Nguyen-Xuan H., Ferreira A. Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach. Compos. Struct. 2020;235:111821. doi: 10.1016/j.compstruct.2019.111821. DOI
Obadimu S.O., Kourousis K.I. Compressive behavior of additively manufactured lattice structures: A review. Aerospace. 2021;8:207. doi: 10.3390/aerospace8080207. DOI