Quantification and Analysis of Residual Stresses in Braking Pedal Produced via Laser-Powder Bed Fusion Additive Manufacturing Technology

. 2023 Aug 23 ; 16 (17) : . [epub] 20230823

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37687459

Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008407 Structural Funds of the European Union
SP2023/088 Ministry of Education, Youth and Sports and Faculty of Mechanical Engineering VSB-TUO
SP2023/027 Ministry of Education, Youth and Sports and Faculty of Mechanical Engineering VSB-TUO

This study focuses on the experimental verification of residual stress (RS) in a 3D-printed braking pedal using the Powder Bed Fusion (PBF) method with SS316L material. The RS was measured at two representative locations using the hole drilling method (HDM) and the dividing method, which are semi-destructive and destructive methods of RS measurement, respectively. The finite element method (FEM) was used with Ansys Workbench 2020R2 and Simufact Additive 2021 software to determine the magnitude of RS. The results provide insights into how RS is incorporated into metal 3D-printed components and the available tools for predicting RS. This information is essential for experts to improve the accuracy and functionality of SLM parts when post-subtractive or additive manufacturing processes are used. Overall, this study contributes to the advancement of knowledge on the effects of RS on 3D-printed metal components, which can inform future research and development in this area.

Zobrazit více v PubMed

Janek M., Žilinská V., Kovár V., Hajdúchová Z., Tomanová K., Peciar P., Veteška P., Gabošová T., Fialka R., Feranc J., et al. Mechanical testing of hydroxyapatite filaments for tissue scaffolds preparation by fused deposition of Ceramics. J. Eur. Ceram. Soc. 2020;40:4932–4938. doi: 10.1016/j.jeurceramsoc.2020.01.061. DOI

Tkac J., Samborski S., Monkova K., Debski H. Analysis of mechanical properties of a lattice structure produced with the Additive Technology. Compos. Struct. 2020;242:112138. doi: 10.1016/j.compstruct.2020.112138. DOI

Monkova K., Vasina M., Zaludek M., Monka P.P., Tkac J. Mechanical vibration damping and compression properties of a lattice structure. Materials. 2021;14:1502. doi: 10.3390/ma14061502. PubMed DOI PMC

Płatek P., Sienkiewicz J., Janiszewski J., Jiang F. Investigations on Mechanical Properties of Lattice Structures with Different Values of Relative Density Made from 316L by Selective Laser Melting (SLM) Materials. 2020;13:2204. doi: 10.3390/ma13092204. PubMed DOI PMC

Păcurar A. Finite Element Analysis to Improve the Accuracy of Parts Made by Stainless Steel 316L Material Using Selective Laser Melting Technology. Appl. Mech. Mater. 2014;657:236–240. doi: 10.4028/www.scientific.net/AMM.657.236. DOI

Sotola M., Marsalek P., Rybansky D., Fusek M., Gabriel D. Sensitivity analysis of key formulations of topology optimization on an example of cantilever bending beam. Symmetry. 2021;13:712. doi: 10.3390/sym13040712. DOI

Pagac M., Hajnys J., Halama R., Aldabash T., Mesicek J., Jancar L., Jansa J. Prediction of model distortion by FEM in 3D printing via the selective laser melting of stainless steel AISI 316L. Appl. Sci. 2021;11:1656. doi: 10.3390/app11041656. DOI

Mesicek J., Jancar L., Ma Q.-P., Hajnys J., Tanski T., Krpec P., Pagac M. Comprehensive view of topological optimization scooter frame design and manufacturing. Symmetry. 2021;13:1201. doi: 10.3390/sym13071201. DOI

Opěla P., Benč M., Kolomy S., Jakůbek Z., Beranová D. High Cycle Fatigue Behaviour of 316L Stainless Steel Produced via Selective Laser Melting Method and Post Processed by Hot Rotary Swaging. Materials. 2023;16:3400. doi: 10.3390/ma16093400. PubMed DOI PMC

Kozior T., Bochnia J. The influence of printing orientation on surface texture parameters in powder bed fusion technology with 316L Steel. Micromachines. 2020;11:639. doi: 10.3390/mi11070639. PubMed DOI PMC

Gogolewski D., Bartkowiak T., Kozior T., Zmarzły P. Multiscale analysis of surface texture quality of models manufactured by laser powder-bed fusion technology and machining from 316L Steel. Materials. 2021;14:2794. doi: 10.3390/ma14112794. PubMed DOI PMC

Mizera O., Cepova L., Tkac J., Molnar V., Fedorko G., Samborski S. Study of the influence of optical measurement of slope geometry in the working chamber for Aisi 316L. Compos. Struct. 2023;321:117291. doi: 10.1016/j.compstruct.2023.117291. DOI

Gadagi B., Lekurwale R. A review on advances in 3D Metal printing. Mater. Today Proc. 2021;45:277–283. doi: 10.1016/j.matpr.2020.10.436. DOI

Bian P., Wang C., Xu K., Ye F., Zhang Y., Li L. Coupling Analysis on Microstructure and Residual Stress in Selective Laser Melting (SLM) with Varying Key Process Parameters. Materials. 2022;15:1658. doi: 10.3390/ma15051658. PubMed DOI PMC

Mesicek J., Ma Q.-P., Hajnys J., Zelinka J., Pagac M., Petru J., Mizera O. Abrasive surface finishing on SLM 316l parts fabricated with recycled powder. Appl. Sci. 2021;11:2869. doi: 10.3390/app11062869. DOI

Zhang J., Chaudhari A., Wang H. Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J. Manuf. Process. 2019;45:710–719. doi: 10.1016/j.jmapro.2019.07.044. DOI

Srivastava M., Hloch S., Gubeljak N., Milkovic M., Chattopadhyaya S., Klich J. Surface integrity and residual stress analysis of pulsed water jet peened stainless steel surfaces. Measurement. 2019;143:81–92. doi: 10.1016/j.measurement.2019.04.082. DOI

Dwivedi S., Dixit A.R., Das A.K., Nag A. A novel additive texturing of stainless steel 316L through binder jetting additive manufacturing. Int. J. Precis. Eng. Manuf.-Green Technol. 2023 doi: 10.1007/s40684-023-00508-5. DOI

Li C., Liu Z.Y., Fang X.Y., Guo Y.B. Residual stress in metal additive manufacturing. Procedia CIRP. 2018;71:348–353. doi: 10.1016/j.procir.2018.05.039. DOI

Carpenter K., Tabei A. On residual stress development, prevention, and compensation in metal additive manufacturing. Materials. 2020;13:255. doi: 10.3390/ma13020255. PubMed DOI PMC

Hu D., Grilli N., Wang L., Yang M., Yan W. Microscale residual stresses in additively manufactured stainless steel: Computational simulation. J. Mech. Phys. Solids. 2022;161:104822. doi: 10.1016/j.jmps.2022.104822. DOI

Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method. ASTM International; West Conshohocken, PA, USA: 2020.

Kudrna L., Ma Q.-P., Hajnys J., Mesicek J., Halama R., Fojtik F., Hornacek L. Restoration and possible upgrade of a historical motorcycle part using powder bed fusion. Materials. 2022;15:1460. doi: 10.3390/ma15041460. PubMed DOI PMC

Special Use Sensors—Residual Stress Strain Gages. [(accessed on 12 March 2023)]. Available online: https://foilresistors.com/docs/11516/resstr.pdf.

Surface Preparation for Strain Gage Bonding: Instruction Bulletin B-129-8. [(accessed on 12 March 2023)]. Available online: https://foilresistors.com/docs/11129/11129_b1.pdf.

The Measurement of Residual Stresses by the Incremental Hole Drilling Technique. NPL Publications, Eprintspublications.Npl.Co.Uk. 2006. [(accessed on 14 October 2021)]. Available online: https://eprintspublications.npl.co.uk/2517/

Schajer G., Whitehead P. Hole-Drilling Method for Measuring Residual Stresses. Volume 1. Springer; Charm, Switzerland: 2018. pp. 1–186. Synthesis SEM Lectures On Experimental Mechanics. DOI

Macura P., Fojtik F., Hrncac R. Experimental residual stress analysis of welded ball valve; Proceedings of the 19th IMEKO World Congress 2009; Lisbon, Portugal. 6–11 September 2009.

Kolařík K., Pala Z., Ganev N., Fojtík F. Combining XRD with Hole-Drilling Method in Residual Stress Gradient Analysis of Laser Hardened C45 Steel. Adv. Mater. Res. 2014;996:277–282. doi: 10.4028/www.scientific.net/AMR.996.277. DOI

Schajer G.S., editor. Practical Residual Stress Measurement Methods. Wiley-Blackwell; Hoboken, NJ, USA: 2013.

Schajer G. Relaxation methods for measuring residual stresses: Techniques and opportunities. Exp. Mech. 2010;50:1117–1127. doi: 10.1007/s11340-010-9386-7. DOI

Fojtik F., Paska Z., Kolar P. Comparison of Methods Used fort he Residual Stress Analysis in a Pipe Made from Polypropylene; Proceedings of the EAN 2017-55th Conference on Experimental Stress Analysis 2017; Novy Smokovec, Slovakia. 30 May–1 June 2017; pp. 596–602.

Cheng W., Finnie I. Residual Stress Measurement and the Slitting Method. Springer; Berlin/Heidelberg, Germany: 2007.

ANSYS, Inc . ANSYS Workbench Additive Manufacturing Analysis Guide. ANSYS, Inc.; Canonsburg, PA, USA: [(accessed on 10 January 2021)]. Available online: https://www.ansys.com.

Ansys Additive Suite. [(accessed on 12 March 2023)]. Available online: https://www.svsfem.cz/ansys-additive-suite.

Simufact Additive Tutorial. Simufact Engineering GmbH; Hamburg, Germany: 2021.

Svaricek K., Vlk M. A comparison of the procedure ASTM E 837-1 and the integral method for non-uniform residual stress measuring; Proceedings of the Inženýrská Mechanika 2005 Národní Konference s Mezinárodní Účastí: Svratka; Česká Republika. 9–12 May 2005; [(accessed on 12 March 2023)]. Available online: https://www.engmech.cz/improc/2005/Svaricek-PT.pdf.

ANSYS, Inc . ANSYS Workbench Additive Calibratin Guide. ANSYS, Inc.; Canonsburg, PA, USA: [(accessed on 10 January 2021)]. Available online: https://www.ansys.com.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...