FDA-Approved Drugs Efavirenz, Tipranavir, and Dasabuvir Inhibit Replication of Multiple Flaviviruses in Vero Cells

. 2020 Apr 20 ; 8 (4) : . [epub] 20200420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32326119

Grantová podpora
16-34238A Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/15_003/0000495 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 32326119
PubMed Central PMC7232190
DOI 10.3390/microorganisms8040599
PII: microorganisms8040599
Knihovny.cz E-zdroje

Vector-borne flaviviruses (VBFs) affect human health worldwide, but no approved drugs are available specifically to treat VBF-associated infections. Here, we performed in silico screening of a library of U.S. Food and Drug Administration-approved antiviral drugs for their interaction with Zika virus proteins. Twelve hit drugs were identified by the docking experiments and tested in cell-based antiviral assay systems. Efavirenz, tipranavir, and dasabuvir at micromolar concentrations were identified to inhibit all VBFs tested; i.e., two representatives of mosquito-borne flaviviruses (Zika and West Nile viruses) and one representative of flaviviruses transmitted by ticks (tick-borne encephalitis virus). The results warrant further research into these drugs, either individually or in combination, as possible pan-flavivirus inhibitors.

Zobrazit více v PubMed

Simmonds P., Becher P., Bukh J., Gould E.A., Meyers G., Monath T., Muerhoff S., Pletnev A., Rico-Hesse R., Smith D.B., et al. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017;98:2–3. doi: 10.1099/jgv.0.000672. PubMed DOI PMC

Deval J., Symons J.A., Beigelman L. Inhibition of viral RNA polymerases by nucleoside and nucleotide analogs: Therapeutic applications against positive-strand RNA viruses beyond hepatitis C virus. Curr. Opin. Virol. 2014;9:1–7. doi: 10.1016/j.coviro.2014.08.004. PubMed DOI PMC

Baier A. Flaviviral infections and potential targets for antiviral therapy. In: Ruzek D., editor. Flavivirus Encephalitis. 1st ed. InTech; Rijeka, Croatia: 2011. pp. 89–104.

Lazear H.M., Stringer E.M., de Silva A.M. The Emerging Zika Virus Epidemic in the Americas Research Priorities. JAMA-J. Am. Med. Assoc. 2016;315:1945–1946. doi: 10.1001/jama.2016.2899. PubMed DOI

Han Y., Mesplède T., Xu H., Quan Y., Wainberg M.A. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities. J. Med. Virol. 2018;90:796–802. doi: 10.1002/jmv.25031. PubMed DOI

Adcock R.S., Chu Y.K., Golden J.E., Chung D.H. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antivir. Res. 2017;138:47–56. doi: 10.1016/j.antiviral.2016.11.018. PubMed DOI

Barrows N.J., Campos R.K., Powell S.T., Prasanth K.R., Schott-Lerner G., Soto-Acosta R., Galarza-Muñoz G., McGrath E.L., Urrabaz-Garza R., Gao J., et al. A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection. Cell Host. Microbe. 2016;20:259–270. doi: 10.1016/j.chom.2016.07.004. PubMed DOI PMC

Madrid P.B., Chopra S., Manger I.D., Gilfillan L., Keepers T.R., Shurtleff A.C., Green C.E., Iyer L.V., Dilks H.H., Davey R.A., et al. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS ONE. 2013;8:e60579. doi: 10.1371/journal.pone.0060579. PubMed DOI PMC

Pascoalino B.S., Courtemanche G., Cordeiro M.T., Gil L.H., Freitas-Junior L. Zika antiviral chemotherapy: Identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Research. 2016;5:2523. doi: 10.12688/f1000research.9648.1. PubMed DOI PMC

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Sanner M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999;17:57–61. PubMed

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Wishart D.S., Knox C., Guo A.C., Cheng D., Shrivastava S., Tzur D., Gautam B., Hassanali M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36:D901–D906. doi: 10.1093/nar/gkm958. PubMed DOI PMC

O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011;3:33. doi: 10.1186/1758-2946-3-33. PubMed DOI PMC

Irwin J.J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model. 2012;52:1757–1768. doi: 10.1021/ci3001277. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Keshavarz F., Alavianmehr M.M., Yousefi R. Molecular interaction of Benzalkonium Ibuprofenate and its discrete ingredients with human serum albumin. Phys. Chem. Res. 2013;1:111–116.

Sastry G.M., Adzhigirey M., Day T., Annabhimoju R., Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI

Madadkar-Sobhani A., Guallar V. PELE web server: Atomistic study of biomolecular systems at your fingertips. Nucleic Acids Res. 2013;41:W322–W328. doi: 10.1093/nar/gkt454. PubMed DOI PMC

Borrelli K.W., Vitalis A., Alcantara R., Guallar V. PELE:  Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique. J. Chem. Theory Comput. 2005;1:1304–1311. doi: 10.1021/ct0501811. PubMed DOI

Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

De Madrid A.T., Porterfield J.S. A simple micro-culture method for the study of group B arboviruses. Bull. World Health Organ. 1969;40:113–121. PubMed PMC

Eyer L., Valdés J.J., Gil V.A., Nencka R., Hřebabecký H., Šála M., Salát J., Černý J., Palus M., De Clercq E., et al. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob. Agents Chemother. 2015;59:5483–5493. doi: 10.1128/AAC.00807-15. PubMed DOI PMC

Eyer L., Fojtíková M., Nencka R., Rudolf I., Hubálek Z., Ruzek D. Viral RNA-Dependent RNA Polymerase Inhibitor 7-Deaza-2’-C-Methyladenosine Prevents Death in a Mouse Model of West Nile Virus Infection. Antimicrob. Agents Chemother. 2019;63:e02093-18. doi: 10.1128/AAC.02093-18. PubMed DOI PMC

Eyer L., Nencka R., Huvarová I., Palus M., Joao Alves M., Gould E.A., De Clercq E., Růžek D. Nucleoside Inhibitors of Zika Virus. J. Infect. Dis. 2016;214:707–711. doi: 10.1093/infdis/jiw226. PubMed DOI

Zmurko J., Marques R.E., Schols D., Verbeken E., Kaptein S.J., Neyts J. The Viral Polymerase Inhibitor 7-Deaza-2’-C-Methyladenosine Is a Potent Inhibitor of In Vitro Zika Virus Replication and Delays Disease Progression in a Robust Mouse Infection Model. PLoS Negl. Trop. Dis. 2016;10:e0004695. doi: 10.1371/journal.pntd.0004695. PubMed DOI PMC

Ren J., Milton J., Weaver K.L., Short S.A., Stuart D.I., Stammers D.K. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure. 2000;8:1089–1094. doi: 10.1016/S0969-2126(00)00513-X. PubMed DOI

Wong-Sam A., Wang Y.F., Zhang Y., Ghosh A.K., Harrison R.W., Weber I.T. Drug Resistance Mutation L76V Alters Nonpolar Interactions at the Flap-Core Interface of HIV-1 Protease. ACS Omega. 2018;3:12132–12140. doi: 10.1021/acsomega.8b01683. PubMed DOI PMC

Kati W., Koev G., Irvin M., Beyer J., Liu Y., Krishnan P., Reisch T., Mondal R., Wagner R., Molla A., et al. In vitro activity and resistance profile of dasabuvir, a nonnucleoside hepatitis C virus polymerase inhibitor. Antimicrob. Agents Chemother. 2015;59:1505–1511. doi: 10.1128/AAC.04619-14. PubMed DOI PMC

Haviernik J., Štefánik M., Fojtíková M., Kali S., Tordo N., Rudolf I., Hubálek Z., Eyer L., Ruzek D. Arbidol (Umifenovir): A Broad-Spectrum Antiviral Drug That Inhibits Medically Important Arthropod-Borne Flaviviruses. Viruses. 2018;10:E184. doi: 10.3390/v10040184. PubMed DOI PMC

Eyer L., Smidkova M., Nencka R., Neča J., Kastl T., Palus M., De Clercq E., Růžek D. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antivir. Res. 2016;133:119–129. doi: 10.1016/j.antiviral.2016.07.018. PubMed DOI

Wang S., Liu Y., Guo J., Wang P., Zhang L., Xiao G., Wang W. Screening of FDA-Approved Drugs for Inhibitors of Japanese Encephalitis Virus Infection. J. Virol. 2017;91:e01055-17. doi: 10.1128/JVI.01055-17. PubMed DOI PMC

Xu M., Lee E.M., Wen Z., Cheng Y., Huang W.K., Qian X., Tcw J., Kouznetsova J., Ogden S.C., Hammack C., et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med. 2016;22:1101–1107. doi: 10.1038/nm.4184. PubMed DOI PMC

Schapiro J.M., Scherer J., Boucher C.A., Baxter J.D., Tilke C., Perno C.F., Maggiolo F., Santoro M.M., Hall D.B. Improving the prediction of virological response to tipranavir: The development and validation of a tipranavir-weighted mutation score. Antivir. Ther. 2010;15:1011–1019. doi: 10.3851/IMP1670. PubMed DOI

Luna B., Townsend M.U. Tipranavir: The first nonpeptidic protease inhibitor for the treatment of protease resistance. Clin Ther. 2007;29:2309–2318. doi: 10.1016/j.clinthera.2007.11.007. PubMed DOI

King J.R., Zha J., Khatri A., Dutta S., Menon R.M. Clinical Pharmacokinetics of Dasabuvir. Clin. Pharmacokinet. 2017;56:1115–1124. doi: 10.1007/s40262-017-0519-3. PubMed DOI

Trivella J.P., Gutierrez J., Martin P. Dasabuvir: A new direct antiviral agent for the treatment of hepatitis C. Expert Opin Pharmacother. 2015;16:617–624. doi: 10.1517/14656566.2015.1012493. PubMed DOI PMC

Julander J.G., Bantia S., Taubenheim B.R., Minning D.M., Kotian P., Morrey J.D., Smee D.F., Sheridan W.P., Babu Y.S. BCX4430, a novel nucleoside analog, effectively treats yellow fever in a Hamster model. Antimicrob Agents Chemother. 2014;58:6607–6614. doi: 10.1128/AAC.03368-14. PubMed DOI PMC

Eyer L., Kondo H., Zouharova D., Hirano M., Valdés J.J., Muto M., Kastl T., Kobayashi S., Haviernik J., Igarashi M., et al. Escape of Tick-Borne Flavivirus from 2’-C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. J. Virol. 2017;91:e01028-17. doi: 10.1128/JVI.01028-17. PubMed DOI PMC

Gentile I., Buonomo A.R., Borgia G. Dasabuvir: A Non-Nucleoside Inhibitor of NS5B for the Treatment of Hepatitis C Virus Infection. Rev. Recent Clin. Trials. 2014;9:115–123. doi: 10.2174/1574887109666140529222602. PubMed DOI

Černý J., Černá Bolfíková B., Valdés J.J., Grubhoffer L., Růžek D. Evolution of tertiary structure of viral RNA dependent polymerases. PLoS ONE. 2014;9:e96070. doi: 10.1371/journal.pone.0096070. PubMed DOI PMC

Duarte H., Cruz J.P., Aniceto N., Ribeiro A.C., Fernandes A., Paixão P., Antunes F., Morais J. Population Approach to Efavirenz Therapy. J. Pharm. Sci. 2017;106:3161–3166. doi: 10.1016/j.xphs.2017.06.004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...